NSR Query Results


Output year order : Descending
Format : Normal

NSR database version of April 26, 2024.

Search: Author = G.Hagen

Found 106 matches.

    Showing 1 to 100.

   [Next]

Back to query form



2024SO05      Phys.Rev. C 109, 025502 (2024)

J.E.Sobczyk, B.Acharya, S.Bacca, G.Hagen

40Ca transverse response function from coupled-cluster theory

doi: 10.1103/PhysRevC.109.025502
Citations: PlumX Metrics


2023CH26      Phys.Lett. B 843, 138025 (2023)

S.Chen, F.Browne, P.Doornenbal, J.Lee, A.Obertelli, Y.Tsunoda, T.Otsuka, Y.Chazono, G.Hagen, J.D.Holt, G.R.Jansen, K.Ogata, N.Shimizu, Y.Utsuno, K.Yoshida, N.L.Achouri, H.Baba, D.Calvet, F.Chateau, N.Chiga, A.Corsi, M.L.Cortes, A.Delbart, J.-M.Gheller, A.Giganon, A.Gillibert, C.Hilaire, T.Isobe, T.Kobayashi, Y.Kubota, V.Lapoux, H.N.Liu, T.Motobayashi, I.Murray, H.Otsu, V.Panin, N.Paul, W.Rodriguez, H.Sakurai, M.Sasano, D.Steppenbeck, L.Stuhl, Y.L.Sun, Y.Togano, T.Uesaka, K.Wimmer, K.Yoneda, O.Aktas, T.Aumann, L.X.Chung, F.Flavigny, S.Franchoo, I.Gasparic, R.-B.Gerst, J.Gibelin, K.I.Hahn, D.Kim, T.Koiwai, Y.Kondo, P.Koseoglou, C.Lehr, B.D.Linh, T.Lokotko, M.MacCormick, K.Moschner, T.Nakamura, S.Y.Park, D.Rossi, E.Sahin, P.-A.Soderstrom, D.Sohler, S.Takeuchi, H.Tornqvist, V.Vaquero, V.Wagner, S.Wang, V.Werner, X.Xu, H.Yamada, D.Yan, Z.Yang, M.Yasuda, L.Zanetti

Level structures of 56, 58Ca cast doubt on a doubly magic 60Ca

NUCLEAR REACTIONS 1H(57Sc, 2p)56Ca, E=209 MeV/nucleon; 1H(59Sc, 2p)58Ca, E=199 MeV/nucleon, [57,59Sc secondary beams from 9Be(70Zn, X), E=345 MeV/nucleon, followed by separation and identification of ions of interest using the BigRIPS separator at RIBF-RIKEN facility]; measured reaction residues of 56Ca and 58Ca through identification by the SAMURAI spectrometer, Doppler-corrected Eγ, Iγ, (particle)γ-coin using the DALI2+ array using MINOS liquid hydrogen target. 56,58Ca; deduced energies of the first 2+ levels. Comparison with shell-model calculations with the GXPF1B Hamiltonian in full pf model space, and the state-of-the-art ab initio approaches: VS-IMSRG method, and CC calculations. Systematics of energies of the first 2+ states and S(2n) from experiment (N=22-36) and theory in N=22-54 Ca isotopes.

doi: 10.1016/j.physletb.2023.138025
Citations: PlumX Metrics

Data from this article have been entered in the XUNDL database. For more information, click here.


2023FE08      Phys. Rev. Res. 5, L022044 (2023)

R.W.Fearick, P.von Neumann-Cosel, S.Bacca, J.Birkhan, F.Bonaiti, I.Brandherm, G.Hagen, H.Matsubara, W.Nazarewicz, N.Pietralla, V.Yu.Ponomarev, P.-G.Reinhard, X.Roca-Maza, A.Richter, A.Schwenk, J.Simonis, and A.Tamii

Electric dipole polarizability of 40Ca

NUCLEAR REACTIONS 40Ca(p, p'), E=5-25 MeV; measured reaction products, Ep, Ip; deduced electric dipole strength distribution, σ(θ, E). Comparison with available data. The Grand Raiden spectrometer, RCNP, Osaka.

doi: 10.1103/PhysRevResearch.5.L022044
Citations: PlumX Metrics


2023GI06      Phys.Rev.Lett. 130, 232301 (2023)

S.Giraud, J.C.Zamora, R.G.T.Zegers, D.Bazin, Y.Ayyad, S.Bacca, S.Beceiro Novo, B.A.Brown, A.Carls, J.Chen, M.Cortesi, M.DeNudt, G.Hagen, C.Hultquist, C.Maher, W.Mittig, F.Ndayisabye, S.Noji, S.J.Novario, J.Pereira, Z.Rahman, J.Schmitt, M.Serikow, L.J.Sun, J.Surbrook, N.Watwood, T.Wheeler

β+ Gamow-Teller Strengths from Unstable 14O via the (d, 2He) Reaction in Inverse Kinematics

NUCLEAR REACTIONS 2H(14O, 2He), E=105 MeV/nucleon; measured reaction products. 14O; deduced σ(θ), B(GT) or Gamow-Teller transition strength. Comparison with available data. The Coupled Cyclotron Facility at the National Superconducting Cyclotron Laboratory (NSCL), MSU.

doi: 10.1103/PhysRevLett.130.232301
Citations: PlumX Metrics

Data from this article have been entered in the XUNDL database. For more information, click here.


2023GU20      Phys.Rev. C 108, 054309 (2023)

C.Gu, Z.H.Sun, G.Hagen, T.Papenbrock

Entanglement entropy of nuclear systems

doi: 10.1103/PhysRevC.108.054309
Citations: PlumX Metrics


2023KO15      Nature(London) 620, 965 (2023)

Y.Kondo, N.L.Achouri, H.Al Falou, L.Atar, T.Aumann, H.Baba, K.Boretzky, C.Caesar, D.Calvet, H.Chae, N.Chiga, A.Corsi, F.Delaunay, A.Delbart, Q.Deshayes, Zs.Dombradi, C.A.Douma, A.Ekstrom, Z.Elekes, C.Forssen, I.Gasparic, J.-M.Gheller, J.Gibelin, A.Gillibert, G.Hagen, M.N.Harakeh, A.Hirayama, C.R.Hoffman, M.Holl, A.Horvat, A.Horvath, J.W.Hwang, T.Isobe, W.G.Jiang, J.Kahlbow, N.Kalantar-Nayestanaki, S.Kawase, S.Kim, K.Kisamori, T.Kobayashi, D.Korper, S.Koyama, I.Kuti, V.Lapoux, S.Lindberg, F.M.Marques, S.Masuoka, J.Mayer, K.Miki, T.Murakami, M.Najafi, T.Nakamura, K.Nakano, N.Nakatsuka, T.Nilsson, A.Obertelli, K.Ogata, F.de Oliveira Santos, N.A.Orr, H.Otsu, T.Otsuka, T.Ozaki, V.Panin, T.Papenbrock, S.Paschalis, A.Revel, D.Rossi, A.T.Saito, T.Y.Saito, M.Sasano, H.Sato, Y.Satou, H.Scheit, F.Schindler, P.Schrock, M.Shikata, N.Shimizu, Y.Shimizu, H.Simon, D.Sohler, O.Sorlin, L.Stuhl, Z.H.Sun, S.Takeuchi, M.Tanaka, M.Thoennessen, H.Tornqvist, Y.Togano, T.Tomai, J.Tscheuschner, J.Tsubota, N.Tsunoda, T.Uesaka, Y.Utsuno, I.Vernon, H.Wang, Z.Yang, M.Yasuda, K.Yoneda, S.Yoshida

First observation of 28O

NUCLEAR REACTIONS H(29F, X)27O/28O, E=235 MeV/nucleon; measured reaction products; deduced yields. The hydrogen target was surrounded by the MINOS Time Projection Chamber, SAMURAI spectrometer, RIKEN RI Beam Factory.

RADIOACTIVITY 28O(4n), 27O(3n); measured decay products, En, In; deduced decay energy spectra and schemes from the measured momenta using the invariant-mass technique, resonance parameters. Comparison with the large-scale shell-model calculations using the new chiral effective field theory (EEdf3) interaction.

doi: 10.1038/s41586-023-06352-6
Citations: PlumX Metrics

Data from this article have been entered in the XUNDL database. For more information, click here.


2023KO19      Phys.Rev.Lett. 131, 102501 (2023)

K.Konig, S.Fritzsche, G.Hagen, J.D.Holt, A.Klose, J.Lantis, Y.Liu, K.Minamisono, T.Miyagi, W.Nazarewicz, T.Papenbrock, S.V.Pineda, R.Powel, P.-G.Reinhard

Surprising Charge-Radius Kink in the Sc Isotopes at N=20

NUCLEAR REACTIONS Be(40Ca, X)40Sc/41Sc, E=140 MeV/nucleon; measured frequencies; deduced resonance spectra, charge radii using collinear laser spectroscopy, kink at neutron shell closure. Comparison with available data. The National Superconducting Cyclotron Laboratory.

doi: 10.1103/PhysRevLett.131.102501
Citations: PlumX Metrics

Data from this article have been entered in the XUNDL database. For more information, click here.


