NSR Query Results


Output year order : Descending
Format : Normal

NSR database version of March 18, 2024.

Search: Author = F.M.Nunes

Found 124 matches.

    Showing 1 to 100.

   [Next]

Back to query form



2023CA11      Phys.Rev. C 108, 024601 (2023)

M.Catacora-Rios, A.E.Lovell, F.M.Nunes

Complete quantification of parametric uncertainties in (d, p) transfer reactions

NUCLEAR REACTIONS 14C, 16O, 48Ca(d, p), E=7-24 MeV; analyzed mock data generated from a global optical potential and real experimental data for differential σ(θ, E) and asymptotic normalization coefficients (ANC); deduced parametric uncertainties in transfer reactions σ including the uncertainties associated with the final bound state. Metropolis-Hastings Bayesian Markov chain Monte Carlo (MH-MCMC) and three-body model ADWA. Relevance to uncertainty quantification in the design of future experiments.

doi: 10.1103/PhysRevC.108.024601
Citations: PlumX Metrics


2023HE08      J.Phys.(London) G50, 060501 (2023)

C.Hebborn, F.M.Nunes, G.Potel, W.H.Dickhoff, J.W.Holt, M.C.Atkinson, R.B.Baker, C.Barbieri, G.Blanchon, M.Burrows, R.Capote, P.Danielewicz, M.Dupuis, C.Elster, J.E.Escher, L.Hlophe, A.Idini, H.Jayatissa, B.P.Kay, K.Kravvaris, J.J.Manfredi, A.Mercenne, B.Morillon, G.Perdikakis, C.D.Pruitt, G.H.Sargsyan, I.J.Thompson, M.Vorabbi, T.R.Whitehead

Optical potentials for the rare-isotope beam era

doi: 10.1088/1361-6471/acc348
Citations: PlumX Metrics


2023HE11      Phys.Rev. C 108, 014601 (2023)

C.Hebborn, T.R.Whitehead, A.E.Lovell, F.M.Nunes

Quantifying uncertainties due to optical potentials in one-neutron knockout reactions

NUCLEAR REACTIONS 9Be(11Be, n)10Be, (12C, n)11C, E=60 MeV/nucleon; calculated 1n-knockut σ with diffractive-breakup and stripping contributions. 9Be(10Be, 10Be), (11C, 11C), E=60 MeV/nucleon; calculated elastic σ(θ). Bayesian analysis of the reaction model, quantifying parametric uncertainties on the optical potentials, to obtain uncertainty intervals for knockout observables. Optical potentials obtained from many-body calculations with chiral force. Comparison to experimental data.

doi: 10.1103/PhysRevC.108.014601
Citations: PlumX Metrics


2023HE15      Phys.Rev.Lett. 131, 212503 (2023)

C.Hebborn, F.M.Nunes, A.E.Lovell

New Perspectives on Spectroscopic Factor Quenching from Reactions

NUCLEAR REACTIONS 1H(34Ar, d), (36Ar, d), (46Ar, d), E=33 MeV/nucleon; analyzed available data using the Adiabatic Wave Approximation (ADWA); deduced that the spectroscopic strengths of loosely bound nucleons extracted from both probes agree with each other and, although there are still discrepancies for deeply bound nucleons, the slope of the asymmetry dependence of the single-particle strengths inferred from transfer and knockout reactions are consistent within 1 sigma.

doi: 10.1103/PhysRevLett.131.212503
Citations: PlumX Metrics


2022SC17      J.Phys.(London) G49, 110502 (2022)

H.Schatz, A.D.Becerril Reyes, A.Best, E.F.Brown, K.Chatziioannou, K.A.Chipps, C.M.Deibel, R.Ezzeddine, D.K.Galloway, C.J.Hansen, F.Herwig, A.P.Ji, M.Lugaro, Z.Meisel, D.Norman, J.S.Read, L.F.Roberts, A.Spyrou, I.Tews, F.X.Timmes, C.Travaglio, N.Vassh, C.Abia, P.Adsley, S.Agarwal, M.Aliotta, W.Aoki, A.Arcones, A.Aryan, A.Bandyopadhyay, A.Banu, D.W.Bardayan, J.Barnes, A.Bauswein, T.C.Beers, J.Bishop, T.Boztepe, B.Cote, M.E.Caplan, A.E.Champagne, J.A.Clark, M.Couder, A.Couture, S.E.de Mink, S.Debnath, R.J.deBoer, J.den Hartogh, P.Denissenkov, V.Dexheimer, I.Dillmann, J.E.Escher, M.A.Famiano, R.Farmer, R.Fisher, C.Frohlich, A.Frebel, C.Fryer, G.Fuller, A.K.Ganguly, S.Ghosh, B.K.Gibson, T.Gorda, K.N.Gourgouliatos, V.Graber, M.Gupta, W.C.Haxton, A.Heger, W.R.Hix, W.C.G.Ho, E.M.Holmbeck, A.A.Hood, S.Huth, G.Imbriani, R.G.Izzard, R.Jain, H.Jayatissa, Z.Johnston, T.Kajino, A.Kankainen, G.G.Kiss, A.Kwiatkowski, M.La Cognata, A.M.Laird, L.Lamia, P.Landry, E.Laplace, K.D.Launey, D.Leahy, G.Leckenby, A.Lennarz, B.Longfellow, A.E.Lovell, W.G.Lynch, S.M.Lyons, K.Maeda, E.Masha, C.Matei, J.Merc, B.Messer, F.Montes, A.Mukherjee, M.R.Mumpower, D.Neto, B.Nevins, W.G.Newton, L.Q.Nguyen, K.Nishikawa, N.Nishimura, F.M.Nunes, E.O'Connor, B.W.O'Shea, W.-J.Ong, S.D.Pain, M.A.Pajkos, M.Pignatari, R.G.Pizzone, V.M.Placco, T.Plewa, B.Pritychenko, A.Psaltis, D.Puentes, Y.-Z.Qian, D.Radice, D.Rapagnani, B.M.Rebeiro, R.Reifarth, A.L.Richard, N.Rijal, I.U.Roederer, J.S.Rojo, J.S K, Y.Saito, A.Schwenk, M.L.Sergi, R.S.Sidhu, A.Simon, T.Sivarani, A.Skuladottir, M.S.Smith, A.Spiridon, T.M.Sprouse, S.Starrfield, A.W.Steiner, F.Strieder, I.Sultana, R.Surman, T.Szucs, A.Tawfik, F.Thielemann, L.Trache, R.Trappitsch, M.B.Tsang, A.Tumino, S.Upadhyayula, J.O.Valle Martinez, M.Van der Swaelmen, C.Viscasillas Vazquez, A.Watts, B.Wehmeyer, M.Wiescher, C.Wrede, J.Yoon, R.G.T.Zegers, M.A.Zermane, M.Zingale, the Horizon 2020 Collaborations

Horizons: nuclear astrophysics in the 2020s and beyond

doi: https://dx.doi.org/10.1088/1361-6471/ac8890
Citations: PlumX Metrics


2022SU21      Phys.Rev. C 106, 024607 (2022)

O.Surer, F.M.Nunes, M.Plumlee, S.M.Wild

Uncertainty quantification in breakup reactions

NUCLEAR REACTIONS 208Pb(8B, p7Be), E=80 MeV/nucleon; calculated values and uncertainties for σ(θ) and σ(E), angular distributions. Standard emulation of the reaction by Gaussian processes trained with continuum discretized coupled channel method (CDCC) calculations coupled with Bayesian analysis.

doi: 10.1103/PhysRevC.106.024607
Citations: PlumX Metrics


2022WH01      Phys.Rev. C 105, 054611 (2022)

T.R.Whitehead, T.Poxon-Pearson, F.M.Nunes, G.Potel

Prediction for (p, n) charge-exchange reactions with uncertainty quantification

NUCLEAR REACTIONS 14C, 48Ca, 90Zr(p, n), E=25, 35, 45 MeV; calculated σ(θ) to isobaric analog states, optical model parameters; deduced uncertainties using Bayesian analysis. Two-body framework using single-step DWBA with microscopic Whitehead-Lim-Holt (WLH) potential and Koning-Delaroche (KD) phenomenological global potential. Comparison to experimental data.

doi: 10.1103/PhysRevC.105.054611
Citations: PlumX Metrics


2021CA29      Phys.Rev. C 104, 064611 (2021)

M.Catacora-Rios, G.B.King, A.E.Lovell, F.M.Nunes

Statistical tools for a better optical model

NUCLEAR REACTIONS 48Ca(p, p), E=9, 65 MeV; analyzed experimental data for parameter posterior distributions, σ(θ, E), parameter sensitivities using surface and volume models; deduced depth, radius, and diffuseness of the real part of the optical potential. 48Ca(polarized p, p), E=12, 21 MeV; analyzed experimental data for differential σ(E), analyzing powers iT11, sensitivity matrix. 48Ca(n, n), (polarized n, n), E=12 MeV; 48Ca(p, p), (polarized p, p), E=12, 14, 21 MeV; 208Pb(p, p), (polarized p, p), E=30, 61 MeV; 208Pb(n, n), (polarized n, n), E=30 MeV; analyzed experimental data for ratio between the Bayesian evidence using polarization data over that with cross section data. Analysis of experimental data used three statistical tools: the principal component analysis, the sensitivity analysis based on derivatives, and the Bayesian evidence for optical potential parameters. Relevance to the goal of constraining the optical potential.

doi: 10.1103/PhysRevC.104.064611
Citations: PlumX Metrics


2021HE23      Phys.Rev. C 104, 034624 (2021)

C.Hebborn, F.M.Nunes

Considering nonlocality in the optical potentials within eikonal models

NUCLEAR REACTIONS 208Pb(d, p)209Pb, E=100, 138, 300 MeV; 208Pb(n, n), E=69, 150 MeV; calculated differential σ(E, θ), scattering wave function for s-wave neutron impinging on 208Pb using exact R-matrix approach for elastic scattering and adiabatic distorted wave approximation (ADWA) for transfer reactions; deduced impact of nonlocality in the high-energy regime on transfer observables, especially in knockout reactions. Extension of the eikonal method to nonlocal interactions, including an iterative method and a perturbation theory.

