NSR Query Results


Output year order : Descending
Format : Normal

NSR database version of April 11, 2024.

Search: Author = J.Terasaki

Found 45 matches.

Back to query form



2023TE03      Phys.Rev. C 108, 014301 (2023)

J.Terasaki

Investigation of the cause of the discrepancies between calculated running sums for nuclear matrix elements of two-neutrino double-β decay

NUCLEAR STRUCTURE 136Xe, 136Ba; calculated nuclear matrix element (NME) of 2ν2β-decay, calculated Gamow-Teller strength functions for 136Xe to 136Cs and 136Ba to 136Cs. Quasiparticle random-phase approximation (QRPA) calculations.

doi: 10.1103/PhysRevC.108.014301
Citations: PlumX Metrics


2020TE03      Phys.Rev. C 102, 044303 (2020)

J.Terasaki

Strength of the isoscalar pairing interaction determined by a relation between double-charge change and double-pair transfer for double-β decay

RADIOACTIVITY 150Nd, 136Xe, 130Te, 110Pd, 48Ca(2β-); calculated nuclear matrix elements using quasiparticle random-phase approximation.

NUCLEAR STRUCTURE 48Ca, 48Ti, 100Pd, 100Cd, 130Te, 130Xe, 136Xe, 136Ba, 150Nd, 150Sm; calculated HFB ground states, average pairing gaps of the protons and neutrons, and β deformation parameter, strengths of the volume contact pairing interactions, isoscalar and isovector pn pairing interactions for the protons and neutrons. 150Nd, 136Xe, 48Ca; calculated Gamow-Teller transition strengths. Quasiparticle random-phase approximation. Comparison with experimental data.

doi: 10.1103/PhysRevC.102.044303
Citations: PlumX Metrics


2019TE05      Phys.Rev. C 100, 034325 (2019)

J.Terasaki, Y.Iwata

Isoscalar pairing interaction for the quasiparticle random-phase approximation approach to double-β and β decays

RADIOACTIVITY 130Te, 136Xe(2β-); calculated nuclear matrix elements of 0νββ and 2νββ decay modes, half-lives, and Gamow-Teller transition strength, GT sum rule. Comparison with experimental half-lives. 48Ca, 130Te, 136Xe(2β-); calculated R1/2 parameter and compared with 26 previous theoretical calculations based on IBM-2, QRPA, GCM and SM models. 132Te, 138Xe(β-); calculated logft values and B(GT), and compared with experimental data. Proton-neutron quasiparticle random-phase approximation (pn-QRPA), and the Hamiltonian from Skyrme energy density functional SkM*.

NUCLEAR STRUCTURE 130Te, 130,136Xe, 136Ba; calculated average pairing gaps of the protons and neutrons, and quadrupole deformation β from Hartree-Fock-Bogoliubov (HFB) solutions; calculated strengths of proton-proton, neutron-neutron, isovector proton-neutron, and isoscalar proton-neutron pairing interactions. 130I, 136Cs; calculated levels, J, π of the intermediate nuclei from pnQRPA calculation based on 130Te and 130Xe for 130I, and based on 136Xe and 136Ba for 136Cs. 138Cs; calculated energies of 1+ levels. Comparison with experimental spectra. Proton-neutron quasiparticle random-phase approximation (pn-QRPA) with Skyrme interaction.

NUCLEAR REACTIONS 130Te(3He, t)130I; 136Xe(3He, t)136Cs; calculated GT- strengths using QRPA and compared with experimental data.

doi: 10.1103/PhysRevC.100.034325
Citations: PlumX Metrics


2018TE01      Phys.Rev. C 97, 034304 (2018)

J.Terasaki

Examination of the consistency of the quasiparticle random-phase approximation approach to double-β decay of 48Ca

RADIOACTIVITY 48Ca(2β-); calculated nuclear matrix elements (NMEs) of neutrinoless ( 0νββ) and two-neutrino double-β (2νββ) decays using quasiparticle random-phase approximation (QRPA), density-functional theory, and Skyrme interaction. Comparison with experimental charge-exchange strength functions obtained from 48Ca(p, n) and 48Ti(n, p) reactions to validate calculation of matrix elements for double-beta decay.