2023NO01      Phys.Rev.Lett. 130, 032501 (2023)

S.J.Novario, D.Lonardoni, S.Gandolfi, G.Hagen

Trends of Neutron Skins and Radii of Mirror Nuclei from First Principles

NUCLEAR STRUCTURE 42,46,48Ca, 48Ti, 48Cr; calculated neutron skin thickness, mirror-difference binding energy per nucleon using dN2LOGO (394) with and without the Coulomb term.

doi: 10.1103/PhysRevLett.130.032501
Citations: PlumX Metrics


2023SU07      Phys.Rev. C 108, 014307 (2023)

Z.H.Sun, G.Hagen, T.Papenbrock

Coupled-cluster theory for strong entanglement in nuclei

NUCLEAR STRUCTURE 12C, 28Si, 56Ni; calculated ground-state energy. Single-reference coupled-cluster theory based on spherical and deformed reference states and the tailored coupled-cluster method. Comparison to experimental data.

doi: 10.1103/PhysRevC.108.014307
Citations: PlumX Metrics


2023YA29      Eur.Phys.J. A 59, 233 (2023)

C.-J.Yang, A.Ekstrom, C.Forssen, G.Hagen, G.Rupak, U.van Kolck

The importance of few-nucleon forces in chiral effective field theory

NUCLEAR STRUCTURE 3H, 4He, 16O, 40Ca; calculated binding energy per nucleon with NN-only and NN+NNN interactions at leading order (LO) with coupled-cluster model of the equation of state for symmetric nuclear matter; deduced LO four-nucleon forces could play a crucial role for describing heavy-mass nuclei.

doi: 10.1140/epja/s10050-023-01149-7
Citations: PlumX Metrics


2022BO02      Phys.Rev. C 105, 034313 (2022)

F.Bonaiti, S.Bacca, G.Hagen

Ab initio coupled-cluster calculations of ground and dipole excited states in 8He

NUCLEAR STRUCTURE 8He; calculated ground-state energy, point-proton radius, dipole response function, dipole polarizability. Coupled-cluster calculations with the inclusion of leading-order three-particle three-hole excitations in the cluster operator. Comparison to experimental data.

doi: 10.1103/PhysRevC.105.034313
Citations: PlumX Metrics


2022CI08      J.Phys.(London) G49, 120502 (2022)

V.Cirigliano, Z.Davoudi, J.Engel, R.J.Furnstahl, G.Hagen, U.Heinz, H.Hergert, M.Horoi, C.W.Johnson, A.Lovato, E.Mereghetti, W.Nazarewicz, A.Nicholson, T.Papenbrock, S.Pastore, M.Plumlee, D.R.Phillips, P.E.Shanahan, S.R.Stroberg, F.Viens, A.Walker-Loud, K.A.Wendt, S.M.Wild

Towards precise and accurate calculations of neutrinoless double-beta decay

RADIOACTIVITY 48Ca(2β-); calculated neutrinoless nuclear matrix elements using chiral-EFT interactions, EDF, IBM, QRPA, SM-pf, SM-sdpf, SM-MBPT, RSM, QMC+SM, IM-GCM, VS-IMSRG, CCSD, CCSD-T1.

doi: 10.1088/1361-6471/aca03e
Citations: PlumX Metrics


2022HA19      Phys.Rev. C 105, 064311 (2022)

G.Hagen, S.J.Novario, Z.H.Sun, T.Papenbrock, G.R.Jansen, J.G.Lietz, T.Duguet, A.Tichai

Angular-momentum projection in coupled-cluster theory: Structure of 34Mg

NUCLEAR STRUCTURE 8Be; calculated energies using symmetry-unrestricted Hartree-Fock and HF-RVAP as a function of the mass quadrupole moment q20. 20Ne, 34Mg; calculated the norm kernels and Hamiltonian kernels as function of the rotation angle using Hartree-Fock and CCD theories. 8Be, 20Ne, 34Mg; calculated projected coupled-cluster energies of the ground and excited states as a function of oscillator frequency using CCD, SLD, and SQD approximations. 44,46,48Ti, 48,50Cr; calculated low-lying states of J=0, 2 and 4 using projection-after-variation Hartree-Fock (PAV HF), variation-after-projection Hartree-Fock (VAP-HF), and projected CCD, SLD, and SQD methods, and compared to FCI results. Angular-momentum projection after variation with the disentangled coupled-cluster formalism and a Hermitian approach. Comparison with two-nucleon interaction from chiral effective field theory and for pf-shell nuclei within the traditional shell model, and with experimental data.

doi: 10.1103/PhysRevC.105.064311
Citations: PlumX Metrics


2022HU13      Nat.Phys. 610, 1196 (2022)

B.Hu, W.Jiang, T.Miyagi, Z.Sun, A.Ekstrom, C.Forssen, G.Hagen, J.D.Holt, T.Papenbrock, S.R.Stroberg, I.Vernon

Ab initio predictions link the neutron skin of 208Pb to nuclear forces

NUCLEAR STRUCTURE 208Pb; analyzed available data; calculated neutron skin using Ab initio, bulk properties.

doi: 10.1038/s41567-022-01715-8
Citations: PlumX Metrics


2022KA35      Phys.Rev.Lett. 129, 142502 (2022)

S.Kaur, R.Kanungo, W.Horiuchi, G.Hagen, J.D.Holt, B.S.Hu, T.Miyagi, T.Suzuki, F.Ameil, J.Atkinson, Y.Ayyad, S.Bagchi, D.Cortina-Gil, I.Dillmann, A.Estrade, A.Evdokimov, F.Farinon, H.Geissel, G.Guastalla, R.Janik, R.Knobel, J.Kurcewicz, Y.A.Litvinov, M.Marta, M.Mostazo, I.Mukha, C.Nociforo, H.J.Ong, T.Otsuka, S.Pietri, A.Prochazka, C.Scheidenberger, B.Sitar, P.Strmen, M.Takechi, J.Tanaka, I.Tanihata, S.Terashima, J.Vargas, H.Weick, J.S.Winfield

Proton Distribution Radii of 16-24O: Signatures of New Shell Closures and Neutron Skin

NUCLEAR REACTIONS 12C(16O, X), (18O, X), (19O, X), (20O, X), (21O, X), (22O, X), (23O, X), (24O, X), E<1 GeV/nucleon; measured reaction products. 16,18,20,21,22,23,24O; deduced charge changing σ, root mean square proton and matter radii, neutron skin thickness, shell closure. Comparison with with ab initio calculations employing the chiral NNLO sat interaction, shell model predictions. The fragment separator FRS at GSI.

doi: 10.1103/PhysRevLett.129.142502
Citations: PlumX Metrics

Data from this article have been entered in the EXFOR database. For more information, access X4 datasetD8052. Data from this article have been entered in the XUNDL database. For more information, click here.


2022KO04      Phys.Rev. C 105, L021303 (2022)

M.Kortelainen, Z.Sun, G.Hagen, W.Nazarewicz, T.Papenbrock, P.-G.Reinhard

Universal trend of charge radii of even-even Ca-Zn nuclei

NUCLEAR STRUCTURE 36,38,40,42,44,46,48,50,52,54,56,58,60Ca, 42,44,46,48,50,52,54,56,58,60,62Ti, 44,46,48,50,52,54,56,58,60,62,64Cr, 46,48,50,52,54,56,58,60,62,64,66Fe, 48,50,52,54,56,58,60,62,64,66,68Ni, 60,62,64,66,68,70Zn; calculated ground state energies, charge rms radii. Coupled cluster (CC) and ab-initio density functional theory calculations extended to the open-shell deformed nuclei. Comparison to available data.

doi: 10.1103/PhysRevC.105.L021303
Citations: PlumX Metrics


2022MA04      Phys.Rev.Lett. 128, 022502 (2022)

S.Malbrunot-Ettenauer, S.Kaufmann, S.Bacca, C.Barbieri, J.Billowes, M.L.Bissell, K.Blaum, B.Cheal, T.Duguet, R.F.Garcia Ruiz, W.Gins, C.Gorges, G.Hagen, H.Heylen, J.D.Holt, G.R.Jansen, A.Kanellakopoulos, M.Kortelainen, T.Miyagi, P.Navratil, W.Nazarewicz, R.Neugart, G.Neyens, W.Nortershauser, S.J.Novario, T.Papenbrock, T.Ratajczyk, P.-G.Reinhard, L.V.Rodriguez, R.Sanchez, S.Sailer, A.Schwenk, J.Simonis, V.Soma, S.R.Stroberg, L.Wehner, C.Wraith, L.Xie, Z.Y.Xu, X.F.Yang, D.T.Yordanov

Nuclear Charge Radii of the Nickel Isotopes 58-68, 70Ni

NUCLEAR MOMENTS 58,59,60,61,62,63,64,65,66,67,68Ni, 70Ni; measured frequency-time spectrum; deduced isotope shifts, mean-square charge radii. Comparison with ab initio approaches. Collinear laser spectroscopy beam line COLLAPS, ISOLDE/CERN.

doi: 10.1103/PhysRevLett.128.022502
Citations: PlumX Metrics

Data from this article have been entered in the XUNDL database. For more information, click here.


2022MI13      Phys.Rev. C 106, 024004 (2022)

C.Mishra, A.Ekstrom, G.Hagen, T.Papenbrock, L.Platter

Two-pion exchange as a leading-order contribution in chiral effective field theory

doi: 10.1103/PhysRevC.106.024004
Citations: PlumX Metrics


2022OH01      Phys.Rev. C 105, L031305 (2022)

B.Ohayon, R.F.Garcia Ruiz, Z.H.Sun, G.Hagen, T.Papenbrock, B.K.Sahoo

Nuclear charge radii of Na isotopes: Interplay of atomic and nuclear theory

NUCLEAR STRUCTURE 18,20,22,24,26,28Ne, 21,23,25,27,28,31Na, 22,24,26,28,30,32Mg; analyzed experimental isotope shifts (from 2012YO01, 1978HU12, 2011MA48, 1975HU04); deduced charge radii using improved atomic calculations and nuclear coupled-cluster theory. Developed analytic response-based RCC (AR-RCC) theory to include full triple electron excitations and perturbatively estimate quadrupole excitations. Comparison to the results obtained with atomic parameters obtained with different calculations and with values returned from the semiempirical neutron-skin for Na isotopes.

doi: 10.1103/PhysRevC.105.L031305
Citations: PlumX Metrics


2022SO15      Phys.Rev. C 106, 034310 (2022)

J.E.Sobczyk, S.Bacca, G.Hagen, T.Papenbrock

Spectral function for 4He using the Chebyshev expansion in coupled-cluster theory