doi: 10.1103/PhysRevC.104.034624
Citations: PlumX Metrics


2021KU26      Phys.Rev. C 104, 044601 (2021)

K.Kuhn, F.Sarazin, F.M.Nunes, M.A.G.Alvarez, C.Andreoiu, D.W.Bardayan, P.C.Bender, J.C.Blackmon, M.J.G.Borge, R.Braid, B.A.Brown, W.N.Catford, C.Aa.Diget, A.DiPietro, T.E.Drake, P.Figuera, A.B.Garnsworthy, J.Gomez-Camacho, G.Hackman, U.Hager, S.V.Ilyushkin, E.Nacher, P.D.O'Malley, A.Perea, V.Pesudo, S.T.Pittman, D.Smalley, C.E.Svensson, O.Tengblad, P.Thompson, C.Unsworth, Z.M.Wang

Experimental study of the nature of the 1- and 2- excited states in 10Be using the 11Be(p, d) reaction in inverse kinematics

NUCLEAR REACTIONS 1H(11Be, d)10Be, (11Be, p), (11Be, p'), E=9.93 MeV/nucleon, [secondary 11Be beam from Ta(p, X), E=479 MeV primary reaction at TRIUMF cyclotron, followed by extraction of 11Be using Resonant Ionization Laser Ion Source (TRILIS) and accelerated through the ISAC-I and ISAC-II accelerators]; measured E(d), I(d), E(p), I(p), elastic and inelastic σ(θ) of outgoing protons, σ(θ) for deuterons using silicon telescopes, Eγ, Iγ, dγ-coin using TIGRESS array of 12 HPGe detectors for γ detection. 10Be; deduced levels, spectroscopic factors for 5960, 1- and 6263, 2- levels, mixed configurations with halo and cluster structures. Comparison of spectroscopic factors with predictions of shell model. Reaction kinematics and angular distributions analyzed using two versions of transfer reaction model considering one-step and two-step processes. Comparison with previous experimental results from RCNP and ISOLDE-CERN.

doi: 10.1103/PhysRevC.104.044601
Citations: PlumX Metrics

Data from this article have been entered in the EXFOR database. For more information, access X4 datasetC2682.


2021LO01      J.Phys.(London) G48, 014001 (2021)

A.E.Lovell, F.M.Nunes, M.Catacora-Rios, G.B.King

Recent advances in the quantification of uncertainties in reaction theory

NUCLEAR REACTIONS 40Ca(n, n), (n, p), (p, p), (d, d), E=11.9-30 MeV; analyzed available data; deduced different optimization schemes used to constrain the optical potential from σ(θ), uncertainties propagation.

doi: 10.1088/1361-6471/abba72
Citations: PlumX Metrics


2021PH05      J.Phys.(London) G48, 072001 (2021)

D.R.Phillips, R.J.Furnstahl, U.Heinz, T.Maiti, W.Nazarewicz, F.M.Nunes, M.Plumlee, M.T.Pratola, S.Pratt, F.G.Viens, S.M.Wild

Get on the BAND Wagon: a Bayesian framework for quantifying model uncertainties in nuclear dynamics

NUCLEAR REACTIONS 208Pb(p, p), E=30 MeV; calculated σ. Comparison with available data.

doi: 10.1088/1361-6471/abf1df
Citations: PlumX Metrics


2020CA32      Eur.Phys.J. A 56, 300 (2020)

P.Capel, R.C.Johnson, F.M.Nunes

Study of cluster structures in nuclei through the ratio method

NUCLEAR REACTIONS Pb(11Be, X), E=69 MeV/nucleon; 12C(11Be, X), E=67 MeV/nucleon; analyzed available data; deduced σ(θ), the ratio of angulardistributions for different reaction channels, viz. elastic scattering and breakup, which cancels most of the dependence on the reaction mechanism, in particular it is insensitive to the choice of optical potentials that simulate the projectile-target interaction using Recoil Excitation and Breakup (REB) model.

doi: 10.1140/epja/s10050-020-00310-w
Citations: PlumX Metrics


2020QU01      Phys.Rev. C 102, 024606 (2020)

M.Quinonez, L.Hlophe, F.M.Nunes

Properties of a separable representation of optical potentials

NUCLEAR REACTIONS 48Ca(n, n), E=5-2400 MeV; calculated real part of the S matrix as a function of the scattering energy, radial dependence of the real part of the separable interaction. 16O, 48Ca(n, n), E=5, 20 MeV; calculated nonlocality parameters of the separable interactions for l=0 and 1 interactions. Generalized Ersnt-Shakin-Thaler (EST) scheme to generate separable interactions starting from local optical potentials such as energy-dependent CH89 global optical potential.

doi: 10.1103/PhysRevC.102.024606
Citations: PlumX Metrics


2020RO09      J.Phys.(London) G47, 065103 (2020)

J.Rotureau, G.Potel, W.Li, F.M.Nunes

Merging ab initio theory and few-body approach for (d, p) reactions

NUCLEAR REACTIONS 40,48,52,54Ca(d, p), E=10 MeV; calculated σ(θ). Comparison with available data.

doi: 10.1088/1361-6471/ab8530
Citations: PlumX Metrics


2019CA29      Phys.Rev. C 100, 064615 (2019)

M.Catacora-Rios, G.B.King, A.E.Lovell, F.M.Nunes

Exploring experimental conditions to reduce uncertainties in the optical potential

NUCLEAR REACTIONS 48Ca(n, n), E=12, 14 MeV; 48Ca(p, p), E=12, 14, 21, 24, MeV; 48Ca(d, p), E=21 MeV; 208Pb(n, n), E=30, 32 MeV; 208Pb(p, p), E=30, 32, 35, 61, 65 MeV; 208Pb(d, p), E=61 MeV; analyzed mock data generated from a global optical potential, and real experimental data for differential σ(θ, E) and total σ(E) using Markov-chain Monte Carlo Bayesian approach and the three-body model ADWA for the reaction with the selection of different experimental conditions such as ranges of angular distributions, neighboring incident energies, and reducing the experimental uncertainties to investigate effects on the uncertainties of the optical model parameters. Relevance to uncertainty quantification (UQ) in the design of future experiments.

doi: 10.1103/PhysRevC.100.064615
Citations: PlumX Metrics


2019HL01      Phys.Rev. C 100, 034609 (2019)

L.Hlophe, J.Lei, Ch.Elster, A.Nogga, F.M.Nunes, D.Jurciukonis, A.Deltuva

Deuteron-α scattering: Separable versus nonseparable Faddeev approach

NUCLEAR REACTIONS 4He(d, d), (d, np), E=10, 20, 50 MeV; calculated differential σ(E) for elastic and breakup reactions using the momentum-space Faddeev Alt-Grassberger-Sandhas (AGS) framework.

doi: 10.1103/PhysRevC.100.034609
Citations: PlumX Metrics


2019KA44      Phys.Lett. B 797, 134803 (2019)

D.Kahl, P.J.Woods, T.Poxon-Pearson, F.M.Nunes, B.A.Brown, H.Schatz, T.Baumann, D.Bazin, J.A.Belarge, P.C.Bender, B.Elman, A.Estrade, A.Gade, A.Kankainen, C.Lederer-Woods, S.Lipschutz, B.Longfellow, S.-J.Lonsdale, E.Lunderberg, F.Montes, W.J.Ong, G.Perdikakis, J.Pereira, C.Sullivan, R.Taverner, D.Weisshaar, R.Zegers

Single-particle shell strengths near the doubly magic nucleus 56Ni and the 56Ni(p, γ)57Cu reaction rate in explosive astrophysical burning

NUCLEAR REACTIONS 2H(56Ni, n), (56Ni, p), E=33.6 MeV/nucleon; measured reaction products, Eγ, Iγ. 57Cu; deduced σ, spectroscopic factors, resonance parameters, astrophysical reaction rates.

doi: 10.1016/j.physletb.2019.134803
Citations: PlumX Metrics

Data from this article have been entered in the EXFOR database. For more information, access X4 datasetC2462. Data from this article have been entered in the XUNDL database. For more information, click here.


2019KI05      Phys.Rev.Lett. 122, 232502 (2019)

G.B.King, A.E.Lovell, L.Neufcourt, F.M.Nunes

Direct Comparison between Bayesian and Frequentist Uncertainty Quantification for Nuclear Reactions

NUCLEAR REACTIONS 48Ca, 90Zr, 208Pb(p, p), (n, n), E<35 MeV; analyzed available data; deduced σ(θ).

doi: 10.1103/PhysRevLett.122.232502
Citations: PlumX Metrics


2019MA26      Phys.Rev. C 99, 041302 (2019); Erratum Phys.Rev. C 99, 069901 (2019)

B.Manning, G.Arbanas, J.A.Cizewski, R.L.Kozub, S.Ahn, J.M.Allmond, D.W.Bardayan, K.Y.Chae, K.A.Chipps, M.E.Howard, K.L.Jones, J.F.Liang, M.Matos, C.D.Nesaraja, F.M.Nunes, P.D.O'Malley, S.D.Pain, W.A.Peters, S.T.Pittman, A.Ratkiewicz, K.T.Schmitt, D.Shapira, M.S.Smith, L.Titus

Informing direct neutron capture on tin isotopes near the N=82 shell closure

NUCLEAR REACTIONS 2H(124Sn, p), (126Sn, p), (128Sn, p), E=630 MeV; measured Ep, Ip, (recoils)p-coin, Q-value spectra, differential σ(θ) using Super Oak Ridge Rutgers University Barrel Array (SuperORRUBA) for light charged particle detection and ionization chamber for detection of beam intensity and recoils at Oak Ridge National Laboratory. 125,127,129Sn; deduced levels, Jπ, L-transfers, spectroscopic factors. 2H(130Sn, p), (132Sn, p); reanalyzed previous experimental data. Angular distribution data compared with Finite Range Adiabatic Wave Approximation. 124,126,128,130,132Sn(n, γ), E=30 keV; calculated direct-semidirect σ(n, γ) from spectroscopic information, and compared with various theoretical predictions. Relevance to r-process abundance calculations.

doi: 10.1103/PhysRevC.99.041302
Citations: PlumX Metrics

Data from this article have been entered in the EXFOR database. For more information, access X4 dataset14557. Data from this article have been entered in the XUNDL database. For more information, click here.