NUCLEAR REACTIONS 48Ca(p, n)48Sc, 48Ti(n, p)48Sc, Eexc<50 MeV; calculated strength functions of Gamow-Teller (GT) transition by the QRPA, and compared with experimental data. Relevance to double-beta decay of 48Ca to 48Ti.

doi: 10.1103/PhysRevC.97.034304
Citations: PlumX Metrics


2016TE02      Phys.Rev. C 93, 024317 (2016)

J.Terasaki

Two decay paths for calculating the nuclear matrix element of neutrinoless double-β decay using quasiparticle random-phase approximation

RADIOACTIVITY 150Nd(2β-); calculated nuclear matrix elements (NMEs) of 0νββ and 2νββ decay modes using quasiparticle random-phase approximation (QRPA) approach.

doi: 10.1103/PhysRevC.93.024317
Citations: PlumX Metrics


2015TE02      Phys.Rev. C 91, 034318 (2015)

J.Terasaki

Many-body correlations of quasiparticle random-phase approximation in nuclear matrix elements of neutrinoless double-β decay

RADIOACTIVITY 150Nd(2β-); calculated nuclear matrix element of neutrinoless double β decay using quasiparticle random-phase approximation (QRPA).

doi: 10.1103/PhysRevC.91.034318
Citations: PlumX Metrics


2013BO19      Comput.Phys.Commun. 184, 085101 (2013)

S.Bogner, A.Bulgac, J.Carlson, J.Engel, G.Fann, R.J.Furnstahl, S.Gandolfi, G.Hagen, M.Horoi, C.Johnson, M.Kortelainen, E.Lusk, P.Maris, H.Nam, P.Navratil, W.Nazarewicz, E.Ng, G.P.A.Nobre, E.Ormand, T.Papenbrock, J.Pei, S.C.Pieper, S.Quaglioni, K.J.Roche, J.Sarich, N.Schunck, M.Sosonkina, J.Terasaki, I.Thompson, J.P.Vary, S.M.Wild

Computational nuclear quantum many-body problem: The UNEDF project

NUCLEAR REACTIONS 3He(d, p), 7Be(p, γ), E<1MeV; 172Yb, 188Os, 238U(γ, X), E<24 MeV; calculated σ. Comparison with experimental data.

NUCLEAR STRUCTURE 100Zr; calculated quadrupole deformation parameter, radii, neutron separation energy.

doi: 10.1016/j.cpc.2013.05.020
Citations: PlumX Metrics


2013TE02      Phys.Rev. C 87, 024316 (2013)

J.Terasaki

Overlap of quasiparticle random-phase approximation states based on ground states of different nuclei: Mathematical properties and test calculations

NUCLEAR STRUCTURE 26Si, 26Mg; calculated overlap matrix elements of QRPA states based on ground states to simulate intermediate nuclear states of double-β decay. Test calculations on 26Si and 26Mg with the Skyrme and volume δ-pairing energy functionals.

doi: 10.1103/PhysRevC.87.024316
Citations: PlumX Metrics


2013TE03      Acta Phys.Pol. B44, 259 (2013)

J.Terasaki

Overlap of QRPA States Based on Ground States of Different Nuclei

NUCLEAR STRUCTURE 26Mg, 26Si; calculated nuclear matrix elements.

doi: 10.5506/APhysPolB.44.259
Citations: PlumX Metrics


2012TE01      Phys.Rev. C 86, 021301 (2012)

J.Terasaki

Overlap of quasiparticle random-phase approximation states for nuclear matrix elements of the neutrino-less double-β decay

RADIOACTIVITY 26Mg(2β-); calculated overlap matrix elements of of the QRPA states based on the ground states of different nuclei. Quasiparticle random-phase approximation (QRPA) approach. Bold truncations allowed in the calculation of the un-normalized overlap matrix elements.

doi: 10.1103/PhysRevC.86.021301
Citations: PlumX Metrics


2012TE02      Prog.Theor.Phys.(Kyoto), Suppl. 196, 377 (2012)

J.Terasaki

Testing Skyrme Energy-Density Functionals with the QRPA in Low-lying Vibrational States of Rare-Earth Nuclei

NUCLEAR STRUCTURE Z=62, 64, 66, 68, 70, 72; calculated energies of the γ-vibrational states, B(E2), components of the E2 transition matrix elements. Skyrme QRPA calculations.

doi: 10.1143/PTPS.196.377
Citations: PlumX Metrics


2011NO17      Phys.Rev. C 84, 064609 (2011)

G.P.A.Nobre, F.S.Dietrich, J.E.Escher, I.J.Thompson, M.Dupuis, J.Terasaki, J.Engel

Toward a microscopic reaction description based on energy-density-functional structure models