NUCLEAR REACTIONS 4He(e, e'), at momentum transfers q ≈ 270-670 MeV; calculated intrinsic momentum distribution, and compared with that in laboratory system, spectral functions, differential σ(momentum transfer) using coupled-cluster singles-and-doubles (CCSD) approximation, with an expansion of integral transforms into Chebyshev polynomials.

doi: 10.1103/PhysRevC.106.034310
Citations: PlumX Metrics


2022ST03      Phys.Rev. C 105, 034333 (2022)

S.R.Stroberg, J.Henderson, G.Hackman, P.Ruotsalainen, G.Hagen, J.D.Holt

Systematics of E2 strength in the sd shell with the valence-space in-medium similarity renormalization group

NUCLEAR STRUCTURE 18O, 18,19,21,22Ne, 19,21F, 21,23Na, 21,22,23,25,26Mg, 25,27,34Al, 26,27,29,30Si, 29,31,33P, 30,31,34S, 33,34Ar; calculated B(E2). 14C; calculated energies of first 0+ and 2+ states, neutron and proton quadrupole-excitation amplitudes. Ab initio valence-space in-medium similarity renormalization group (VS-IMSRG) and shell-model calculations with the USDB interaction. Comparison to experimental data.

doi: 10.1103/PhysRevC.105.034333
Citations: PlumX Metrics


2022SU28      Phys.Rev. C 106, L061302 (2022)

Z.H.Sun, C.A.Bell, G.Hagen, T.Papenbrock

How to renormalize coupled cluster theory

ATOMIC MASSES 20,22,24,26,28,30,32,34Na, 16,24O, 40,48Ca, 78Ni, 90Zr, 100Sn; calculated binding energies, energies per nucleon. Coupled cluster theory with included short-range three-body correlations by renormalizing the three-body contact interaction. Comparison to experimental values.

doi: 10.1103/PhysRevC.106.L061302
Citations: PlumX Metrics


2021BO06      Eur.Phys.J. A 57, 42 (2021)

V.Bontems, T.Duguet, G.Hagen, V.Soma

Topical issue on the tower of effective (field) theories and the emergence of nuclear phenomena

doi: 10.1140/epja/s10050-021-00356-4
Citations: PlumX Metrics


2021HO15      Phys.Lett. B 822, 136710 (2021)

M.Holl, R.Kanungo, Z.H.Sun, G.Hagen, J.A.Lay, A.M.Moro, P.Navratil, T.Papenbrock, M.Alcorta, D.Connolly, B.Davids, A.Diaz Varela, M.Gennari, G.Hackman, J.Henderson, S.Ishimoto, A.I.Kilic, R.Krucken, A.Lennarz, J.Liang, J.Measures, W.Mittig, O.Paetkau, A.Psaltis, S.Quaglioni, J.S.Randhawa, J.Smallcombe, I.J.Thompson, M.Vorabbi, M.Williams

Proton inelastic scattering reveals deformation in 8He

NUCLEAR REACTIONS 1H(8He, p), E=8.25 MeV/nucleon; measured reaction products, Ep, Ip. 8He; deduced σ(θ), resonance parameters, first 2+ state, quadrupole deformation parameter. Comparison with no-core shell model predictions. Charged particle spectroscopy station IRIS at TRIUMF in Canada.

doi: 10.1016/j.physletb.2021.136710
Citations: PlumX Metrics

Data from this article have been entered in the EXFOR database. For more information, access X4 datasetC2684.


2021KO08      Nat.Phys. 17, 439 (2021), Erratum Nat.Phys. 17, 539 (2021)

A.Koszorus, X.F.Yang, W.G.Jiang, S.J.Novario, S.W.Bai, J.Billowes, C.L.Binnersley, M.L.Bissell, T.E.Cocolios, B.S.Cooper, R.P.de Groote, A.Ekstrom, K.T.Flanagan, C.Forssen, S.Franchoo, R.F.Garcia Ruiz, F.P.Gustafsson, G.Hagen, G.R.Jansen, A.Kanellakopoulos, M.Kortelainen, W.Nazarewicz, G.Neyens, T.Papenbrock, P.-G.Reinhard, C.M.Ricketts, B.K.Sahoo, A.R.Vernon, S.G.Wilkins

Charge radii of exotic potassium isotopes challenge nuclear theory and the magic character of N = 32

NUCLEAR MOMENTS 36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52K; measured frequencies; deduced hyperfine structure spectra, charge radii, new magic numbers. Comparison with NNLO, HFB calculations.

doi: 10.1038/s41567-020-01136-5
Citations: PlumX Metrics

Data from this article have been entered in the XUNDL database. For more information, click here.


2021MO23      Nat.Phys. 17, 1099 (2021)

M.Mougeot, D.Atanasov, J.Karthein, R.N.Wolf, P.Ascher, K.Blaum, K.Chrysalidis, G.Hagen, J.D.Holt, W.J.Huang, G.R.Jansen, I.Kulikov, Yu.A.Litvinov, D.Lunney, V.Manea, T.Miyagi, T.Papenbrock, L.Schweikhard, A.Schwenk, T.Steinsberger, S.R.Stroberg, Z.H.Sun, A.Welker, F.Wienholtz, S.G.Wilkins, K.Zuber

Mass measurements of 99-101In challenge ab initio nuclear theory of the nuclide 100Sn

NUCLEAR REACTIONS La(p, X)99In/100In/101In, E=1.4 GeV; measured reaction products, TOF; deduced atomic masses. Comparison with AME2020, theoretical calculations.

doi: 10.1038/s41567-021-01326-9
Citations: PlumX Metrics

Data from this article have been entered in the XUNDL database. For more information, click here.


2021NO04      Phys.Rev.Lett. 126, 182502 (2021)

S.Novario, P.Gysbers, J.Engel, G.Hagen, G.R.Jansen, T.D.Morris, P.Navratil, T.Papenbrock, S.Quaglioni

Coupled-Cluster Calculations of Neutrinoless Double-β Decay in 48Ca

RADIOACTIVITY 48Ca(2β-); calculated nuclear matrix element for the neutrinoless ββ-decay using coupled-cluster theory and nuclear interactions from chiral effective field theory.

doi: 10.1103/PhysRevLett.126.182502
Citations: PlumX Metrics


2021SO24      Phys.Rev.Lett. 127, 072501 (2021)

J.E.Sobczyk, B.Acharya, S.Bacca, G.Hagen

Ab Initio Computation of the Longitudinal Response Function in 40Ca

NUCLEAR STRUCTURE 40Ca; calculated longitudinal response function using the coupled-cluster and Lorentz integral transform methods starting from chiral nucleon-nucleon and three-nucleon interactions.

doi: 10.1103/PhysRevLett.127.072501
Citations: PlumX Metrics


2021SU22      Phys.Rev. C 104, 064310 (2021)

Z.H.Sun, G.Hagen, G.R.Jansen, T.Papenbrock

Effective shell-model interaction for nuclei "southeast" of 100Sn

NUCLEAR STRUCTURE 100Sn; calculated single-particle neutron and single-hole proton states from effective shell-model interaction for the valence space and using chiral nucleon-nucleon and three-nucleon forces and single-reference coupled-cluster theory and ΔNNLOGO potentials, with detailed matrix elements given in the Supplemental Material. 98Cd, 100In, 100,102Sn; calculated ground-state energies relative using 1.8/2.0(EM) and ΔNNLOGO potentials and compared to experimental data. 102,104,106,108Sn, 98Cd, 100,101,103,105,107In, 100,102,104,106Cd, ; calculated low-lying positive-parity levels from Jπ=0+ to 8+ for even-A and low-lying positive- and negative-parity levels from Jπ=1/2- to 13/2+ for odd-A using 1.8/2.0(EM) and ΔNNLOGO potentials, and compared to experimental data. Systematic derivation of the particle-hole variant of the shell-model coupled-cluster method to compute nuclei in the vicinity of 100Sn, with the shell-model effective interaction defined in a model space consisting of particles and holes.

doi: 10.1103/PhysRevC.104.064310
Citations: PlumX Metrics


2021YA13      Phys.Rev. C 103, 054304 (2021)

C.-J.Yang, A.Ekstrom, C.Forssen, G.Hagen

Power counting in chiral effective field theory and nuclear binding

NUCLEAR STRUCTURE 3H, 3,4He, 6Li, 16O; calculated ground-state energies and point-proton radii from ab initio no-core shell model (NCSM) and coupled-channel (CC) calculations at LO and NLO in χEFT using several power-counting (PC) schemes which all exhibit renormalization-group (RG)-invariance, and analysis of nucleon-nucleon scattering phase shifts. Comparison with experimental data.

doi: 10.1103/PhysRevC.103.054304
Citations: PlumX Metrics


2020BA27      Phys.Rev.Lett. 124, 222504 (2020)

S.Bagchi, R.Kanungo, Y.K.Tanaka, H.Geissel, P.Doornenbal, W.Horiuchi, G.Hagen, T.Suzuki, N.Tsunoda, D.S.Ahn, H.Baba, K.Behr, F.Browne, S.Chen, M.L.Cortes, A.Estrade, N.Fukuda, M.Holl, K.Itahashi, N.Iwasa, G.R.Jansen, W.G.Jiang, S.Kaur, A.O.Macchiavelli, S.Y.Matsumoto, S.S.Momiyama, I.Murray, T.Nakamura, S.J.Novario, H.J.Ong, T.Otsuka, T.Papenbrock, S.Paschalis, A.Prochazka, C.Scheidenberger, P.Schrock, Y.Shimizu, D.Steppenbeck, H.Sakurai, D.Suzuki, H.Suzuki, M.Takechi, H.Takeda, S.Takeuchi, R.Taniuchi, K.Wimmer, K.Yoshida

Two-Neutron Halo is Unveiled in 29F

NUCLEAR REACTIONS C(29F, X), E=255 MeV/nucleon; C(27F, X), E=250 MeV/nucleon; measured reaction products, En, In. 27,29F; deduced two-neutron Borromean halo. Comparison with theoretical calculations.

doi: 10.1103/PhysRevLett.124.222504
Citations: PlumX Metrics

Data from this article have been entered in the EXFOR database. For more information, access X4 datasetE2672. Data from this article have been entered in the XUNDL database. For more information, click here.