2019WA18      Phys.Rev. C 99, 054625 (2019)

D.Walter, S.D.Pain, J.A.Cizewski, F.M.Nunes, S.Ahn, T.Baugher, D.W.Bardayan, T.Baumann, D.Bazin, S.Burcher, K.A.Chipps, G.Cerizza, K.L.Jones, R.L.Kozub, S.J.Lonsdale, B.Manning, F.Montes, P.D.O'Malley, S.Ota, J.Pereira, A.Ratkiewicz, P.Thompson, C.Thornsberry, S.Williams

Constraining spectroscopic factors near the r-process path using combined measurements: 86Kr (d, p) 87Kr

NUCLEAR REACTIONS 2H(86Kr, p), E=33 MeV/nucleon; measured Ep, Ip, recoils, (recoils)p-coin, differential σ(θ) using the Oak Ridge Rutgers University Barrel Array (ORRUBA) coupled to the S800 magnetic spectrograph at the NSCL-MSU facility. 87Kr; deduced levels, J, π, L-transfer, single-particle asymptotic normalization coefficients (ANCs) and spectroscopic factors for the ground, first 1/2+, and 7/2+ states. Comparison with FR-ADWA analysis with KD optical model parameters, and with previous experimental results at E=5.5 MeV/nucleon.

doi: 10.1103/PhysRevC.99.054625
Citations: PlumX Metrics

Data from this article have been entered in the EXFOR database. For more information, access X4 datasetC2694. Data from this article have been entered in the XUNDL database. For more information, click here.


2019WO01      Phys.Rev.Lett. 122, 232701 (2019)

C.Wolf, C.Langer, F.Montes, J.Pereira, W.-J.Ong, T.Poxon-Pearson, S.Ahn, S.Ayoub, T.Baumann, D.Bazin, P.C.Bender, B.A.Brown, J.Browne, H.Crawford, R.H.Cyburt, E.Deleeuw, B.Elman, S.Fiebiger, A.Gade, P.Gastis, S.Lipschutz, B.Longfellow, Z.Meisel, F.M.Nunes, G.Perdikakis, R.Reifarth, W.A.Richter, H.Schatz, K.Schmidt, J.Schmitt, C.Sullivan, R.Titus, D.Weisshaar, P.J.Woods, J.C.Zamora, R.G.T.Zegers

Constraining the Neutron Star Compactness: Extraction 23Al(p, γ) Reaction Rate for the rp Process

NUCLEAR REACTIONS 2H(23Al, n), E=48 MeV/nucleon; measured reaction products, En, In, Eγ, Iγ; deduced J, π, σ, σ(θ), resonance widths and spectroscopic strengths, reaction rates.

doi: 10.1103/PhysRevLett.122.232701
Citations: PlumX Metrics

Data from this article have been entered in the EXFOR database. For more information, access X4 datasetC2458. Data from this article have been entered in the XUNDL database. For more information, click here.


2018JA14      Phys.Rev. C 98, 024609 (2018)

M.I.Jaghoub, A.E.Lovell, F.M.Nunes

Exploration of the energy dependence of proton nonlocal optical potentials

NUCLEAR REACTIONS 40Ca, 90Zr, 208Pb(p, p), E=10-45 MeV; analyzed σ(θ, E); deduced best fit for angular distributions over the whole mass range using both the energy dependent and energy independent Tian, Pang, and Ma nonlocal interactions. 32S, 68Zn, 89Y, 100Mo, 110Pd(p, p), E=10-65 MeV; calculated σ(θ, E) using global interaction parametrization. Comparison with experimental values.

doi: 10.1103/PhysRevC.98.024609
Citations: PlumX Metrics


2018KI14      Phys.Rev. C 98, 044623 (2018)

G.B.King, A.E.Lovell, F.M.Nunes

Uncertainty quantification due to optical potentials in models for (d, p) reactions

NUCLEAR REACTIONS 48Ca(p, p), E=12, 25 MeV; 90Zr(p, p), E=9.018, 12.7, 22.5 MeV; 208Pb(p, p), E=16, 35 MeV; 48Ca, 90Zr(d, d), E=23.2 MeV; 208Pb(d, d), E=28.8 MeV; 48Ca(n, n), E=12 MeV; 90Zr(n, n), E=10, 24 MeV; 208Pb(n, n)=16.9 MeV; analyzed experimental differential σ(E, θ) with uncorrelated and correlated χ2. 90Zr(d, p), E=22.7 MeV; 48Ca(d, p), E=19.3 MeV; 208Pb(d, p), E=32.9 MeV; analyzed differential σ(θ) data with confidence bands using distorted wave Born approximation (DWBA) and adiabatic wave approximation (ADWA) methods; deduced best-fit parameters, and that the uncertainties arising from the optical potentials, constrained by all relevant elastic-scattering channels are large.

doi: 10.1103/PhysRevC.98.044623
Citations: PlumX Metrics


2018LE16      Phys.Rev. C 98, 051001 (2018)

J.Lei, L.Hlophe, Ch.Elster, A.Nogga, F.M.Nunes, D.R.Phillips

Few-body universality in the deuteron-α system

NUCLEAR STRUCTURE 6Li; calculated d-α S-wave scattering length and absolute value of the n-p-α three body separation energy using variety of phase-shift equivalent nucleon-nucleon and α-nucleon interactions; interpreted as a deuteron or two-nucleon halo nucleus from dα and 6Li correlation.

doi: 10.1103/PhysRevC.98.051001
Citations: PlumX Metrics


2018LO13      Phys.Rev. C 97, 064612 (2018)

A.E.Lovell, F.M.Nunes

Constraining transfer cross sections using Bayes' theorem

NUCLEAR REACTIONS 48Ca(p, p), E=14.08, 21.0, 25.0 MeV; 48Ca(n, n), E=12.0 MeV; 48Ca(d, d), E=23.2 MeV; 90Zr(p, p), E=12.7, 22.5, 40.0 MeV; 90Zr(n, n), E=24.0 MeV 90Zr(d, d), E=23.2 MeV; 116Sn(p, p), E=22.0, 49.35 MeV; 116Sn(n, n), E=13.9, 24.0 MeV; 208Pb(p, p), E=16.9, 35.0 MeV; 208Pb(n, n), E=16 MeV; 208Pb(d, d), E=28.8; analyzed elastic scattering data; calculated posterior distributions of optical model parameters using Bayes' Theorem. Bayesian methods. 48Ca(d, p), E=24.0 MeV; 90Zr(d, p), E=22.0 MeV; 90Zr(d, n), E=20.0 MeV; 116Sn(d, p), E=44.0 MeV; 208Pb(d, p), E=32.0; calculated differential σ(θ) using adiabatic wave approximation or distorted-wave Born approximation (ADWA, DWBA). Comparison with experimental values.

doi: 10.1103/PhysRevC.97.064612
Citations: PlumX Metrics


2018RO26      Phys.Rev. C 98, 044625 (2018)

J.Rotureau, P.Danielewicz, G.Hagen, G.R.Jansen, F.M.Nunes

Microscopic optical potentials for calcium isotopes

NUCLEAR REACTIONS 40Ca(n, n), E=5.17, 6.34 MeV; 48Ca(n, n), E=4.00, 7.81 MeV; calculated differential σ(θ), real and imaginary parts of the diagonal optical potential and scattering phase shifts. 41,49Ca; calculated energies of bound states, and real part of the radical optical potentials. Green's function approach with coupled-cluster method with chiral nucleon-nucleon and three-nucleon interaction NNLOsat, and the chiral nucleon-nucleon interaction NNLOop. Comparison with experimental data.

doi: 10.1103/PhysRevC.98.044625
Citations: PlumX Metrics


2017HL02      Phys.Rev. C 96, 064003 (2017)

L.Hlophe, J.Lei, C.Elster, A.Nogga, F.M.Nunes

6Li in a three-body model with realistic Forces: Separable versus nonseparable approach

NUCLEAR STRUCTURE 6Li; calculated three-body binding energies for the ground state, momentum distributions of different pairs in the ground state of 6Li, by solving momentum-space Faddeev equations using separable interactions based on the Ernst-Shakin-Thaler (EST) scheme, and with CD-Bonn interaction for the np pair and Bang potential for the n(p)-α subsystems.

doi: 10.1103/PhysRevC.96.064003
Citations: PlumX Metrics


2017LO02      Phys.Rev. C 95, 024611 (2017)

A.E.Lovell, F.M.Nunes, J.Sarich, S.M.Wild

Uncertainty quantification for optical model parameters

NUCLEAR REACTIONS 12C(d, d), (d, p), E=11.8 MeV; 90Zr(d, d), (d, p), E=12.0 MeV; 12C(n, n), (n, n'), E=17.29 MeV; 48Ca(n, n), (n, n'), E=7.97 MeV; 54Fe(n, n), (n, n'), E=16.93 MeV; 208Pb(n, n), (n, n'), E=26.0 MeV; analyzed differential σ(θ) data using optical potential method, and two reaction models: coupled-channels Born approximation (CCBA) for elastic- and inelastic-scattering calculations, and distorted-wave Born approximation (DWBA) for elastic scattering and transfer calculations; deduced best fit parameters using uncorrelated and correlated χ2 minimization functions, uncertainty quantification for nuclear theories; concluded that correlated χ2 functions, but with broader confidence bands, provide a more natural and better parameterization of the process.

doi: 10.1103/PhysRevC.95.024611
Citations: PlumX Metrics


2017LO03      Phys.Rev. C 95, 034605 (2017)