NUCLEAR REACTIONS 90Zr(n, X), E=10, 20, 30 MeV; 58Ni(n, X), E=20, 30 MeV; 58Ni(p, X), E=10-70 MeV; 48Ca(p, X), E=10-50 MeV; 40,48Ca, 58Ni, 144Sm(n, X), (p, X), E=30 MeV; 90Zr(p, X), E=20-70 MeV; calculated reaction cross section. 90Zr(p, p), E=40, 65 MeV; calculated σ(θ). Random-phase, Hartree-Fock-Bogoliubov (HFB) framework and Skyrme density functional with coupling to all RPA and QRPA inelastic channels including deuteron formation. Assessed effects of couplings between inelastic resonances from higher-order channels. Comparison with experimental data.

doi: 10.1103/PhysRevC.84.064609
Citations: PlumX Metrics


2011TE04      Phys.Rev. C 84, 014332 (2011)

J.Terasaki, J.Engel

Testing Skyrme energy-density functionals with the quasiparticle random-phase approximation in low-lying vibrational states of rare-earth nuclei

NUCLEAR STRUCTURE 172,174Hf, 166,168,170,172,174,176Yb, 162,164,166,168,170,172Er, 158,160,162,164,166Dy, 156,158,160,162Gd, 154,156Sm, 152,154Nd; calculated energies of gamma- and beta-vibrational states, B(E2). QRPA, Skyrme energy density functionals SkM* and SLy4.

doi: 10.1103/PhysRevC.84.014332
Citations: PlumX Metrics


2010NO06      Phys.Rev.Lett. 105, 202502 (2010)

G.P.A.Nobre, F.S.Dietrich, J.E.Escher, I.J.Thompson, M.Dupuis, J.Terasaki, J.Engel

Coupled-Channel Calculation of Nonelastic Cross Sections Using a Density-Functional Structure Model

NUCLEAR REACTIONS 40,48Ca, 58Ni, 90Zr, 144Sm(p, X), (n, X), E<40 MeV; calculated total reaction σ. Complete microscopic calculation, comparison with experimental data.

doi: 10.1103/PhysRevLett.105.202502
Citations: PlumX Metrics


2010TE03      Phys.Rev. C 82, 034326 (2010)

J.Terasaki, J.Engel

Self-consistent Skyrme quasiparticle random-phase approximation for use in axially symmetric nuclei of arbitrary mass

NUCLEAR STRUCTURE 16,22O, 24,26Mg, 172Yb; calculated E1 and E2 isoscalar (IS) and isovector (IV) transition strengths for different K quantum numbers using quasiparticle random-phase approximation (QRPA). Comparison with experimental data.

doi: 10.1103/PhysRevC.82.034326
Citations: PlumX Metrics


2008TE08      Phys.Rev. C 78, 044311 (2008)

J.Terasaki, J.Engel, G.F.Bertsch

Systematics of the first 2+ excitation in spherical nuclei with the Skryme quasiparticle random-phase approximation

NUCLEAR STRUCTURE Z=10-90; calculated levels, J, π, B(E1) for lowest 2+ states in even-even nuclei. Skyrme quasiparticle random phase approximation.

doi: 10.1103/PhysRevC.78.044311
Citations: PlumX Metrics


2007ST14      Phys.Rev. C 76, 014308 (2007)

M.V.Stoitsov, J.Dobaczewski, R.Kirchner, W.Nazarewicz, J.Terasaki

Variation after particle-number projection for the Hartree-Fock-Bogoliubov method with the Skyrme energy density functional

doi: 10.1103/PhysRevC.76.014308
Citations: PlumX Metrics


2007TE10      Phys.Rev. C 76, 044320 (2007)

J.Terasaki, J.Engel

Excited-state density distributions in neutron-rich nuclei

NUCLEAR STRUCTURE 50Ca; excitation energies and excited state densities. 50,54,56,58,62,64,66,70,76Ca, 60,66,72,78,80,84,90,96,98Ni, 132,134,136,138,140,142,144,146,148,150,152,164,166,168,172,176Sn; calculated strength function peaks. QRPA with Skyrme.

doi: 10.1103/PhysRevC.76.044320
Citations: PlumX Metrics


2006TE06      Phys.Rev. C 74, 044301 (2006)