2020JI11      Phys.Rev. C 102, 054301 (2020)

W.G.Jiang, A.Ekstrom, C.Forssen, G.Hagen, G.R.Jansen, T.Papenbrock

Accurate bulk properties of nuclei from A = 20 to ∞ from potentials with Δ isobars

NUCLEAR STRUCTURE 2,3H, 3,4He, 16,22,24O, 40,48,50,52,54,56,58,60Ca, 78Ni, 90Zr, 100,132Sn; calculated binding energies, and charge radii for Ca isotopes, quadrupole moment for 2H, first 3- state of 16O, and first 2+ states of 22O, 24O and 48Ca. Coupled-cluster calculations with ΔNNLOGO interactions optimized from chiral effective field theory. Comparison with experimental data. Computed neutron-proton and proton-proton phase shifts for the contact and selected peripheral partial waves with the ΔNLOGO and ΔNNLOGO potentials.

doi: 10.1103/PhysRevC.102.054301
Citations: PlumX Metrics


2020KA22      Phys.Rev.Lett. 124, 132502 (2020)

S.Kaufmann, J.Simonis, S.Bacca, J.Billowes, M.L.Bissell, K.Blaum, B.Cheal, R.F.Garcia Ruiz, W.Gins, C.Gorges, G.Hagen, H.Heylen, A.Kanellakopoulos, S.Malbrunot-Ettenauer, M.Miorelli, R.Neugart, G.Neyens, W.Nortershauser, R.Sanchez, S.Sailer, A.Schwenk, T.Ratajczyk, L.V.Rodriguez, L.Wehner, C.Wraith, L.Xie, Z.Y.Xu, X.F.Yang, D.T.Yordanov

Charge Radius of the Short-Lived 68Ni and Correlation with the Dipole Polarizability

NUCLEAR MOMENTS 58,60,61,62,64,68Ni; measured frequencies; deduced resonance spectra, isotope shifts, nuclear charge radii. Comparison with novel coupled-cluster calculations.

doi: 10.1103/PhysRevLett.124.132502
Citations: PlumX Metrics

Data from this article have been entered in the XUNDL database. For more information, click here.


2020NO10      Phys.Rev. C 102, 051303(R) (2020)

S.J.Novario, G.Hagen, G.R.Jansen, T.Papenbrock

Charge radii of exotic neon and magnesium isotopes

NUCLEAR STRUCTURE 18,20,22,24,26,28,30,32,34Ne, 22,24,26,28,30,32,34,36,38,40Mg; calculated charge radii, isotope shifts, ground-state energies, S(2n) using nucleon-nucleon and three-nucleon potentials from chiral effective field theory (EFT), and coupled-cluster methods. Comparison with experimental data.

doi: 10.1103/PhysRevC.102.051303
Citations: PlumX Metrics


2020SO21      Phys.Rev. C 102, 064312 (2020)

J.E.Sobczyk, B.Acharya, S.Bacca, G.Hagen

Coulomb sum rule for 4He and 16O from coupled-cluster theory

NUCLEAR STRUCTURE 4He, 16O; calculated Coulomb sum rule (CSR), squared elastic form factors, spurious 1- states as functions of the momentum transfer of 0-500 MeV. Coupled-cluster theory using interactions from chiral effective field theory (EFT). Relevance to improving understanding of neutrino-nucleus scattering process.

doi: 10.1103/PhysRevC.102.064312
Citations: PlumX Metrics


2019BA11      Phys.Lett. B 790, 251 (2019)

S.Bagchi, R.Kanungo, W.Horiuchi, G.Hagen, T.D.Morris, S.R.Stroberg, T.Suzuki, F.Ameil, J.Atkinson, Y.Ayyad, D.Cortina-Gil, I.Dillmann, A.Estrade, A.Evdokimov, F.Farinon, H.Geissel, G.Guastalla, R.Janik, S.Kaur, R.Knobel, J.Kurcewicz, Yu.A.Litvinov, M.Marta, M.Mostazo, I.Mukha, C.Nociforo, H.J.Ong, S.Pietri, A.Prochazka, C.Scheidenberger, B.Sitar, P.Strmen, M.Takechi, J.Tanaka, Y.Tanaka, I.Tanihata, S.Terashima, J.Vargas, H.Weick, J.S.Winfield

Neutron skin and signature of the N = 14 shell gap found from measured proton radii of 17-22N

NUCLEAR REACTIONS C(14N, X), (15N, X), (17N, X), (18N, X), (19N, X), (20N, X), (21N, X), (22N, X), E=851-932 MeV/nucleon; measured reaction products. 14,15,17,18,19,20,21,22N; deduced σ, root mean square point proton and matter radii, unconventional shell gap at N = 14 arising from the attractive proton–neutron tensor interaction. Comparison with ab initio calculations.

doi: 10.1016/j.physletb.2019.01.024
Citations: PlumX Metrics

Data from this article have been entered in the EXFOR database. For more information, access X4 datasetD0941.


2019EK02      Phys.Rev.Lett. 123, 252501 (2019)

A.Ekstrom, G.Hagen

Global Sensitivity Analysis of Bulk Properties of an Atomic Nucleus

NUCLEAR STRUCTURE 16O; calculated energies, charge radius.

doi: 10.1103/PhysRevLett.123.252501
Citations: PlumX Metrics


2019GY02      Nat.Phys. 15, 428 (2019)

P.Gysbers, G.Hagen, J.D.Holt, G.R.Jansen, T.D.Morris, P.Navratil, T.Papenbrock, S.Quaglioni, A.Schwenk, S.R.Stroberg, K.A.Wendt

Discrepancy between experimental and theoretical β-decay rates resolved from first principles

NUCLEAR STRUCTURE 3H, 6Li, 7Be, 8He, 10C, 14O, 19,24Ne, 37K, 25,28Al, 24,26Na, 30Mg, 33,34P, 42,43,46Sc, 42,45Ti, 45,47V, 100Sn; calculated the Gamow–Teller strength for β decay.

doi: 10.1038/s41567-019-0450-7
Citations: PlumX Metrics


2019JI09      Phys.Rev. C 100, 054326 (2019)

W.G.Jiang, G.Hagen, T.Papenbrock

Extrapolation of nuclear structure observables with artificial neural networks

NUCLEAR STRUCTURE 4He, 6Li, 16O; calculated ground-state energies, point-proton radii using neural network method for extrapolation of NCSM and the coupled-cluster calculations. Comparison with results from infrared (IR) extrapolations.

doi: 10.1103/PhysRevC.100.054326
Citations: PlumX Metrics


2019LI10      Phys.Rev.Lett. 122, 072502 (2019)

H.N.Liu, A.Obertelli, P.Doornenbal, C.A.Bertulani, G.Hagen, J.D.Holt, G.R.Jansen, T.D.Morris, A.Schwenk, R.Stroberg, N.Achouri, H.Baba, F.Browne, D.Calvet, F.Chateau, S.Chen, N.Chiga, A.Corsi, M.L.Cortes, A.Delbart, J.-M.Gheller, A.Giganon, A.Gillibert, C.Hilaire, T.Isobe, T.Kobayashi, Y.Kubota, V.Lapoux, T.Motobayashi, I.Murray, H.Otsu, V.Panin, N.Paul, W.Rodriguez, H.Sakurai, M.Sasano, D.Steppenbeck, L.Stuhl, Y.L.Sun, Y.Togano, T.Uesaka, K.Wimmer, K.Yoneda, O.Aktas, T.Aumann, L.X.Chung, F.Flavigny, S.Franchoo, I.Gasparic, R.-B.Gerst, J.Gibelin, K.I.Hahn, D.Kim, T.Koiwai, Y.Kondo, P.Koseoglou, J.Lee, C.Lehr, B.D.Linh, T.Lokotko, M.MacCormick, K.Moschner, T.Nakamura, S.Y.Park, D.Rossi, E.Sahin, D.Sohler, P.-A.Soderstrom, S.Takeuchi, H.Tornqvist, V.Vaquero, V.Wagner, S.Wang, V.Werner, X.Xu, H.Yamada, D.Yan, Z.Yang, M.Yasuda, L.Zanetti

How Robust is the N=34 Subshell Closure? First Spectroscopy of 52Ar

NUCLEAR REACTIONS 1H(53K, 2p), E=245 MeV/nucleon; measured reaction products, Eγ, Iγ; deduced γ-ray energies, J, π, σ. Comparison with theoretical calculations.

doi: 10.1103/PhysRevLett.122.072502
Citations: PlumX Metrics

Data from this article have been entered in the XUNDL database. For more information, click here.


2019PA55      Phys.Rev. C 100, 061304 (2019)

C.G.Payne, S.Bacca, G.Hagen, W.G.Jiang, T.Papenbrock

Coherent elastic neutrino-nucleus scattering on 40Ar from first principles

NUCLEAR REACTIONS 40Ar(ν, ν), E<50 MeV; calculated charge and weak form factors, neutron skin radius, coherent scattering σ(E) using coupled-cluster theory based on nuclear Hamiltonians inspired by effective field theories of quantum chromodynamics; deduced that nuclear physics uncertainties will likely not limit the sensitivity to new physics. Comparison to data from electron scattering experiments. Estimation of systematic uncertainties.

doi: 10.1103/PhysRevC.100.061304
Citations: PlumX Metrics


2019RA06      Phys.Rev. C 99, 021301 (2019)

J.S.Randhawa, R.Kanungo, M.Holl, J.D.Holt, P.Navratil, S.R.Stroberg, G.Hagen, G.R.Jansen, M.Alcorta, C.Andreoiu, C.Barnes, C.Burbadge, D.Burke, A.A.Chen, A.Chester, G.Christian, S.Cruz, B.Davids, J.Even, G.Hackman, J.Henderson, S.Ishimoto, P.Jassal, S.Kaur, M.Keefe, D.Kisliuk, R.Krucken, J.Liang, J.Lighthall, E.McGee, J.Measures, M.Moukaddam, E.Padilla-Rodal, A.Shotter, I.J.Thompson, J.Turko, M.Williams, O.Workman

Observation of excited states in 20Mg sheds light on nuclear forces and shell evolution

NUCLEAR REACTIONS 2H(20Mg, d), (20Mg, d'), E=8.5 MeV/nucleon, [secondary 20Mg beam produced in Si(p, X), E=480 MeV fragmentation reaction using SiC target at ISAC-II facility]; measured scattered deuteron spectra, differential σ(θ) using annular single-sided silicon strip detector array and CsI(Tl) detectors (IRIS reaction spectroscopy facility) at TRIUMF. 20Mg; deduced levels, J, π, proton-unbound resonances. Comparison with ab initio calculations using the valence-space in-medium similarity renormalization-group (VS-IMSRG) approach.

doi: 10.1103/PhysRevC.99.021301
Citations: PlumX Metrics

Data from this article have been entered in the EXFOR database. For more information, access X4 datasetC2726. Data from this article have been entered in the XUNDL database. For more information, click here.