A.E.Lovell, F.M.Nunes, I.J.Thompson

Three-body model for the two-neutron emission of 16Be

RADIOACTIVITY 16Be(2n); calculated resonance energy, phase shifts, and density distributions. Three-body calculation in the continuum using hyperspherical harmonics and the R-matrix method with n-14Be interactions for dineutron emission.

doi: 10.1103/PhysRevC.95.034605
Citations: PlumX Metrics


2017LO16      Phys.Rev. C 96, 051601 (2017)

A.E.Lovell, P.-L.Bacq, P.Capel, F.M.Nunes, L.J.Titus

Energy dependence of nonlocal optical potentials

NUCLEAR REACTIONS 208Pb(n, n), E=7.0, 9.0, 11.0, 14.6, 16.9, 20.0, 22.0, 26.0, 30.3, 40.0 MeV; 40Ca(n, n), E=9.9, 11.9, 13.9, 16.9, 21.7, 25.5, 30.1, 40.1 MeV; 90Zr(n, n), E=5.9, 7.0, 8.0, 10.0, 11.0, 24.0 MeV; 27Al(n, n), E=10.159, 18, 26 MeV; 118Sn(n, n), E=11, 14, 18, 24 MeV; analyzed differential σ(θ, E) data; deduced two new parametrizations by including energy dependence in the original nonlocal Perey and Buck (PB) and Tian, Pang, and Ma (TPM) potentials.

doi: 10.1103/PhysRevC.96.051601
Citations: PlumX Metrics


2017ON01      Phys.Rev. C 95, 055806 (2017)

W.-J.Ong, C.Langer, F.Montes, A.Aprahamian, D.W.Bardayan, D.Bazin, B.A.Brown, J.Browne, H.Crawford, R.Cyburt, E.B.Deleeuw, C.Domingo-Pardo, A.Gade, S.George, P.Hosmer, L.Keek, A.Kontos, I.-Y.Lee, A.Lemasson, E.Lunderberg, Y.Maeda, M.Matos, Z.Meisel, S.Noji, F.M.Nunes, A.Nystrom, G.Perdikakis, J.Pereira, S.J.Quinn, F.Recchia, H.Schatz, M.Scott, K.Siegl, A.Simon, M.Smith, A.Spyrou, J.Stevens, S.R.Stroberg, D.Weisshaar, J.Wheeler, K.Wimmer, R.G.T.Zegers

Low-lying level structure of 56Cu and its implications for the rp process

NUCLEAR REACTIONS 2H(56Ni, 56Cu), E AP 75 MeV/nucleon, [secondary 56Ni beam from 9Be(58Ni, X), E=160 MeV/nucleon primary reaction using A1900 separator at NSCL-MSU facility]; measured ΔE-TOF particle identification for ions, Eγ, Iγ, γγ-, (56Cu ions)γ-coin using GRETINA array and S800 magnetic spectrograph. 56Cu; deduced levels, J, π. Comparison with mirror nucleus 56Co level scheme, and with shell-model calculations 55Ni(p, γ)56Cu, T9=0.1-10; deduced Q value, astrophysical reaction rates as function of temperature, and impact on the r-process around 56Ni.

NUCLEAR STRUCTURE 56Cu; calculated levels, resonance energies, J, π, spectroscopic factors, Γp, Γγ using shell model with the GXPF1A interaction. Comparison with experimental data.

doi: 10.1103/PhysRevC.95.055806
Citations: PlumX Metrics

Data from this article have been entered in the XUNDL database. For more information, click here.


2017PO13      Eur.Phys.J. A 53, 178 (2017)

G.Potel, G.Perdikakis, B.V.Carlson, M.C.Atkinson, W.H.Dickhoff, J.E.Escher, M.S.Hussein, J.Lei, W.Li, A.O.Macchiavelli, A.M.Moro, F.M.Nunes, S.D.Pain, J.Rotureau

Toward a complete theory for predicting inclusive deuteron breakup away from stability

NUCLEAR REACTIONS 93Nb(d, pn), E=10, 25.5 MeV; calculated σ(ln), σ(θn) assuming both elastic and nonelastic breakup. Compared with published calculations. 40,48,60Ca(d, pn), E=20, 40 MeV; calculated σ(Ep) vs En and vs ln using both elastic and nonelastic breakup and using Hussein-McVoy theory.

doi: 10.1140/epja/i2017-12371-9
Citations: PlumX Metrics


2017RO04      Phys.Rev. C 95, 024315 (2017)

J.Rotureau, P.Danielewicz, G.Hagen, F.M.Nunes, T.Papenbrock

Optical potential from first principles

NUCLEAR REACTIONS 16O(n, n), E=10 MeV; analyzed and constructed microscopic nuclear optical potentials from chiral interactions for nucleon nucleus scattering, and phase shifts by combining the Green's function approach with the coupled cluster method.

doi: 10.1103/PhysRevC.95.024315
Citations: PlumX Metrics


2016CO06      Phys.Rev. C 93, 054621 (2016)

F.Colomer, P.Capel, F.M.Nunes, R.C.Johnson

Extension of the ratio method to low energy

NUCLEAR REACTIONS 12C, 40Ca, 208Pb(11Be, X), E=20 MeV/nucleon; analyzed ratio method at low energies by calculating ratio of the breakup angular distribution and the summed angular distribution (includes elastic, inelastic, and breakup). Continuum discretized coupled channel method and Coulomb corrected dynamical eikonal approximation. Relevance to features of the original halo wave function from the Ratio method.

doi: 10.1103/PhysRevC.93.054621
Citations: PlumX Metrics


2016DE26      Phys.Rev. C 94, 044613 (2016)

A.Deltuva, A.Ross, E.Norvaisas, F.M.Nunes

Role of core excitation in (d, p) transfer reactions

NUCLEAR REACTIONS 10Be(d, p), (d, d), (d, d'), E=15-90 MeV; analyzed σ(θ) data, spectroscopic factors for (d, p) reaction by generating a number of two-body n+10Be models for a 11Be-like system; deduced strong beam-energy dependence of the extracted spectroscopic factors. Latest extension of the momentum-space-based Faddeev method, including dynamical core excitation.

doi: 10.1103/PhysRevC.94.044613
Citations: PlumX Metrics


2016RO14      Phys.Rev. C 94, 014607 (2016)

A.Ross, L.J.Titus, F.M.Nunes

Examining the effect of nonlocality in (d, n) transfer reactions

NUCLEAR REACTIONS 16O, 40,48Ca, 126,132Sn, 208Pb(d, n), E=20, 50 MeV; analyzed σ(θ, E) data using distorted-wave Born approximation (DWBA) and the adiabatic wave approximation; deduced importance of including nonlocality explicitly in the analysis of deuteron-induced reactions.

doi: 10.1103/PhysRevC.94.014607
Citations: PlumX Metrics


2016TI02      Phys.Rev. C 93, 014604 (2016)

L.J.Titus, F.M.Nunes, G.Potel

Explicit inclusion of nonlocality in (d, p) transfer reactions

NUCLEAR REACTIONS 16O, 40,48Ca, 126,132Sn, 208Pb(d, p), E=10, 20, 50 MeV; calculated σ(θ) using local and nonlocal potentials. Comparison of σ(θ) with distorted wave Born approximation (DWBA) and adiabatic distorted wave approximation (ADWA) calculations. Effect of nonlocality on (d, p) transfer cross sections and spectroscopic factors. Comparison of theoretical σ(θ) distributions with experimental data.

doi: 10.1103/PhysRevC.93.014604
Citations: PlumX Metrics


2015CI02      Acta Phys.Pol. B46, 521 (2015)

J.A.Cizewski, F.M.Nunes

Theoretical and Experimental Perspectives of Nuclear Reaction Studies with Radioactive Ion Beams

NUCLEAR REACTIONS 86Kr(d, p), E=40 MeV/nucleon; analyzed available data; deduced a combined method to control the uncertainties introduced by the overlap function.

doi: 10.5506/APhysPolB.46.521
Citations: PlumX Metrics


2015LO03      J.Phys.(London) G42, 034014 (2015)

A.E.Lovell, F.M.Nunes

Systematic uncertainties in direct reaction theories

doi: 10.1088/0954-3899/42/3/034014
Citations: PlumX Metrics


2015PO07      Phys.Rev. C 92, 034611 (2015)

G.Potel, F.M.Nunes, I.J.Thompson

Establishing a theory for deuteron-induced surrogate reactions

NUCLEAR REACTIONS 93Nb(d, p), E=15, 25 MeV; calculated energy distributions of the detected protons, and total σ(E) as function of proton energy for elastic breakup and inelastic processes. Post- and prior-form distorted wave Born approximation formalism. Surrogate reaction for neutron capture into compound states. Comparison with experimental data.

doi: 10.1103/PhysRevC.92.034611
Citations: PlumX Metrics


2015RO17      Phys.Rev. C 92, 044607 (2015)

A.Ross, L.J.Titus, F.M.Nunes, M.H.Mahzoon, W.H.Dickhoff, R.J.Charity

Effects of nonlocal potentials on (p, d) transfer reactions

NUCLEAR REACTIONS 40Ca(p, d)39Ca, E=20, 35, 50 MeV; 40Ca(p, p), E=50 MeV; calculated σ(θ) distributions using nonlocal potential obtained from non-local dispersive optical model (DOM) and DOM-phase equivalent (PE), combined with DWBA. Comparison with Perey-Buck (PB) optical potential predictions, and with experimental data.

doi: 10.1103/PhysRevC.92.044607
Citations: PlumX Metrics


2014ES03      Phys.Rev. C 89, 054605 (2014)

J.E.Escher, I.J.Thompson, G.Arbanas, Ch.Elster, V.Eremenko, L.Hlophe, F.M.Nunes

Reexamining surface-integral formulations for one-nucleon transfers to bound and resonance states

NUCLEAR REACTIONS 90Zr(d, p), E=11 MeV; 48Ca(d, p), E=13, 19.3, 56 MeV; 20O(d, p), E=21 MeV; calculated σ(θ, E), interior, surface, and exterior contributions to the transfer reaction for bound states and resonances. Improvements to surface-integral approach. R-matrix theory, and finite range distorted-wave Born approximation (DWBA) calculations using reaction code FRESCO. Comparison with experimental data.