J.Terasaki, J.Engel

Self-consistent description of multipole strength: Systematic calculations

NUCLEAR STRUCTURE 36,38,40,42,44,46,48,50,52,54,56,58,60,62,64,66,68,70,72,74,76Ca, 50,52,54,56,58,60,62,64,66,68,70,72,74,76,78,80,82,84,86,88,90,92,94,96,98Ni, 100,102,104,106,108,110,112,114,116,118,120,122,124,126,128,130,132,134,136,138,140,142,144,146,148,150,152,154,156,158,160,162,164,166,168,170,172,174,176Sn; calculated isoscalar and isovector 0+, 1-, 2+ strength functions, transition densities, partial energy-weighted sums. Quasiparticle RPA, Skyrme density functionals.

doi: 10.1103/PhysRevC.74.044301
Citations: PlumX Metrics


2006TE07      Phys.Rev. C 74, 054318 (2006)

J.Terasaki, S.Q.Zhang, S.G.Zhou, J.Meng

Giant halos in relativistic and nonrelativistic approaches

NUCLEAR STRUCTURE 36,38,40,42,44,46,48,50,52,54,56,58,60,62,64,66,68,70,72,74,76,78Ca; calculated two-neutron separation energies, radii, density distributions, halo features. 66Ca; calculated single-particle level energies, particle density distributions, radii. Relativistic continuum Hartree-Bogoliubov approximation and Skyrme Hartree-Fock-Bogoliubov approximation.

doi: 10.1103/PhysRevC.74.054318
Citations: PlumX Metrics


2006TE09      Int.J.Mod.Phys. E15, 1833 (2006)

J.Terasaki, S.Q.Zhang, S.G.Zhou, J.Meng

Comparison of relativistic and non-relativistic approaches in halo

NUCLEAR STRUCTURE 50,52,54,56,58,60,62,64,66,68,70,72,74,76,78Ca; calculated two-neutron separation energies, neutron and proton radii, halo features. 66Ca; calculated single-particle level energies.

doi: 10.1142/S0218301306005381
Citations: PlumX Metrics


2005ST37      Eur.Phys.J. A 25, Supplement 1, 567 (2005)

M.V.Stoitsov, J.Dobaczewski, W.Nazarewicz, J.Terasaki

Large-scale HFB calculations for deformed nuclei with the exact particle number projection

doi: 10.1140/epjad/i2005-06-203-1
Citations: PlumX Metrics


2005TE01      Phys.Rev. C 71, 034310 (2005)

J.Terasaki, J.Engel, M.Bender, J.Dobaczewski, W.Nazarewicz, M.Stoitsov

Self-consistent description of multipole strength in exotic nuclei: Method

NUCLEAR STRUCTURE 100,120,174,176Sn; calculated isoscalar and isovector monopole, dipole, and quadrupole strength functions. Self-consistent quasiparticle RPA.

doi: 10.1103/PhysRevC.71.034310
Citations: PlumX Metrics


2005TE06      Eur.Phys.J. A 25, Supplement 1, 539 (2005)

J.Terasaki, J.Engel, M.Bender, J.Dobaczewski, W.Nazarewicz, M.Stoitsov

Skyrme-QRPA calculations of multipole strength in exotic nuclei

NUCLEAR STRUCTURE 120,174Sn; calculated isoscalar 0+ and 1- channels strength distributions. Quasiparticle RPA with Skyrme and delta-pairing interactions.

doi: 10.1140/epjad/i2005-06-082-4
Citations: PlumX Metrics


2004TE09      Nucl.Phys. A746, 583c (2004)

J.Terasaki

QRPA study of low-lying 2+ states of even-even nuclei in neutron-rich Sn and Ni region

NUCLEAR STRUCTURE 132,134,136Te, 114,116,118,120,122,124,126,128,130,132,134Sn, 56,68Ni; calculated level energies, excitation B(E2). Quasiparticle RPA approach.

doi: 10.1016/j.nuclphysa.2004.09.094
Citations: PlumX Metrics


2003LA05      Phys.Rev. C 67, 044314 (2003)

K.Langanke, J.Terasaki, F.Nowacki, D.J.Dean, W.Nazarewicz

How magic is the magic 68Ni nucleus?