2019SI46      Eur.Phys.J. A 55, 241 (2019)

J.Simonis, S.Bacca, G.Hagen

First principles electromagnetic responses in medium-mass nuclei

doi: 10.1140/epja/i2019-12825-0
Citations: PlumX Metrics


2018BA42      Phys.Rev. C 98, 054301 (2018)

A.Bansal, S.Binder, A.Ekstrom, G.Hagen, G.R.Jansen, T.Papenbrock

Pion-less effective field theory for atomic nuclei and lattice nuclei

NUCLEAR STRUCTURE 3H, 3,4He, 16O, 40Ca; calculated binding energies per nucleon and point-proton radii, g.s. energy and separation momentum of 3H and 4He, correlation between the triton and 4He binding energies. Pion-less effective field theory (EFT) as discrete variable representation (DVR) in the harmonic oscillator basis at leading-order and next-to-leading-order. Relevance to different lattice quantum chromodynamics (QCD) approaches to light nuclei.

doi: 10.1103/PhysRevC.98.054301
Citations: PlumX Metrics


2018EK02      Phys.Rev. C 97, 024332 (2018)

A.Ekstrom, G.Hagen, T.D.Morris, T.Papenbrock, P.D.Schwartz

Δ isobars and nuclear saturation

NUCLEAR STRUCTURE 2,3H, 3,4He; calculated binding energies, charge radii at LO, NLO, and NNLO with and without the Δ(1232) isobar as function of momentum cutoff values of 450 and 500 MeV. 4He, 16O, 40Ca; calculated ground-state energies per nucleon and charge radii computed with coupled cluster theory and the Δ-full potential at LO, NLO, and NNLO. 8He, 16,22,24O, 40,48Ca; calculated binding energies, charge radii, proton and neutron point radii, neutron skin. 40Ca; calculated elastic charge form factor. Chiral effective field theory with inclusion of the Δ-isobar Δ(1232) degree of freedom at all orders up to next-to-next-to-leading order (NNLO). Comparison with experimental data.

doi: 10.1103/PhysRevC.97.024332
Citations: PlumX Metrics


2018FO05      Phys.Rev. C 97, 034328 (2018)

C.Forssen, B.D.Carlsson, H.T.Johansson, D.Saaf, A.Bansal, G.Hagen, T.Papenbrock

Large-scale exact diagonalizations reveal low-momentum scales of nuclei

NUCLEAR STRUCTURE 6Li, 3H, 3,4,6,8He, 16O; calculated extrapolated ground-state energy and point-proton radii, infrared (IR) extrapolations with the NNLOopt NN interaction. No-core shell model (NCSM) calculations with the coupled-cluster method at several fixed ultraviolet (UV) cutoffs using pANTOINE code; deduced small-momentum scale of finite nuclei.

doi: 10.1103/PhysRevC.97.034328
Citations: PlumX Metrics


2018MI09      Phys.Rev. C 98, 014324 (2018)

M.Miorelli, S.Bacca, G.Hagen, T.Papenbrock

Computing the dipole polarizability of 48Ca with increased precision

NUCLEAR STRUCTURE 4He, 16O, 48Ca; calculated electromagnetic, and polarizability sum rules, electric dipole polarizability of 48Ca by benchmarking 4He and 16O results. Coupled-cluster method by including leading order 3p-3h correlations for the ground state, excited states, and the similarity-transformed operator. Comparison with experimental data.

doi: 10.1103/PhysRevC.98.014324
Citations: PlumX Metrics


2018MO07      Phys.Rev.Lett. 120, 152503 (2018)

T.D.Morris, J.Simonis, S.R.Stroberg, C.Stumpf, G.Hagen, J.D.Holt, G.R.Jansen, T.Papenbrock, R.Roth, A.Schwenk

Structure of the Lightest Tin Isotopes

NUCLEAR STRUCTURE 100,108,116,124,132Sn, 101Sn, 105Te; calculated energy levels, J, π using nucleon-nucleon and three-nucleon forces constrained by data of few-nucleon systems.

doi: 10.1103/physrevlett.120.152503
Citations: PlumX Metrics


2018RO26      Phys.Rev. C 98, 044625 (2018)

J.Rotureau, P.Danielewicz, G.Hagen, G.R.Jansen, F.M.Nunes

Microscopic optical potentials for calcium isotopes

NUCLEAR REACTIONS 40Ca(n, n), E=5.17, 6.34 MeV; 48Ca(n, n), E=4.00, 7.81 MeV; calculated differential σ(θ), real and imaginary parts of the diagonal optical potential and scattering phase shifts. 41,49Ca; calculated energies of bound states, and real part of the radical optical potentials. Green's function approach with coupled-cluster method with chiral nucleon-nucleon and three-nucleon interaction NNLOsat, and the chiral nucleon-nucleon interaction NNLOop. Comparison with experimental data.

doi: 10.1103/PhysRevC.98.044625
Citations: PlumX Metrics


2018SU23      Phys.Rev. C 98, 054320 (2018)

Z.H.Sun, T.D.Morris, G.Hagen, G.R.Jansen, T.Papenbrock

Shell-model coupled-cluster method for open-shell nuclei

NUCLEAR STRUCTURE 6,7,8He, 6,7,8Li; calculated low-lying levels, J, π, squared point-proton radii, and isotope shifts using shell-model coupled-cluster method employing 4He core. Comparison with other theoretical predictions.

doi: 10.1103/PhysRevC.98.054320
Citations: PlumX Metrics


2017BI09      Phys.Rev.Lett. 118, 252501 (2017)

J.Birkhan, M.Miorelli, S.Bacca, S.Bassauer, C.A.Bertulani, G.Hagen, H.Matsubara, P.von Neumann-Cosel, T.Papenbrock, N.Pietralla, V.Yu.Ponomarev, A.Richter, A.Schwenk, A.Tamii

Electric Dipole Polarizability of 48Ca and Implications for the Neutron Skin

NUCLEAR REACTIONS 48Ca(p, p'), E=295 MeV; 48Ca(γ, X), E<25 MeV; measured reaction products; deduced σ, electric dipole polarizability, B(E1).

doi: 10.1103/PhysRevLett.118.252501
Citations: PlumX Metrics

Data from this article have been entered in the EXFOR database. For more information, access X4 datasetE2558.


2017CA06      Prog.Part.Nucl.Phys. 94, 68 (2017)

J.Carlson, M.P.Carpenter, R.Casten, C.Elster, P.Fallon, A.Gade, C.Gross, G.Hagen, A.C.Hayes, D.W.Higinbotham, C.R.Howell, C.J.Horowitz, K.L.Jones, F.G.Kondev, S.Lapi, A.Macchiavelli, E.A.McCutchan, J.Natowitz, W.Nazarewicz, T.Papenbrock, S.Reddy, M.J.Savage, G.Savard, B.M.Sherrill, L.G.Sobotka, M.A.Stoyer, M.B.Tsang, K.Vetter, I.Wiedenhoever, A.H.Wuosmaa, S.Yennello

White paper on nuclear astrophysics and low-energy nuclear physics, Part 2: Low-energy nuclear physics

doi: 10.1016/j.ppnp.2016.11.002
Citations: PlumX Metrics


2017RO04      Phys.Rev. C 95, 024315 (2017)

J.Rotureau, P.Danielewicz, G.Hagen, F.M.Nunes, T.Papenbrock

Optical potential from first principles

NUCLEAR REACTIONS 16O(n, n), E=10 MeV; analyzed and constructed microscopic nuclear optical potentials from chiral interactions for nucleon nucleus scattering, and phase shifts by combining the Green's function approach with the coupled cluster method.

doi: 10.1103/PhysRevC.95.024315
Citations: PlumX Metrics


2016BI07      Phys.Rev. C 93, 044332 (2016)

S.Binder, A.Ekstrom, G.Hagen, T.Papenbrock, K.A.Wendt

Effective field theory in the harmonic oscillator basis

NUCLEAR STRUCTURE 2,3H, 3,4He; calculated binding energies and radii from different effective interactions. 4He, 16O, 40Ca, 90Zr, 132Sn; calculated ground-state energies and squared point proton radii. Coupled-cluster calculations at the singles and doubles level using chiral effective field theory (EFT) in harmonic oscillator basis. Comparison with experimental data.

doi: 10.1103/PhysRevC.93.044332
Citations: PlumX Metrics


2016GA34      Nat.Phys. 12, 594 (2016)

R.F.Garcia Ruiz, M.L.Bissell, K.Blaum, A.Ekstrom, N.Frommgen, G.Hagen, M.Hammen, K.Hebeler, J.D.Holt, G.R.Jansen, M.Kowalska, K.Kreim, W.Nazarewicz, R.Neugart, G.Neyens, W.Nortershauser, T.Papenbrock, J.Papuga, A.Schwenk, J.Simonis, K.A.Wendt, D.T.Yordanov