doi: 10.1103/PhysRevC.89.054605
Citations: PlumX Metrics


2014HL01      Phys.Rev. C 90, 061602 (2014)

L.Hlophe, V.Eremenko, Ch.Elster, F.M.Nunes, G.Arbanas, J.E.Escher, I.J.Thompson, for the TORUS Collaboration

Separable representation of proton-nucleus optical potentials

NUCLEAR REACTIONS 12C, 48Ca(p, p), E=38 MeV; 208Pb(p, p), E=45 MeV; calculated S-matrix elements and σ(θ); deduced effects of the short-range Coulomb potential on the proton-nucleus form factor. Comparison with coordinate space calculations. Generalization of the Ernst-Shakin-Thaler (EST) scheme.

doi: 10.1103/PhysRevC.90.061602
Citations: PlumX Metrics


2014LA16      Phys.Rev.Lett. 113, 032502 (2014)

C.Langer, F.Montes, A.Aprahamian, D.W.Bardayan, D.Bazin, B.A.Brown, J.Browne, H.Crawford, R.H.Cyburt, C.Domingo-Pardo, A.Gade, S.George, P.Hosmer, L.Keek, A.Kontos, I-Y.Lee, A.Lemasson, E.Lunderberg, Y.Maeda, M.Matos, Z.Meisel, S.Noji, F.M.Nunes, A.Nystrom, G.Perdikakis, J.Pereira, S.J.Quinn, F.Recchia, H.Schatz, M.Scott, K.Siegl, A.Simon, M.Smith, A.Spyrou, J.Stevens, S.R.Stroberg, D.Weisshaar, J.Wheeler, K.Wimmer, R.G.T.Zegers

Determining the rp-Process Flow through 56Ni: Resonances in 57Cu(p, γ)58Zn identified with GRETINA

NUCLEAR REACTIONS 2H(57Cu, n), E=75 MeV/nucleon; measured reaction products, Eγ, Iγ; deduced resonance energies, J, π, reaction rates. Shell model calculations, GXPF1A interaction.

doi: 10.1103/PhysRevLett.113.032502
Citations: PlumX Metrics

Data from this article have been entered in the XUNDL database. For more information, click here.


2014SM01      Phys.Rev. C 89, 024602 (2014)

D.Smalley, F.Sarazin, F.M.Nunes, B.A.Brown, P.Adsley, H.Al Falou, C.Andreoiu, B.Baartman, G.C.Ball, J.C.Blackmon, H.C.Boston, W.N.Catford, S.Chagnon-Lessard, A.Chester, R.M.Churchman, D.S.Cross, C.Aa.Diget, D.Di Valentino, S.P.Fox, B.R.Fulton, A.Garnsworthy, G.Hackman, U.Hager, R.Kshetri, J.N.Orce, N.A.Orr, E.Paul, M.Pearson, E.T.Rand, J.Rees, S.Sjue, C.E.Svensson, E.Tardiff, A.Diaz Varela, S.J.Williams, S.Yates

Two-neutron transfer reaction mechanisms in 12C(6He, 4He)14C using a realistic three-body 6He model

NUCLEAR REACTIONS 12C(6He, 6He), (6He, 6He'), E=30 MeV; measured 6He spectra, σ(θ); deduced optical potential parameters. 12C(6He, α)14C, E=30 MeV; measured Eα, Iα, σ(θ) using SHARC charged-particle detector and TIGRESS γ-detection arrays at ISAC-II-TRIUMF facility. 14C; deduced levels, J, π. Low energy elastic and inelastic scattering, and transfer reactions. Comparison with DWBA calculations including realistic three-body model, and shell-model calculations. Discussed higher-order effects in the reaction mechanism.

doi: 10.1103/PhysRevC.89.024602
Citations: PlumX Metrics

Data from this article have been entered in the EXFOR database. For more information, access X4 datasetC2091. Data from this article have been entered in the XUNDL database. For more information, click here.


2014TI01      Phys.Rev. C 89, 034609 (2014)

L.J.Titus, F.M.Nunes

Testing the Perey effect

NUCLEAR REACTIONS 17O, 41,49Ca, 127,133Sn, 209Pb(p, d), (p, p), E=20, 50 MeV; calculated elastic σ(θ, E), real and imaginary parts of the partial waves, transfer σ(θ, E). Distorted wave Born approximation (DWBA) and Perey-Buck type interactions for nonlocal interactions. Tested validity of Perey correction factor for single-channel bound and scattering states, and in (p, d) transfer σ. Comparison with experimental data.

doi: 10.1103/PhysRevC.89.034609
Citations: PlumX Metrics


2014UP02      Phys.Rev. C 90, 014615 (2014)

N.J.Upadhyay, V.Eremenko, L.Hlophe, F.M.Nunes, Ch.Elster, G.Arbanas, J.E.Escher, I.J.Thompson

Coulomb problem in momentum space without screening

NUCLEAR REACTIONS 2H(12C, p), E(cm)=30 MeV; 2H(48Ca, p), E(cm)=36 MeV; 2H(208Pb, p), E(cm)=36, 39 MeV; calculated Coulomb-distorted form factors for (d, p) reactions and dependence on charge, angular momentum, and energy. Regularization techniques using a separable interaction derived from realistic nucleon-nucleus optical potential

doi: 10.1103/PhysRevC.90.014615
Citations: PlumX Metrics


2013CA21      Phys.Rev. C 88, 044602 (2013)

P.Capel, R.C.Johnson, F.M.Nunes

The ratio method: A new tool to study one-neutron halo nuclei

NUCLEAR REACTIONS 12C(11Be, X), E=67 MeV/nucleon; 208Pb(11Be, X), E=69 MeV/nucleon; Pb(19C, X), E=67 MeV/nucleon; analyzed ratio of breakup σ(θ) and summed σ(θ) from elastic, inelastic and breakup channels; investigated new σ ratio method to analyze structure of one-neutron halo nuclei. Recoil excitation and breakup model (REB) with dynamical eikonal approximation (DEA).

doi: 10.1103/PhysRevC.88.044602
Citations: PlumX Metrics


2013HL01      Phys.Rev. C 88, 064608 (2013)

L.Hlophe, Ch.Elster, R.C.Johnson, N.J.Upadhyay, F.M.Nunes, G.Arbanas, V.Eremenko, J.E.Escher, I.J.Thompson

Separable representation of phenomenological optical potentials of Woods-Saxon type

NUCLEAR REACTIONS 48Ca, 132Sn, 208Pb(n, X), E=0-50 MeV; calculated partial wave S matrices, separable representations of two-body transition matrix elements and potentials. Ernst-Shakin-Thaler (EST) scheme with CH89 potential.

doi: 10.1103/PhysRevC.88.064608
Citations: PlumX Metrics


2013NG01      Phys.Rev. C 87, 054615 (2013)

N.B.Nguyen, F.M.Nunes, I.J.Thompson

Investigation of the triple-α reaction in a full three-body approach

NUCLEAR STRUCTURE 12C; calculated triple-α reaction rates at temperature T<0.1 GK, binding energies, density distributions, and rms radius of first 2+ and second 0+ states, quadrupole transition strength as function of three-α kinetic energy. Three-body Borromean system. Combination of the R-matrix expansion and R-matrix propagation in hyperspherical harmonics (HH) method. Long-range Coulomb effects. Comparison with NACRE, the CDCC, and the three-body Breit Wigner calculations.

doi: 10.1103/PhysRevC.87.054615
Citations: PlumX Metrics


2013SC25      Phys.Rev. C 88, 064612 (2013)

K.T.Schmitt, K.L.Jones, S.Ahn, D.W.Bardayan, A.Bey, J.C.Blackmon, S.M.Brown, K.Y.Chae, K.A.Chipps, J.A.Cizewski, K.I.Hahn, J.J.Kolata, R.L.Kozub, J.F.Liang, C.Matei, M.Matos, D.Matyas, B.Moazen, C.D.Nesaraja, F.M.Nunes, P.D.O'Malley, S.D.Pain, W.A.Peters, S.T.Pittman, A.Roberts, D.Shapira, J.F.Shriner, M.S.Smith, I.Spassova, D.W.Stracener, N.J.Upadhyay, A.N.Villano, G.L.Wilson

Reactions of a 10Be beam on proton and deuteron targets

NUCLEAR REACTIONS 2H(10Be, p), (10Be, d), 1H(10Be, p), E=60, 75, 90, 107 MeV; measured Ep, Ip, E(d), I(d), elastic and inelastic σ(θ, E) using SIDAR, ORRUBA, and SuperORRUBA arrays of particle detectors at HRIBF-ORNL facility. 11Be; deduced levels, and spectroscopic factors for halo nucleus. Finite-range adiabatic wave approximation (FR-ADWA) analysis.

doi: 10.1103/PhysRevC.88.064612
Citations: PlumX Metrics

Data from this article have been entered in the EXFOR database. For more information, access X4 datasetC2088. Data from this article have been entered in the XUNDL database. For more information, click here.