NUCLEAR STRUCTURE 56,58,60,62,64,66,68,70,72,74,76,78,80Ni; calculated 2+ level energies, B(E2) strength distributions; deduced shell features. Shell model Monte Carlo, quasiparticle RPA, large-scale diagonalization shell model.

doi: 10.1103/PhysRevC.67.044314
Citations: PlumX Metrics


2003NA05      Nucl.Instrum.Methods Phys.Res. B204, 1 (2003)

W.Nazarewicz, J.Dobaczewski, N.Michel, M.Ploszajczak, M.V.Stoitsov, J.Terasaki

Prospects for new science with EM devices

doi: 10.1016/S0168-583X(02)01883-9
Citations: PlumX Metrics


2002TE01      Nucl.Phys. A697, 127 (2002)

J.Terasaki, F.Barranco, R.A.Broglia, E.Vigezzi, P.F.Bortignon

Solution of the Dyson Equation for Nucleons in the Superfluid Phase

doi: 10.1016/S0375-9474(01)01239-8
Citations: PlumX Metrics


2002TE10      Phys.Rev. C 66, 054313 (2002)

J.Terasaki, J.Engel, W.Nazarewicz, M.Stoitsov

Anomalous behavior of 2+ excitations around 132Sn

NUCLEAR STRUCTURE 114,116,118,120,122,124,126,128,130,132,134Sn, 132,134,136Te, 134,136,138Xe, 136,138,140Ba, 138,140,142Ce; calculated 2+ state level energies, B(E2), g factors; deduced neutron pairing contribution to anomalous behavior. Quasiparticle RPA.

doi: 10.1103/PhysRevC.66.054313
Citations: PlumX Metrics


2002TE13      Prog.Theor.Phys.(Kyoto) 108, 495 (2002)

J.Terasaki, F.Barranco, E.Vigezzi, R.A.Broglia, P.F.Bortignon

Effect of Particle-Phonon Coupling on Pairing Correlations in Finite Systems - The Atomic Nucleus -

NUCLEAR STRUCTURE 120Sn; calculated pairing gaps, spectral functions, particle-phonon coupling effects.

doi: 10.1143/PTP.108.495
Citations: PlumX Metrics


2001GO11      Acta Phys.Pol. B32, 767 (2001)

G.Gori, R.A.Broglia, F.Barranco, G.Colo, E.Vigezzi, P.F.Bortignon, J.Terasaki

Induced Pairing Interaction in Nuclei

NUCLEAR STRUCTURE 106,108,110,112,114Cd; calculated pairing interaction features, role of low-lying collective surface vibrations.


2000BR49      Phys.Scr. T88, 173 (2000)

R.A.Broglia, G.Colo, F.Barranco, G.Gori, E.Vigezzi, J.Terasaki, P.F.Bortignon, N.Breda

Pairing in Finite Systems: Nuclei and Fullerenes

doi: 10.1238/Physica.Topical.088a00173
Citations: PlumX Metrics


1999BA78      Phys.Rev.Lett. 83, 2147 (1999)

F.Barranco, R.A.Broglia, G.Gori, E.Vigezzi, P.F.Bortignon, J.Terasaki

Surface Vibrations and the Pairing Interaction in Nuclei

NUCLEAR STRUCTURE 120Sn; calculated state-dependent pairing gap. Ca, Ti, Sn; calculated average neutron pairing gaps; deduced role of surface vibration induced pairing interaction. Comparisons with data.

doi: 10.1103/PhysRevLett.83.2147
Citations: PlumX Metrics


1998TE04      Phys.Lett. 437B, 1 (1998)

J.Terasaki, R.Wyss, P.-H.Heenen

Onset of T = 0 Pairing and Deformations in High Spin States of the N = Z Nucleus 48Cr

NUCLEAR STRUCTURE 48Cr; calculated rotational bands, deformation; deduced T=0 pairing role. Cranked HFB method, Skyrme force, density-dependent interaction.

doi: 10.1016/S0370-2693(98)00936-8
Citations: PlumX Metrics


1997TE04      Phys.Rev. C55, 1231 (1997)

J.Terasaki, H.Flocard, P.-H.Heenen, P.Bonche

Superdeformed Bands of Odd Nuclei in A = 190 Region in the Quasiparticle Picture

NUCLEAR STRUCTURE 195Pb, 193Hg; calculated superdeformed bands related features; deduced density-dependent pairing forces advantages. Cranked HFB model.

doi: 10.1103/PhysRevC.55.1231
Citations: PlumX Metrics


1997TE08      Nucl.Phys. A621, 706 (1997)

J.Terasaki, H.Flocard, P.-H.Heenen, P.Bonche

Deformation of Nuclei Close to the Two-Neutron Drip Line in the Mg Region

NUCLEAR STRUCTURE 22,24,26,28,30,32,34,36,38,40Mg; calculated two-neutron separation energies, deformation parameter, quadrupole moments, rms radii. 34Ne, 42,46Si; calculated deformation energy curves. HFB calculation, Skyrme forces.

doi: 10.1016/S0375-9474(97)00183-8
Citations: PlumX Metrics


1997TE19      Acta Phys.Hung.N.S. 6, 201 (1997)

J.Terasaki, H.Flocard, P.H.Heenen, P.Bonche

Deformation of Nuclei Close to the Two-Neutron Drip Line in Mg Region

NUCLEAR STRUCTURE 20,22,24,26,28,30,32,34,36,38,40Mg; calculated ground-state deformation; deduced quenching of N=28 shell effect. HFB calculations, Skyrme forces.