Unexpectedly large charge radii of neutron-rich calcium isotopes

NUCLEAR REACTIONS U(p, X)43Ca/44Ca/45Ca/46Ca/47Ca/48Ca/49Ca/50Ca/51Ca/52Ca, E=1.4GeV; measured hyperfine structure spectra; deduced charge radii. Comparison with available data.

doi: 10.1038/nphys3645
Citations: PlumX Metrics


2016HA27      Nat.Phys. 12, 186 (2016)

G.Hagen, A.Ekstrom, C.Forssen, G.R.Jansen, W.Nazarewicz, T.Papenbrock, K.A.Wendt, S.Bacca, N.Barnea, B.Carlsson, C.Drischler, K.Hebeler, M.Hjorth-Jensen, M.Miorelli, G.Orlandini, A.Schwenk, J.Simonis

Neutron and weak-charge distributions of the 48Ca nucleus

NUCLEAR STRUCTURE 48Ca; calculated neutron skin parameters, radii. Ab initio calculations.

doi: 10.1038/nphys3529
Citations: PlumX Metrics


2016HA32      Phys.Rev.Lett. 117, 172501 (2016)

G.Hagen, G.R.Jansen, T.Papenbrock

Structure of 78Ni from First-Principles Computations

NUCLEAR STRUCTURE 48Ca, 77,78,79,80Ni; analyzed available data; calculated energy levels, J, π.

doi: 10.1103/PhysRevLett.117.172501
Citations: PlumX Metrics


2016HA34      Phys.Scr. 91, 063006 (2016)

G.Hagen, M.Hjorth-Jensen, G.R.Jansen, T.Papenbrock

Emergent properties of nuclei from ab initio coupled-cluster calculations

COMPILATION 4,8He, 14C, 16O, 40,48Ca, 56Ni; compiled gs energy, mass excess, difference between theoretical charge radii and data; calculated gs energy, mass excess, charge radii using ab initio approach with chiral NNLOsat interaction.

NUCLEAR STRUCTURE 16,22,24,28O; calculated gs energy, mass excess using two NNLOsat interactions. Compared to available data. 17,23,25O, 53,55,61Ca; calculated low-lying unbound levels, J, π using harmonic oscillator HF basis and Gamow-Hartree-Fock basis. 20Ne, 24Mg; calculated yrast states using CCEI (Coupled Cluster Effective Interaction) and USDB; compared to data.

doi: 10.1088/0031-8949/91/6/063006
Citations: PlumX Metrics


2016JA03      Phys.Rev. C 94, 011301 (2016)

G.R.Jansen, M.D.Schuster, A.Signoracci, G.Hagen, P.Navratil

Open sd-shell nuclei from first principles

NUCLEAR STRUCTURE 18,19,20,21,22,23,24,25,26,27,28,29,30Ne, 20,21,22,23,24,25,26,27,28,29,30Mg; calculated ground-state energies. 24F, 19,20,24,25,26,27Ne, 22,23,24,25,26Mg; calculated low-spin levels, J, π, B(E2) strengths. Calculations are based on an extension of ab initio coupled-cluster effective interaction (CCEI) method. Comparison with experimental data taken from the ENSDF database.

doi: 10.1103/PhysRevC.94.011301
Citations: PlumX Metrics


2016KA37      Phys.Rev.Lett. 117, 102501 (2016)

R.Kanungo, W.Horiuchi, G.Hagen, G.R.Jansen, P.Navratil, F.Ameil, J.Atkinson, Y.Ayyad, D.Cortina-Gil, I.Dillmann, A.Estrade, A.Evdokimov, F.Farinon, H.Geissel, G.Guastalla, R.Janik, M.Kimura, R.Knobel, J.Kurcewicz, Yu.A.Litvinov, M.Marta, M.Mostazo, I.Mukha, C.Nociforo, H.J.Ong, S.Pietri, A.Prochazka, C.Scheidenberger, B.Sitar, P.Strmen, Y.Suzuki, M.Takechi, J.Tanaka, I.Tanihata, S.Terashima, J.Vargas, H.Weick, J.S.Winfield

Proton Distribution Radii of 12-19C Illuminate Features of Neutron Halos

NUCLEAR REACTIONS Be(20Ne, X), (40Ar, X)12C/13C/14C/15/16C/17C/18C/19C, E=1 GeV/nucleon; measured reaction products; deduced σ, root-mean-square proton and matter radii, neutron skin thickness. Comparison with ab initio calculations.

doi: 10.1103/PhysRevLett.117.102501
Citations: PlumX Metrics

Data from this article have been entered in the EXFOR database. For more information, access X4 datasetO2311. Data from this article have been entered in the XUNDL database. For more information, click here.


2016MI19      Phys.Rev. C 94, 034317 (2016)

M.Miorelli, S.Bacca, N.Barnea, G.Hagen, G.R.Jansen, G.Orlandini, T.Papenbrock

Electric dipole polarizability from first principles calculations

NUCLEAR STRUCTURE 4He, 16,22O, 40Ca; calculated electric dipole polarizability, photoabsorption response functions. Coupled-cluster method with bound-state techniques, and using different interactions from chiral effective field theory. Comparison with experimental data. Relevance to radii of proton and neutron distributions.

doi: 10.1103/PhysRevC.94.034317
Citations: PlumX Metrics


2015EK01      Phys.Rev. C 91, 051301 (2015)

A.Ekstrom, G.R.Jansen, K.A.Wendt, G.Hagen, T.Papenbrock, B.D.Carlsson, C.Forssen, M.Hjorth-Jensen, P.Navratil, W.Nazarewicz

Accurate nuclear radii and binding energies from a chiral interaction

NUCLEAR STRUCTURE 2H, 4,8He, 6,9Li, 14C, 16O, 40Ca; calculated ground-state energies, charge radii, quadrupole moment for deuteron. 6Li, 14C, 16O, 22,24F, 22,24O, 40Ca; calculated levels, J, π, charge density in 16O, scattering lengths, and effective ranges in low-energy proton-proton scattering, scattering phase shifts in low-energy neutron-proton scattering, half-life for the β- decay of 3H; deduced consistently optimized interaction from chiral EFT at NNLO for nuclei and infinite nuclear matter. Coupled-cluster calculations based on chiral effective field theory interaction (NNLOsat). Comparison with experimental data.

doi: 10.1103/PhysRevC.91.051301
Citations: PlumX Metrics


2015KA15      Phys.Rev.Lett. 114, 192502 (2015)

R.Kanungo, A.Sanetullaev, J.Tanaka, S.Ishimoto, G.Hagen, T.Myo, T.Suzuki, C.Andreoiu, P.Bender, A.A.Chen, B.Davids, J.Fallis, J.P.Fortin, N.Galinski, A.T.Gallant, P.E.Garrett, G.Hackman, B.Hadinia, G.Jansen, M.Keefe, R.Krucken, J.Lighthall, E.McNeice, D.Miller, T.Otsuka, J.Purcell, J.S.Randhawa, T.Roger, A.Rojas, H.Savajols, A.Shotter, I.Tanihata, I.J.Thompson, C.Unsworth, P.Voss, Z.Wang

Evidence of Soft Dipole Resonance in 11Li with Isoscalar Character

NUCLEAR REACTIONS 2H(11Li, X)7Li/8Li/9Li/10Li/11Li, E=5.5 MeV/nucleon; measured reaction products. 11Li; deduced yields, σ(θ), excitation energy, soft dipole resonance. Comparison with ab initio calculations in the coupled cluster framework.

doi: 10.1103/PhysRevLett.114.192502
Citations: PlumX Metrics

Data from this article have been entered in the EXFOR database. For more information, access X4 datasetC2166. Data from this article have been entered in the XUNDL database. For more information, click here.


2015SI12      Phys.Rev. C 91, 064320 (2015)

A.Signoracci, T.Duguet, G.Hagen, G.R.Jansen

Ab initio Bogoliubov coupled cluster theory for open-shell nuclei

NUCLEAR STRUCTURE 16,18,20O, 18Ne, 20Mg; calculated ground-state energies and the cluster amplitudes at the singles and doubles level (BCCSD), algebraically and diagrammatically. Ab initio Bogoliubov coupled cluster (BCC) theory for open shell nuclei.

doi: 10.1103/PhysRevC.91.064320
Citations: PlumX Metrics


2014BA62      Phys.Rev. C 90, 064619 (2014)

S.Bacca, N.Barnea, G.Hagen, M.Miorelli, G.Orlandini, T.Papenbrock

Giant and pigmy dipole resonances in 4He, 16, 22O, and 40Ca from chiral nucleon-nucleon interactions

NUCLEAR REACTIONS 4He, 16,22O, 40Ca(γ, n), E not given; calculated dipole response functions using Lorentz integral transform combined with the CC method (LITCC), GDR and PDR, low-lying E1 strength in 22O, electric dipole polarizability in 40Ca. Comparison with experimental data.

doi: 10.1103/PhysRevC.90.064619
Citations: PlumX Metrics


2014EK01      Phys.Rev.Lett. 113, 262504 (2014)

A.Ekstrom, G.R.Jansen, K.A.Wendt, G.Hagen, T.Papenbrock, S.Bacca, B.Carlsson, D.Gazit

Effects of Three-Nucleon Forces and Two-Body Currents on Gamow-Teller Strengths

RADIOACTIVITY 14C, 22,24O(β-); calculated quenching factor; deduced a novel coupled-cluster technique for the computation of spectra in the daughter nuclei and made several predictions and spin assignments in the exotic neutron-rich isotopes of fluorine.