2012CA18      Phys.Rev. C 85, 044604 (2012)

P.Capel, H.Esbensen, F.M.Nunes

Comparing nonperturbative models of the breakup of neutron-halo nuclei

NUCLEAR REACTIONS 208Pb(15C, n14C), E=20, 68 MeV/nucleon; calculated differential σ(E, θ) from breakup modes: continuum discretized coupled channel (CDCC), time-dependent method, semiclassical approximation, and dynamical eikonal approximation. Halo nuclei. Comparison with experimental data. Relevance to 14C(n, γ)15C reaction.

doi: 10.1103/PhysRevC.85.044604
Citations: PlumX Metrics


2012SC08      Phys.Rev.Lett. 108, 192701 (2012)

K.T.Schmitt, K.L.Jones, A.Bey, S.H.Ahn, D.W.Bardayan, J.C.Blackmon, S.M.Brown, K.Y.Chae, K.A.Chipps, J.A.Cizewski, K.I.Hahn, J.J.Kolata, R.L.Kozub, J.F.Liang, C.Matei, M.Matos, D.Matyas, B.Moazen, C.Nesaraja, F.M.Nunes, P.D.O'Malley, S.D.Pain, W.A.Peters, S.T.Pittman, A.Roberts, D.Shapira, J.F.Shriner, Jr., M.S.Smith, I.Spassova, D.W.Stracener, A.N.Villano, G.L.Wilson

Halo Nucleus 11Be: A Spectroscopic Study via Neutron Transfer

NUCLEAR REACTIONS 2H(10Be, p)11Be, E=60, 75, 90, 107 MeV; measured reaction products, light ejectiles, Ep, Ip; deduced σ(θ), spectroscopic factors for the first excited and halo neutron states. Comparison with available data.

doi: 10.1103/PhysRevLett.108.192701
Citations: PlumX Metrics

Data from this article have been entered in the EXFOR database. For more information, access X4 datasetC1925. Data from this article have been entered in the XUNDL database. For more information, click here.


2012UP01      Phys.Rev. C 85, 054621 (2012)

N.J.Upadhyay, A.Deltuva, F.M.Nunes

Testing the continuum-discretized coupled channels method for deuteron-induced reactions

NUCLEAR REACTIONS 10Be(d, d), (d, p), (d, np), E=21.4, 40.9, 71 MeV; 12C(d, d), (d, p), (d, np), E=12, 56 MeV; 48Ca(d, d), (d, p), (d, np), E=56 MeV; calculated σ(E, θ) for elastic, transfer and breakup channels. Continuum-discretized coupled channels (CDCC) calculations. Comparison with exact three-body Faddeev formulation.

doi: 10.1103/PhysRevC.85.054621
Citations: PlumX Metrics


2011AD03      Rev.Mod.Phys. 83, 195 (2011)

E.G.Adelberger, A.Garcia, R.G.H.Robertson, K.A.Snover, A.B.Balantekin, K.Heeger, M.J.Ramsey-Musolf, A.B.Balantekin, K.Heeger, M.J.Ramsey-Musolf, D.Bemmerer, A.Junghans, D.Bemmerer, A.Junghans, C.A.Bertulani, K.-W.Chen, H.Costantini, P.Prati, M.Couder, E.Uberseder, M.Wiescher, R.Cyburt, B.Davids, S.J.Freedman, M.Gai, D.Gazit, L.Gialanella, G.Imbriani, U.Greife, M.Hass, W.C.Haxton, T.Itahashi, K.Kubodera, K.Langanke, D.Leitner, M.Leitner, P.Vetter, L.Winslow, L.E.Marcucci, T.Motobayashi, A.Mukhamedzhanov, R.E.Tribble, F.M.Nunes, T.-S.Park, R.Schiavilla, E.C.Simpson, C.Spitaleri, F.Strieder, H.-P.Trautvetter, K.Suemmerer, S.Typel

Solar fusion cross sections. II. The pp chain and CNO cycles

NUCLEAR REACTIONS 2H(p, γ), 3He(3He, 2p), (α, γ), (p, e), 7Be, 12C, 14N, 15N, 17O(p, γ), 15N, 16,17,18O(p, α), E<3 MeV; analyzed and evaluated experimental data; deduced recommended values and uncertainties.

doi: 10.1103/RevModPhys.83.195
Citations: PlumX Metrics


2011CA16      Int.J.Mod.Phys. E20, 934 (2011)

P.Capel, P.Danielewicz, F.M.Nunes

Coupling effects in the extraction of spectroscopic factors

doi: 10.1142/S0218301311019003
Citations: PlumX Metrics


2011CA32      J.Phys.:Conf.Ser. 312, 082015 (2011)

P.Capel, F.M.Nunes

Benchmarking models of breakup reactions

NUCLEAR REACTIONS Pb(15C, X), E=68 MeV/nucleon; calculated breakup σ(E), σ(θ) using CDCC (continuum discretized CC), DEA (dynamical eikonal approximation) for halo nuclei breakup

doi: 10.1088/1742-6596/312/4/082015
Citations: PlumX Metrics


2011JO08      Phys.Rev. C 84, 034601 (2011)

K.L.Jones, F.M.Nunes, A.S.Adekola, D.W.Bardayan, J.C.Blackmon, K.Y.Chae, K.A.Chipps, J.A.Cizewski, L.Erikson, C.Harlin, R.Hatarik, R.Kapler, R.L.Kozub, J.F.Liang, R.Livesay, Z.Ma, B.Moazen, C.D.Nesaraja, S.D.Pain, N.P.Patterson, D.Shapira, J.F.Shriner Jr, M.S.Smith, T.P.Swan, J.S.Thomas

Direct reaction measurements with a 132Sn radioactive ion beam

NUCLEAR REACTIONS 2H(132Sn, p), (132Sn, d), E=630 MeV; measured Ep, Ip, Ed, Id, elastic σ, σ(θ), DWBA analysis. 133Sn; deduced levels, J, π, l values, spectroscopic factors, configurations, asymptotic normalization coefficients. 132Sn; deduced ground-state configuration and structure. Level systematics of N=83 nuclei 133Sn, 135Te, 137Xe, 139Ba, 141Ce, 143Nd and 145Sm.

doi: 10.1103/PhysRevC.84.034601
Citations: PlumX Metrics

Data from this article have been entered in the EXFOR database. For more information, access X4 datasetC1857. Data from this article have been entered in the XUNDL database. For more information, click here.


2011MU14      Phys.Rev. C 84, 024616 (2011)

A.M.Mukhamedzhanov, V.Burjan, M.Gulino, Z.Hons, V.Kroha, M.McCleskey, J.Mrazek, N.Nguyen, F.M.Nunes, S.Piskor, S.Romano, M.L.Sergi, C.Spitaleri, R.E.Tribble

Asymptotic normalization coefficients from the 14C(d, p)15C reaction

NUCLEAR REACTIONS 14C(d, p), E=17.06 MeV; measured ep, Ip, σ(θ). 15C; deduced levels, J, π, l-transfer, asymptotic normalization coefficients for removal of neutron from the g.s. and first exited state of 15C, FR-ADWA analysis with CH-89 potential parameters. 14C(d, d), E=17.06 MeV; measured deuteron spectra, σ(θ); deduced potential parameters. Relevance to 14C(n, γ)15C reaction at astrophysical energies.

doi: 10.1103/PhysRevC.84.024616
Citations: PlumX Metrics

Data from this article have been entered in the EXFOR database. For more information, access X4 datasetD0660. Data from this article have been entered in the XUNDL database. For more information, click here.


2011NG04      Phys.Rev. C 84, 044611 (2011)

N.B.Nguyen, S.J.Waldecker, F.M.Nunes, R.J.Charity, W.H.Dickhoff

Transfer reactions and the dispersive optical model

NUCLEAR REACTIONS 40Ca(d, p), E=20, 56 MeV; 48Ca(d, p), E=2, 13, 19.3, 56 MeV; 132Sn(d, p), E=9.46 MeV; 208Pb(d, p), E=8, 20 MeV; analyzed optical potentials, σ(θ, E), spectroscopic factors. Test of dispersive optical potentials. Comparison with experimental data and with predictions of a standard global optical potential. Finite-range adiabatic (FR-ADWA) calculations in the range of closed-shell nuclei.

doi: 10.1103/PhysRevC.84.044611
Citations: PlumX Metrics


2011NU01      Phys.Rev. C 83, 034610 (2011)

F.M.Nunes, A.Deltuva, J.Hong

Improved description of 34, 36, 46Ar( p, d) transfer reactions

NUCLEAR REACTIONS 1H(34Ar, d), (36Ar, d), (46Ar, d), E=33 MeV/nucleon; analyzed σ(θ), spectroscopic factors using finite range adiabatic wave approximation (ADWA) and Full three-body Faddeev calculations. Neutron-proton asymmetry dependence from knockout measurements.

doi: 10.1103/PhysRevC.83.034610
Citations: PlumX Metrics


2011NU03      Phys.Rev. C 84, 034607 (2011)

F.M.Nunes, A.Deltuva

Adiabatic approximation versus exact Faddeev method for (d, p) and (p, d) reactions

NUCLEAR REACTIONS 11Be(p, d), E=5, 10, 35 MeV; 12C(d, p), E=7, 12, 56 MeV; 48Ca(d, p), E=19, 56, 100 MeV; calculated σ(E, θ) using Faddeev AGS, and finite-range adiabatic wave approximation (ADWA) calculations.

doi: 10.1103/PhysRevC.84.034607
Citations: PlumX Metrics


2011TI09      Phys.Rev. C 84, 035805 (2011)

L.J.Titus, P.Capel, F.M.Nunes

Asymptotic normalization of mirror states and the effect of couplings

NUCLEAR STRUCTURE 8Li, 8B, 13C, 13N, 17O, 17F, 23Ne, 23Al, 27Mg, 27P; calculated depths Vws of the central potential, Ratio of proton to neutron asymptotic normalization coefficients (ANCs) for the dominant component, spectroscopic factors for mirror nuclei, effect of the strength and multipolarity of the couplings induced. Astrophysically relevant proton capture reactions on proton-rich nuclei. Microscopic cluster model. Implications for novae.

doi: 10.1103/PhysRevC.84.035805
Citations: PlumX Metrics


2010BR16      Nucl.Phys. A847, 1 (2010)

I.Brida, F.M.Nunes

Two-neutron overlap functions for 6He from a microscopic structure model

NUCLEAR STRUCTURE 4,6He; calculated binding energies, radii, matter densities using a fully anti-symmetrized microscopic model.

doi: 10.1016/j.nuclphysa.2010.06.012
Citations: PlumX Metrics


2010CA25      Phys.Rev. C 82, 054612 (2010)

P.Capel, P.Danielewicz, F.M.Nunes

Deducing spectroscopic factors from wave-function asymptotics

doi: 10.1103/PhysRevC.82.054612
Citations: PlumX Metrics


2010JO03      Nature(London) 465, 454 (2010)

K.L.Jones, A.S.Adekola, D.W.Bardayan, J.C.Blackmon, K.Y.Chae, K.A.Chipps, J.A.Cizewski, L.Erikson, C.Harlin, R.Hatarik, R.Kapler, R.L.Kozub, J.F.Liang, R.Livesay, Z.Ma, B.H.Moazen, C.D.Nesaraja, F.M.Nunes, S.D.Pain, N.P.Patterson, D.Shapira, J.F.Shriner Jr, M.S.Smith, T.P.Swan, J.S.Thomas

The magic nature of 132Sn explored through the single-particle states of 133Sn

NUCLEAR REACTIONS 2H(132Sn, p)133Sn, E=630 MeV; measured Ep, Ip;132Sn; deduced proton σ(θ), Q-value spectrum, properties of single-particle states in 133Sn, magic nature of 132Sn, spectroscopic factors and configurations . DWBA and FRESCO calculations, U(p, F) fission secondary beams.

doi: 10.1038/nature09048
Citations: PlumX Metrics

Data from this article have been entered in the XUNDL database. For more information, click here.