1996SA26      Phys.Rep. 264, 339 (1996)

F.Sakata, K.Iwasawa, T.Marumori, J.Terasaki

Nonlinear Dynamics and Nuclear Collective Motion

NUCLEAR STRUCTURE 186,196,202Pb; analyzed adiabatic, diabatic potential results. 82Sr; analyzed cranked HF solutions. TDHF approach complex structure discussed.

doi: 10.1016/0370-1573(95)00047-X
Citations: PlumX Metrics


1996TE06      Nucl.Phys. A600, 371 (1996)

J.Terasaki, P.-H.Heenen, H.Flocard, P.Bonche

3D Solution of Hartree-Fock-Bogoliubov Equations for Drip-Line Nuclei

NUCLEAR STRUCTURE 52,54,56,58,60,62,64,66,68,70,72,74,76,78,80,82,84,86,88,90,92,94Ni; calculated two-neutron separation energies. 84Ni; calculated nucleon densities, neutron pairing gap vs radius. 92Ni; calculated potential energy curve, total energy. HFB method, 3D-solution.

doi: 10.1016/0375-9474(96)00036-X
Citations: PlumX Metrics


1995TE02      Phys.Lett. 348B, 320 (1995)

J.Terasaki, F.Sakata, K.Iwasawa

An Approximate Fixed-Configuration Method for Collective Rotational Bands in the Hartree-Fock-Bogoliubov Theory

NUCLEAR STRUCTURE 164Er; calculated levels, ground-, S-band energy vs angular momentum. Hartree-Fock-Bogoliubov theory.

doi: 10.1016/0370-2693(95)00165-H
Citations: PlumX Metrics


1995TE03      Nucl.Phys. A593, 1 (1995)

J.Terasaki, P.-H.Heenen, P.Bonche, J.Dobaczewski, H.Flocard

Superdeformed Rotational Bands with Density Dependent Pairing Interactions

NUCLEAR STRUCTURE 190,192,194Hg, 194Pb; calculated superdeformed bands charge quadrupole moments, nucleon quasi particle routhians, dynamic moments of inertia. 150Gd; calculated dynamic moments of intertia.

doi: 10.1016/0375-9474(95)00316-S
Citations: PlumX Metrics


1994IW03      Phys.Lett. 339B, 1 (1994)

K.Iwasawa, F.Sakata, W.Nazarewicz, T.Marumori, J.Terasaki

Configuration-Constrained Hartree-Fock Method -An Illustrative Example

doi: 10.1016/0370-2693(94)91123-1
Citations: PlumX Metrics


1994IW05      Prog.Theor.Phys.(Kyoto) 92, 1119 (1994)

K.Iwasawa, F.Sakata, Y.Hashimoto, J.Terasaki

New Algorithm for Hartree-Fock Variational Equation

NUCLEAR STRUCTURE 82Sr; calculated single proton level energies. Self-consistent Hartree-Fock, new algorithm.

doi: 10.1143/ptp/92.6.1119
Citations: PlumX Metrics


1992TE05      Prog.Theor.Phys.(Kyoto) 88, 529 (1992)

J.Terasaki

A Systematics of Coupling Structure in the S-Band

NUCLEAR STRUCTURE 162,164,166,168Er; calculated S-band associated quasiparticle level asymptotic quantum numbers; deduced coupling structure systematics. Self-consistent collective coordinate method.

doi: 10.1143/ptp/88.3.529
Citations: PlumX Metrics


1991TE05      Prog.Theor.Phys.(Kyoto) 85, 1235 (1991)

J.Terasaki, T.Marumori, F.Sakata

Microscopic Description of Nuclear Collective Rotation by Means of Self-Consistent Collective Coordinate Method - Occurrence Mechanism of Collective Rotation -

NUCLEAR STRUCTURE 160,162,164,166,168Er; calculated quasiparticle states, rotational band Nilsson orbits components. Nuclear collective rotation, microscopic approach, self-consistent collective coordinate method.

doi: 10.1143/PTP.85.1235
Citations: PlumX Metrics


Back to query form