NUCLEAR STRUCTURE 14N, 22,24F; calculated energy levels, J, π.

doi: 10.1103/PhysRevLett.113.262504
Citations: PlumX Metrics


2014HA01      Phys.Rev. C 89, 014319 (2014)

G.Hagen, T.Papenbrock, A.Ekstrom, K.A.Wendt, G.Baardsen, S.Gandolfi, M.Hjorth-Jensen, C.J.Horowitz

Coupled-cluster calculations of nucleonic matter

NUCLEAR STRUCTURE A=10-1000; N=66, 132; calculated relative finite-size corrections for the kinetic energy in pure neutron matter, E/A of nuclear and neutron matter. Coupled-cluster computations of equation of state (EoS) for symmetric nuclear matter and neutron matter using optimized nucleon-nucleon (NN) potential NNLOopt at next-to-next-to leading order. Comparison with benchmark calculations.

doi: 10.1103/PhysRevC.89.014319
Citations: PlumX Metrics


2014JA14      Phys.Rev.Lett. 113, 142502 (2014)

G.R.Jansen, J.Engel, G.Hagen, P.Navratil, A.Signoracci

Ab Initio Coupled-Cluster Effective Interactions for the Shell Model: Application to Neutron-Rich Oxygen and Carbon Isotopes

NUCLEAR STRUCTURE 19,20,21,22,23,24O, 17,18,19,20,21,22C; calculated energy levels, J, π. Comparison with available data.

doi: 10.1103/PhysRevLett.113.142502
Citations: PlumX Metrics


2014OR05      Few-Body Systems 55, 907 (2014)

G.Orlandini, S.Bacca, N.Barnea, G.Hagen, M.Miorelli, T.Papenbrock

Coupling the Lorentz Integral Transform (LIT) and the Coupled Cluster (CC) Methods: A Way Towards Continuum Spectra of "Not-So-Few-Body" System

NUCLEAR REACTIONS 16O, 40Ca(γ, X), E=10-20 MeV; analyzed available data; deduced resonance parameters for the giant dipole resonance. LIT and CC calculations.

doi: 10.1007/s00601-013-0772-4
Citations: PlumX Metrics


2014VA02      Phys.Rev. C 89, 054323 (2014)

Zs.Vajta, M.Stanoiu, D.Sohler, G.R.Jansen, F.Azaiez, Zs.Dombradi, O.Sorlin, B.A.Brown, M.Belleguic, C.Borcea, C.Bourgeois, Z.Dlouhy, Z.Elekes, Zs.Fulop, S.Grevy, D.Guillemaud-Mueller, G.Hagen, M.Hjorth-Jensen, F.Ibrahim, A.Kerek, A.Krasznahorkay, M.Lewitowicz, S.M.Lukyanov, S.Mandal, P.Mayet, J.Mrazek, F.Negoita, Yu.-E.Penionzhkevich, Zs.Podolyak, P.Roussel-Chomaz, M.G.Saint-Laurent, H.Savajols, G.Sletten, J.Timar, C.Timis, A.Yamamoto

Excited states in the neutron-rich nucleus 25F

NUCLEAR REACTIONS C(26Ne, 25F), (27Na, 25F), (28Na, 25F), [secondary 26Ne, 27,28Na beams from C(36S, X), E=77.5 MeV/nucleon primary reaction], E=54-65 MeV/nucleon; measured Eγ, Iγ, γγ-, (25F)γ-coin, time-of-flight using SPEG magnetic spectrometer and an array of 74 BaF2 crystals for γ-rays at GANIL facility, GEANT4 simulations. 25F; deduced levels, J, π. Comparison with shell-model calculations, coupled-cluster theory, and other data.

doi: 10.1103/PhysRevC.89.054323
Citations: PlumX Metrics

Data from this article have been entered in the XUNDL database. For more information, click here.


2013BA47      Phys.Rev.Lett. 111, 122502 (2013)

S.Bacca, N.Barnea, G.Hagen, G.Orlandini, T.Papenbrock

First Principles Description of the Giant Dipole Resonance in 16O

NUCLEAR STRUCTURE 16O; calculated giant dipole resonance parameters, position and strength. Nucleon-nucleon interaction, comparison with available data.

doi: 10.1103/PhysRevLett.111.122502
Citations: PlumX Metrics


2013BA58      Phys.Rev. C 88, 054312 (2013)

G.Baardsen, A.Ekstrom, G.Hagen, M.Hjorth-Jensen

Coupled-cluster studies of infinite nuclear matter

doi: 10.1103/PhysRevC.88.054312
Citations: PlumX Metrics


2013BO19      Comput.Phys.Commun. 184, 085101 (2013)

S.Bogner, A.Bulgac, J.Carlson, J.Engel, G.Fann, R.J.Furnstahl, S.Gandolfi, G.Hagen, M.Horoi, C.Johnson, M.Kortelainen, E.Lusk, P.Maris, H.Nam, P.Navratil, W.Nazarewicz, E.Ng, G.P.A.Nobre, E.Ormand, T.Papenbrock, J.Pei, S.C.Pieper, S.Quaglioni, K.J.Roche, J.Sarich, N.Schunck, M.Sosonkina, J.Terasaki, I.Thompson, J.P.Vary, S.M.Wild

Computational nuclear quantum many-body problem: The UNEDF project

NUCLEAR REACTIONS 3He(d, p), 7Be(p, γ), E<1MeV; 172Yb, 188Os, 238U(γ, X), E<24 MeV; calculated σ. Comparison with experimental data.

NUCLEAR STRUCTURE 100Zr; calculated quadrupole deformation parameter, radii, neutron separation energy.

doi: 10.1016/j.cpc.2013.05.020
Citations: PlumX Metrics


2013EK01      Phys.Rev.Lett. 110, 192502 (2013)

A.Ekstrom, G.Baardsen, C.Forssen, G.Hagen, M.Hjorth-Jensen, G.R.Jansen, R.Machleidt, W.Nazarewicz, T.Papenbrock, J.Sarich, S.M.Wild

Optimized Chiral Nucleon-Nucleon Interaction at Next-to-Next-to-Leading Order

NUCLEAR STRUCTURE 3H, 3,4He, 10B, 17,22,24O, 40,48,50,52,54,56Ca; calculated energy of the first 2+ state, energy per nucleon for neutron matter, phase shifts. The nucleon-nucleon interaction from chiral effective field theory at next-to-next-to-leading order (NNLO).

doi: 10.1103/PhysRevLett.110.192502
Citations: PlumX Metrics


2013FO06      Phys.Scr. T152, 014022 (2013)

C.Forssen, G.Hagen, M.Hjorth-Jensen, W.Nazarewicz, J.Rotureau

Living on the edge of stability, the limits of the nuclear landscape

doi: 10.1088/0031-8949/2013/T152/014022
Citations: PlumX Metrics


2013HA32      Phys.Rev.Lett. 111, 132501 (2013)

G.Hagen, P.Hagen, H.-W.Hammer, L.Platter

Efimov Physics Around the Neutron-Rich 60Ca Isotope

NUCLEAR STRUCTURE 60,61,62Ca; calculated neutron S-wave scattering phase shifts; deduced correlations between different three-body observables and the two-neutron separation energy. Modern ab initio interactions derived from chiral effective theory.

doi: 10.1103/PhysRevLett.111.132501
Citations: PlumX Metrics


2013LE03      Phys.Rev.Lett. 110, 082502 (2013)

A.Lepailleur, O.Sorlin, L.Caceres, B.Bastin, C.Borcea, R.Borcea, B.A.Brown, L.Gaudefroy, S.Grevy, G.F.Grinyer, G.Hagen, M.Hjorth-Jensen, G.R.Jansen, O.Llidoo, F.Negoita, F.de Oliveira, M.-G.Porquet, F.Rotaru, M.-G.Saint-Laurent, D.Sohler, M.Stanoiu, J.C.Thomas

Spectroscopy of 26F to Probe Proton-Neutron Forces Close to the Drip Line

RADIOACTIVITY 26F(β-), (β-n) [from Be(36S, X)26F, E=77.6 MeV/nucleon]; measured decay products, Eγ, Iγ; deduced decay scheme, J, π, long-lived isomer T1/2. Comparison with available data.

doi: 10.1103/PhysRevLett.110.082502
Citations: PlumX Metrics

Data from this article have been entered in the XUNDL database. For more information, click here.


2013MO11      Phys.Rev. C 87, 044326 (2013)

S.N.More, A.Ekstrom, R.J.Furnstahl, G.Hagen, T.Papenbrock

Universal properties of infrared oscillator basis extrapolations

doi: 10.1103/PhysRevC.87.044326
Citations: PlumX Metrics


2012DU04      Phys.Rev. C 85, 034330 (2012)

T.Duguet, G.Hagen

Ab initio approach to effective single-particle energies in doubly closed shell nuclei

NUCLEAR STRUCTURE 16,22,24,28O, 40,48,52,54,60Ca; calculated one-neutron effective single-particle energies, one-neutron removal energies and spectroscopic factors. Coupled-cluster calculations. Consistent structure and reaction models.

doi: 10.1103/PhysRevC.85.034330
Citations: PlumX Metrics


2012FU08      Phys.Rev. C 86, 031301 (2012)

R.J.Furnstahl, G.Hagen, T.Papenbrock

Corrections to nuclear energies and radii in finite oscillator spaces

NUCLEAR STRUCTURE 6He, 16O; calculated ground-state energies, nuclear radii. Finite oscillator basis space. Halo nuclei. Comparison with other theoretical calculations.

doi: 10.1103/PhysRevC.86.031301
Citations: PlumX Metrics


2012HA19      Phys.Rev.Lett. 108, 242501 (2012)

G.Hagen, M.Hjorth-Jensen, G.R.Jansen, R.Machleidt, T.Papenbrock

Continuum Effects and Three-Nucleon Forces in Neutron-Rich Oxygen Isotopes

NUCLEAR STRUCTURE 18,22,23,24O; calculated level energies, J, π, point matter and charge radii, 24O long-lived resonances. Chiral effective field interaction, comparison with available data.

doi: 10.1103/PhysRevLett.108.242501
Citations: PlumX Metrics


2012HA26      Phys.Rev.Lett. 109, 032502 (2012)

G.Hagen, M.Hjorth-Jensen, G.R.Jansen, R.Machleidt, T.Papenbrock

Evolution of Shell Structure in Neutron-Rich Calcium Isotopes

NUCLEAR STRUCTURE 42,48,50,52,53,54,55,56,61Ca, 50,54,56Ti; calculated ground state energies, J, π. Chiral effective field theory, comparison with available data.