2010NG02      Phys.Rev. C 82, 014611 (2010)

N.B.Nguyen, F.M.Nunes, R.C.Johnson

Finite-range effects in (d, p) reactions

NUCLEAR REACTIONS 12C, 48Ca, 69Ga, 86Kr, 90Zr, 124Sn, 208Pb(d, p), E=2-80 MeV; calculated σ(θ) using adiabatic distorted-wave approximation (ADWA) and local energy approximation (LEA). Deuteron breakup and finite range effects. Comparison with experimental data.

doi: 10.1103/PhysRevC.82.014611
Citations: PlumX Metrics


2009MO39      Phys.Rev. C 80, 064606 (2009)

A.M.Moro, F.M.Nunes, R.C.Johnson

Theory of (d, p) and (p, d) reactions including breakup: Comparison of methods

NUCLEAR REACTIONS 11Be(p, d), E=38.4 MeV/nucleon; 10Be(d, p), E=12.5 MeV/nucleon; calculated σ and σ(θ) using continuum discretized coupled channel (CDCC) and full three body integral (AGS) equations. Comparison with experimental data.

doi: 10.1103/PhysRevC.80.064606
Citations: PlumX Metrics


2008BR21      Int.J.Mod.Phys. E17, 2374 (2008)

I.Brida, F.M.Nunes

A microscopic hyper-spherical model: application to 6He

NUCLEAR STRUCTURE 6He; calculated nucleon rms radii. Effective central Minnesota N-N interaction.

doi: 10.1142/S0218301308011641
Citations: PlumX Metrics


2008MU12      Phys.Rev. C 77, 051601 (2008)

A.M.Mukhamedzhanov, F.M.Nunes, P.Mohr

Benchmark on neutron capture extracted from (d, p) reactions

NUCLEAR REACTIONS 48Ca(d, p), E=2, 13, 19, 56 MeV; 48Ca(n, γ), E=25 MeV; analyzed angular distributions; deduced asymptotic normalization coefficients, spectroscopic factors.

doi: 10.1103/PhysRevC.77.051601
Citations: PlumX Metrics


2008SU15      Phys.Rev. C 78, 011601 (2008); Erratum Phys.Rev. C 78, 069908 (2008)

N.C.Summers, F.M.Nunes

Extracting (n, γ) direct capture cross sections from Coulomb dissociation: Application to 14C(n, γ)15C

NUCLEAR REACTIONS 208Pb(15C, n14C), E=35, 68 MeV/nucleon; calculated breakup σ, σ(E). 14C(n, γ), E=10-1000 keV; analyzed capture σ, asymptotic normalization coefficients. Continuum discretized coupled channels method. Comparison with experimental data.

doi: 10.1103/PhysRevC.78.011601
Citations: PlumX Metrics


2007CA22      Phys.Rev. C 75, 054609 (2007)

P.Capel, F.M.Nunes

Peripherality of breakup reactions

NUCLEAR REACTIONS Pb, C(11Be, X), (8B, X), E=40-70 MeV/nucleon; Ni(11Be, X), (8B, X), E=26 MeV; calculated breakup cross sections.

doi: 10.1103/PhysRevC.75.054609
Citations: PlumX Metrics


2007DE43      J.Phys.(London) G34, 2207 (2007)

F.Delaunay, F.M.Nunes

On the measurement of B(E2, 0+1 → 2+1) using intermediate-energy Coulomb excitation

NUCLEAR REACTIONS 197Au(30S, γ), E=35.7 MeV/nucleon; 197Au(58Ni, γ), e=72.4 MeV/nucleon; 197Au(78Kr, γ), E=72.4 MeV; calculated cross sections using using fully quantal coupled channel formalism/

doi: 10.1088/0954-3899/34/10/010
Citations: PlumX Metrics


2007DE59      Phys.Rev. C 76, 064602 (2007)

A.Deltuva, A.M.Moro, E.Cravo, F.M.Nunes, A.C.Fonseca

Three-body description of direct nuclear reactions: Comparison with the continuum discretized coupled channels method

NUCLEAR REACTIONS 12C(d, X), E=56 MeV; 58Ni(d, X), E=80 MeV; p(11Be, X), E=38.4 MeV/nucleon; calculated cross-sections, angular distributions using continuum discretized coupled channels. Comparisons with solution to three-body Faddeev equations and experiment.

doi: 10.1103/PhysRevC.76.064602
Citations: PlumX Metrics


2007LU01      J.Phys.(London) G34, 513 (2007)

J.Lubian, F.M.Nunes

Searching for a polarization potential in the breakup of 8B

NUCLEAR REACTIONS 58Ni(8B, p7Be), E=30 MeV; calculated σ(θ), polarization potential; deduced non-local continuum couplings.

doi: 10.1088/0954-3899/34/3/009
Citations: PlumX Metrics


2007MO24      Nucl.Phys. A787, 463c (2007)

A.M.Moro, F.M.Nunes, D.Escrig, J.Gomez-Camacho

Three-body approaches for inclusive breakup reactions

NUCLEAR REACTIONS 58Ni(8B, 7Be), E=25.8 MeV; 208Pb(6He, α), E=22 MeV; calculated σ(θ, E); deduced reaction mechanism features. DWBA and continuum-discretized coupled channels analyses compared. Comparison with data.

doi: 10.1016/j.nuclphysa.2006.12.069
Citations: PlumX Metrics


2007PA10      Phys.Rev. C 75, 024601 (2007)

D.Y.Pang, F.M.Nunes, A.M.Mukhamedzhanov

Are spectroscopic factors from transfer reactions consistent with asymptotic normalization coefficients?

NUCLEAR REACTIONS 14C(d, p), E=14 MeV; 16O(d, p), E=15 MeV; 40Ca(d, p), E=11 MeV; analyzed σ(θ); deduced spectroscopic factors, asymptotic normalization coefficients.

doi: 10.1103/PhysRevC.75.024601
Citations: PlumX Metrics


2007SU11      Phys.Rev. C 76, 014611 (2007); Erratum Phys.Rev. C 77, 049901 (2008)

N.C.Summers, F.M.Nunes

Core excitation in the elastic scattering and breakup of 11Be on protons

NUCLEAR REACTIONS 1H(11Be, X), E=40-63.7 MeV/nucleon; calculated elastic scattering and breakup cross sections.

doi: 10.1103/PhysRevC.76.014611
Citations: PlumX Metrics


2007SU17      Nucl.Phys. A788, 325c (2007)

N.C.Summers, F.M.Nunes, I.J.Thompson

The effects of core excitation in the breakup of exotic nuclei

doi: 10.1016/j.nuclphysa.2007.01.095
Citations: PlumX Metrics


2007SU18      Phys.Lett. B 650, 124 (2007)

N.C.Summers, S.D.Pain, N.A.Orr, W.N.Catford, J.C.Angelique, N.I.Ashwood, V.Bouchat, N.M.Clarke, N.Curtis, M.Freer, B.R.Fulton, F.Hanappe, M.Labiche, J.L.Lecouey, R.C.Lemmon, D.Mahboub, A.Ninane, G.Normand, F.M.Nunes, N.Soic, L.Stuttge, C.N.Timis, I.J.Thompson, J.S.Winfield, V.Ziman

B(E1) strengths from Coulomb excitation of 11Be

NUCLEAR REACTIONS 208Pb(11Be, 11Be'), E=38.6 MeV/nucleon; measured Coulomb excitation σ. 11Be deduced B(E1) strengths; calculated σ. Extended continuum discretized coupled channels method. Comparison with previous data.

doi: 10.1016/j.physletb.2007.05.003
Citations: PlumX Metrics

Data from this article have been entered in the XUNDL database. For more information, click here.