doi: 10.1103/PhysRevLett.109.032502
Citations: PlumX Metrics


2012HA29      Phys.Rev. C 86, 021602 (2012)

G.Hagen, N.Michel

Elastic proton scattering of medium mass nuclei from coupled-cluster theory

NUCLEAR REACTIONS 40Ca(p, p), E(cm)=9.6, 12.44 MeV; calculated scattering s-wave functions, radial overlap function between g.s. of 40Ca and states in 41Sc, differential σ(θ, E), phase shifts. Coupled-cluster theory with interactions from chiral effective field theory. Comparison with experimental data.

doi: 10.1103/PhysRevC.86.021602
Citations: PlumX Metrics


2012HA37      Prog.Theor.Phys.(Kyoto), Suppl. 196, 102 (2012)

G.Hagen, H.A.Nam

Computational Aspects of Nuclear Coupled-Cluster Theory

NUCLEAR STRUCTURE 40Ca; calculated ground state energy.

doi: 10.1143/PTPS.196.102
Citations: PlumX Metrics


2012PI12      Phys.Rev. C 86, 014308 (2012)

D.A.Pigg, G.Hagen, H.Nam, T.Papenbrock

Time-dependent coupled-cluster method for atomic nuclei

NUCLEAR STRUCTURE 4He, 18O; calculated energy spectra, time-dependent observables which commute with the Hamiltonian under time evolution. Role of the similarity-transformed Hamiltonian under real and imaginary-time evolution. Time-dependent coupled-cluster (TDCC) theory based on Kvaal's bi-variational formulation.

doi: 10.1103/PhysRevC.86.014308
Citations: PlumX Metrics


2011JA06      Phys.Rev. C 83, 054306 (2011)

G.R.Jansen, M.Hjorth-Jensen, G.Hagen, T.Papenbrock

Toward open-shell nuclei with coupled-cluster theory

NUCLEAR STRUCTURE 3,4,5,6He; calculated ground-state energies, first 2+ state energy in 6He, expectation value of total angular Momentum. Method based on equation-of-motion coupled-cluster theory.

doi: 10.1103/PhysRevC.83.054306
Citations: PlumX Metrics


2011JE02      Phys.Rev. C 83, 021305 (2011)

O.Jensen, G.Hagen, M.Hjorth-Jensen, J.S.Vaagen

Closed-shell properties of 24O with ab initio coupled-cluster theory

NUCLEAR STRUCTURE 23O, 23Ne; calculated single-particle levels, J, π. 24O; calculated neutron- and proton-removal spectroscopic factors for hole states in 24O. Coupled-cluster method with chiral nucleon-nucleon N3L interaction including role of continuum states. Comparison with experimental data.

doi: 10.1103/PhysRevC.83.021305
Citations: PlumX Metrics


2011JE03      Phys.Rev.Lett. 107, 032501 (2011)

O.Jensen, G.Hagen, M.Hjorth-Jensen, B.A.Brown, A.Gade

Quenching of Spectroscopic Factors for Proton Removal in Oxygen Isotopes

NUCLEAR STRUCTURE 14,16,22,24,28O; calculated radial overlap functions, spectroscopic factors. Hartree-Fock built from Woods-Saxon single-particle basis.

doi: 10.1103/PhysRevLett.107.032501
Citations: PlumX Metrics


2011KA36      Phys.Rev. C 84, 061304 (2011)

R.Kanungo, A.Prochazka, M.Uchida, W.Horiuchi, G.Hagen, T.Papenbrock, C.Nociforo, T.Aumann, D.Boutin, D.Cortina-Gil, B.Davids, M.Diakaki, F.Farinon, H.Geissel, R.Gernhauser, J.Gerl, R.Janik, O.Jensen, B.Jonson, B.Kindler, R.Knobel, R.Krucken, M.Lantz, H.Lenske, Y.Litvinov, B.Lommel, K.Mahata, P.Maierbeck, A.Musumarra, T.Nilsson, C.Perro, C.Scheidenberger, B.Sitar, P.Strmen, B.Sun, Y.Suzuki, I.Szarka, I.Tanihata, H.Weick, M.Winkler

Exploring the anomaly in the interaction cross section and matter radius of 23O

NUCLEAR REACTIONS C(22O, X), (23O, X), [22O, 23O secondary beams from 9Be(48Ca, X), E=1 GeV/nucleon primary reaction], E=900 MeV/nucleon; measured energy loss, time of flight, magnetic rigidity. 22,23O; deduced interaction cross section, matter radii, neutron skin thickness. Glauber model analysis. Comparison with ab initio coupled-cluster theory.

doi: 10.1103/PhysRevC.84.061304
Citations: PlumX Metrics

Data from this article have been entered in the EXFOR database. For more information, access X4 datasetD0806. Data from this article have been entered in the XUNDL database. For more information, click here.


2010HA11      Phys.Rev.Lett. 104, 182501 (2010)

G.Hagen, T.Papenbrock, M.Hjorth-Jensen

Ab Initio Computation of the 17F Proton Halo State and Resonances in A=17 Nuclei

NUCLEAR STRUCTURE 17O, 17F; calculated energies of proton halo states, J, π. deduced continuum effect binding energy yields.

doi: 10.1103/PhysRevLett.104.182501
Citations: PlumX Metrics


2010HA22      Phys.Rev. C 82, 034330 (2010)

G.Hagen, T.Papenbrock, D.J.Dean, M.Hjorth-Jensen

Ab initio coupled-cluster approach to nuclear structure with modern nucleon-nucleon interactions

NUCLEAR STRUCTURE 4He, 16,17,22,24,25,28O, 16,22,24,25,28F, 40,48Ca; calculated ground-state energies, rms radii, single-particle energies, and binding energies. Coupled-cluster model with bare and secondary renormalized nucleon-nucleon interactions. Comparison with experimental data.

doi: 10.1103/PhysRevC.82.034330
Citations: PlumX Metrics


2010JE03      Phys.Rev. C 82, 014310 (2010)

O.Jensen, G.Hagen, T.Papenbrock, D.J.Dean, J.S.Vaagen

Computation of spectroscopic factors with the coupled-cluster method

NUCLEAR STRUCTURE 15N, 15,16O; calculated ground-state energies, spectroscopic factors for removal of proton and neutron from 16O using coupled-cluster theory and equation of motion.

doi: 10.1103/PhysRevC.82.014310
Citations: PlumX Metrics


2009BA61      Eur.Phys.J. A 42, 553 (2009)

S.Bacca, A.Schwenk, G.Hagen, T.Papenbrock

Helium halo nuclei from low-momentum interactions

NUCLEAR STRUCTURE 4,6,8He; calculated ground-state energies. Comparison with data.

doi: 10.1140/epja/i2009-10815-5
Citations: PlumX Metrics


2009EN01      Phys.Rev. C 79, 064317 (2009)

J.Engel, G.Hagen

Corrections to the neutrinoless double-β-decay operator in the shell model

RADIOACTIVITY 82Se(2β-); calculated matrix elements for neutrinoless double beta decay using shell-model and Bonn-C nucleon-nucleon interaction.

doi: 10.1103/PhysRevC.79.064317
Citations: PlumX Metrics


2009HA20      Phys.Rev.Lett. 103, 062503 (2009)

G.Hagen, T.Papenbrock, D.J.Dean

Solution of the Center-Of-Mass Problem in Nuclear Structure Calculations

NUCLEAR STRUCTURE 4He, 16O; calculated nuclear wave function as a product of intrinsic and center-of-mass in a sufficiently large model space.

doi: 10.1103/PhysRevLett.103.062503
Citations: PlumX Metrics


2009HA26      Phys.Rev. C 80, 021306 (2009)

G.Hagen, T.Papenbrock, D.J.Dean, M.Hjorth-Jensen, B.Velamur Asokan

Ab initio computation of neutron-rich oxygen isotopes

NUCLEAR STRUCTURE 16,22,24,28O; calculated ground-state energies, binding energies and rms point matter radii using ab initio calculations with the coupled-cluster model and chiral nucleon-nucleon interaction N3LO. Comparison with experimental data.

doi: 10.1103/PhysRevC.80.021306
Citations: PlumX Metrics


2009TS08      Phys.Rev. C 80, 051301 (2009)

K.Tsukiyama, M.Hjorth-Jensen, G.Hagen

Gamow shell-model calculations of drip-line oxygen isotopes

NUCLEAR STRUCTURE 24,25O; calculated low-lying levels and resonant states using Gamow Shell Model calculations. Discussed nuclear stability. Comparison with experimental data.

doi: 10.1103/PhysRevC.80.051301
Citations: PlumX Metrics


2008BA29      Phys.Rev. C 78, 014318 (2008)

A.Baran, A.Bulgac, M.McNeil Forbes, G.Hagen, W.Nazarewicz, N.Schunck, M.V.Stoitsov

Broyden's method in nuclear structure calculations

doi: 10.1103/PhysRevC.78.014318
Citations: PlumX Metrics


2008HA30      Phys.Rev.Lett. 101, 092502 (2008)

G.Hagen, T.Papenbrock, D.J.Dean, M.Hjorth-Jensen

Medium-Mass Nuclei from Chiral Nucleon-Nucleon Interactions

NUCLEAR STRUCTURE 4He, 16O, 40Ca, 48Ca, 48Ni; calculated binding energies, radii and densities; spherical coupled-cluster theory; bare chiral NN-interaction;

doi: 10.1103/PhysRevLett.101.092502
Citations: PlumX Metrics


2007HA33      Phys.Rev. C 76, 034302 (2007)

G.Hagen, T.Papenbrock, D.J.Dean, A.Schwenk, A.Nogga, M.Wloch, P.Piecuch

Coupled-cluster theory for three-body Hamiltonians

doi: 10.1103/PhysRevC.76.034302
Citations: PlumX Metrics


Back to query form    [Next]