2006BR14      Nucl.Phys. A775, 23 (2006)

I.Brida, F.M.Nunes, B.A.Brown

Effects of deformation in the three-body structure of 11Li

NUCLEAR STRUCTURE 10Li; calculated excited states energies, J, π. 11Li; calculated configurations, radii, two neutron binding energy, effects of core deformation and excitation. Three body model, comparison with shell model and data.

doi: 10.1016/j.nuclphysa.2006.06.012
Citations: PlumX Metrics


2006CA06      Phys.Rev. C 73, 014615 (2006)

P.Capel, F.M.Nunes

Influence of the projectile description on breakup calculations

NUCLEAR REACTIONS 58Ni(8B, p7Be), E=25.75 MeV; 208Pb(11Be, n10Be), E=69 MeV/nucleon; calculated σ(E), relative energy spectra, partial wave contributions; deduced sensitivity to projectile description.

doi: 10.1103/PhysRevC.73.014615
Citations: PlumX Metrics


2006HU12      Phys.Lett. B 640, 91 (2006)

M.S.Hussein, R.Lichtenthaler, F.M.Nunes, I.J.Thompson

Scaling and interference in the dissociation of halo nuclei

NUCLEAR REACTIONS 12C, 40Ca, 120Sn, 208Pb(8B, X), E=44, 70 MeV/nucleon; 12C, 40Ca, 120Sn, 208Pb(11Be, X), E=44, 70, 200 MeV/nucleon; 12C, 40Ca, 120Sn, 208Pb(7Be, X), E=100 MeV/nucleon; calculated elastic nuclear breakup σ; deduced target mass dependence, Coulomb-nuclear interference. Continuum discretized coupled channels calculations, other targets also considered.

doi: 10.1016/j.physletb.2006.07.046
Citations: PlumX Metrics


2006MO03      Nucl.Phys. A767, 138 (2006)

A.M.Moro, F.M.Nunes

Transfer to the continuum and breakup reactions

NUCLEAR REACTIONS 1H(11Be, n10Be), E=38.5 MeV/nucleon; 58Ni(8B, p7Be), (8B, 7Be), E=25.6 MeV; calculated σ(E), σ(θ); deduced optical model parameters, reaction mechanism features.

doi: 10.1016/j.nuclphysa.2005.12.016
Citations: PlumX Metrics


2006MU15      Eur.Phys.J. A 27, Supplement 1, 205 (2006)

A.M.Mukhamedzhanov, L.D.Blokhintsev, B.A.Brown, V.Burjan, S.Cherubini, C.A.Gagliardi, B.F.Irgaziev, V.Kroha, F.M.Nunes, F.Pirlepesov, R.G.Pizzone, S.Romano, C.Spitaleri, X.D.Tang, L.Trache, R.E.Tribble, A.Tumino

Indirect techniques in nuclear astrophysics: Asymptotic Normalization Coefficient and Trojan Horse

NUCLEAR REACTIONS 14N(3He, d), E=26.3 MeV; measured σ(θ). 14N(p, γ), E ≈ 100-600 keV; deduced astrophysical S-factor. 11C, 13N(p, γ), E not given; analyzed resonant and nonresonant amplitudes. Asymptotic normalization coefficient and Trojan horse techniques discussed.

doi: 10.1140/epja/i2006-08-032-7
Citations: PlumX Metrics


2006SU05      Phys.Rev. C 73, 031603 (2006)

N.C.Summers, F.M.Nunes, I.J.Thompson

Core transitions in the breakup of exotic nuclei

NUCLEAR REACTIONS 9Be(11Be, 10BeX), E=60 MeV/nucleon; calculated break-up and stripping σ, role of dynamical core excitation. Extended continuum discretized coupled channels method, comparison with data.

doi: 10.1103/PhysRevC.73.031603
Citations: PlumX Metrics


2006SU11      Phys.Rev. C 74, 014606 (2006); Erratum Phys.Rev. C 89, 069901 (2014)

N.C.Summers, F.M.Nunes, I.J.Thompson

Extended continuum discretized coupled channels method: Core excitation in the breakup of exotic nuclei

NUCLEAR REACTIONS 9Be(11Be, n10Be), (17C, n16C), E=60 MeV/nucleon; calculated breakup σ, σ(E), core excitation effects. Extended continuum discretized coupled channels method.

doi: 10.1103/PhysRevC.74.014606
Citations: PlumX Metrics


2005BL23      Phys.Rev. C 72, 034606 (2005)

J.C.Blackmon, F.Carstoiu, L.Trache, D.W.Bardayan, C.R.Brune, C.A.Gagliardi, U.Greife, C.J.Gross, C.C.Jewett, R.L.Kozub, T.A.Lewis, J.F.Liang, B.H.Moazen, A.M.Mukhamedzhanov, C.D.Nesaraja, F.M.Nunes, P.D.Parker, L.Sahin, J.P.Scott, D.Shapira, M.S.Smith, J.S.Thomas, R.E.Tribble

Elastic scattering of the proton drip-line nucleus 17F

NUCLEAR REACTIONS 12C, 14N(17F, 17F), E=10 MeV/nucleon; measured σ(θ); deduced parameters, reaction mechanism features. Double-folding procedure.

doi: 10.1103/PhysRevC.72.034606
Citations: PlumX Metrics

Data from this article have been entered in the EXFOR database. For more information, access X4 datasetC1367.


2005DE33      Phys.Rev. C 72, 014610 (2005)

F.Delaunay, F.M.Nunes, W.G.Lynch, M.B.Tsang

Coupling and higher-order effects in the 12C(d, p)13C and 13C(p, d)12C reactions

NUCLEAR REACTIONS 12C(d, p), 13C(p, d), E=7-60 MeV; calculated σ(θ), σ; deduced coupling effects, other reaction mechanism features. Coupled-channels approach, adiabatic distorted wave and adiabatic coupled channels methods.

doi: 10.1103/PhysRevC.72.014610
Citations: PlumX Metrics


2005MU24      Phys.Rev. C 72, 017602 (2005)

A.M.Mukhamedzhanov, F.M.Nunes

Combined method to extract spectroscopic information

NUCLEAR REACTIONS 208Pb(d, p), E=22 MeV; 12C(d, p), E=51 MeV; 84Se(d, p), E=4-100 MeV; analyzed data; deduced spectroscopic factors.

doi: 10.1103/PhysRevC.72.017602
Citations: PlumX Metrics


2005NU01      Nucl.Phys. A757, 349 (2005)

F.M.Nunes

Valence pairing, core deformation and the development of two-neutron halos

NUCLEAR STRUCTURE 12Be; calculated halo configurations, effects of core deformation and excitation.

doi: 10.1016/j.nuclphysa.2005.04.005
Citations: PlumX Metrics


2005NU02      Eur.Phys.J. A 25, Supplement 1, 295 (2005)

F.M.Nunes, A.M.Moro, A.M.Mukhamedzhanov, N.C.Summers

Progress on reactions with exotic nuclei

doi: 10.1140/epjad/i2005-06-160-7
Citations: PlumX Metrics


2005SU19      Nucl.Phys. A758, 705c (2005)

N.C.Summers, F.M.Nunes

7Be breakup on heavy and light targets

NUCLEAR REACTIONS 12C(7Be, 3Heα), E=25 MeV/nucleon; 208Pb(7Be, 3Heα), E=100 MeV/nucleon; calculated breakup σ, σ(θ), nuclear and Coulomb contributions. Implications for astrophysical S-factor determinations discussed.

doi: 10.1016/j.nuclphysa.2005.05.126
Citations: PlumX Metrics


2005SU22      J.Phys.(London) G31, 1437 (2005)

N.S.Summers, F.M.Nunes

Sensitivity of 8B breakup cross section to projectile structure in CDCC calculations

NUCLEAR REACTIONS 7Be(p, γ), E ≈ 0.5-8 MeV; calculated capture σ, sensitivity to interaction potential. Pb(8B, p7Be), E=44, 81 MeV/nucleon; calculated fragment momentum and energy distributions, dependence on projectile structure. 58Ni(8B, p7Be), E=25.6 MeV; calculated fragment angular distribution. Continuum discretized coupled channels approach.

doi: 10.1088/0954-3899/31/12/005
Citations: PlumX Metrics


2005SU24      Eur.Phys.J. A 25, Supplement 1, 647 (2005)

N.C.Summers, F.M.Nunes

7Be breakup on heavy and light targets

NUCLEAR REACTIONS 12C(7Be, 3Heα), E=25 MeV/nucleon; 208Pb(7Be, 3Heα), E=100 MeV/nucleon; calculated σ(θ). Continuum discretized coupled channels approach, astrophysical implications discussed.

doi: 10.1140/epjad/i2005-06-193-x
Citations: PlumX Metrics


2004BL21      Nucl.Phys. A746, 365c (2004)

J.C.Blackmon, D.W.Bardayan, C.R.Brune, F.Carstoiu, A.E.Champagne, R.Crespo, T.Davinson, J.C.Fernandes, C.A.Gagliardi, U.Greife, C.J.Gross, P.A.Hausladen, C.Iliadis, C.C.Jewett, R.L.Kozub, T.A.Lewis, F.Liang, B.H.Moazen, A.M.Mukhamedzhanov, C.D.Nesaraja, F.M.Nunes, P.D.Parker, D.C.Radford, L.Sahin, J.P.Scott, D.Shapira, M.S.Smith, J.S.Thomas, L.Trache, R.E.Tribble, P.J.Woods, C.-H.Yu

The 17F(p, γ)18Ne direct capture cross section

NUCLEAR REACTIONS 12C, 14N(17F, 17F), E=170 MeV; 14N(17F, 18Ne), E=170 MeV; measured σ(θ).

doi: 10.1016/j.nuclphysa.2004.09.054
Citations: PlumX Metrics

Data from this article have been entered in the EXFOR database. For more information, access X4 datasetC1137.


2004NU01      Nucl.Phys. A736, 255 (2004)

F.M.Nunes, A.M.Mukhamedzhanov, C.C.Rosa, B.Irgaziev

Insight into continuum couplings

NUCLEAR REACTIONS 58Ni(8B, p7Be), E=low; calculated continuum coupling matrix elements. Continuum discretized coupled channels method.

doi: 10.1016/j.nuclphysa.2004.03.035
Citations: PlumX Metrics


2004NU05      Nucl.Phys. A746, 61c (2004)

F.M.Nunes, I.J.Thompson

What are the advantages of a three body model with core excitation for 21Ne and 21Na?

NUCLEAR STRUCTURE 21Ne, 21Na; calculated level energies. Three-body model with core excitation, comparison with data.

doi: 10.1016/j.nuclphysa.2004.09.136
Citations: PlumX Metrics


2004SU18      Phys.Rev. C 70, 011602 (2004)

N.C.Summers, F.M.Nunes

7Be breakup on heavy and light targets

NUCLEAR REACTIONS 12C(7Be, 3Heα), E=25 MeV/nucleon; 208Pb(7Be, 3Heα), E=100 MeV/nucleon; calculated breakup σ, σ(θ), nuclear and Coulomb contributions. Implications for astrophysical S-factor determinations discussed.

doi: 10.1103/PhysRevC.70.011602
Citations: PlumX Metrics


Back to query form    [Next]