NSR Query Results


Output year order : Descending
Format : Normal

NSR database version of April 26, 2024.

Search: Author = S.M.Wild

Found 17 matches.

Back to query form



2023LI58      Phys.Rev. C 108, 054905 (2023)

D.Liyanage, O.Surer, M.Plumlee, S.M.Wild, U.Heinz

Bayesian calibration of viscous anisotropic hydrodynamic simulations of heavy-ion collisions

doi: 10.1103/PhysRevC.108.054905
Citations: PlumX Metrics


2022CI08      J.Phys.(London) G49, 120502 (2022)

V.Cirigliano, Z.Davoudi, J.Engel, R.J.Furnstahl, G.Hagen, U.Heinz, H.Hergert, M.Horoi, C.W.Johnson, A.Lovato, E.Mereghetti, W.Nazarewicz, A.Nicholson, T.Papenbrock, S.Pastore, M.Plumlee, D.R.Phillips, P.E.Shanahan, S.R.Stroberg, F.Viens, A.Walker-Loud, K.A.Wendt, S.M.Wild

Towards precise and accurate calculations of neutrinoless double-beta decay

RADIOACTIVITY 48Ca(2β-); calculated neutrinoless nuclear matrix elements using chiral-EFT interactions, EDF, IBM, QRPA, SM-pf, SM-sdpf, SM-MBPT, RSM, QMC+SM, IM-GCM, VS-IMSRG, CCSD, CCSD-T1.

doi: 10.1088/1361-6471/aca03e
Citations: PlumX Metrics


2022SU21      Phys.Rev. C 106, 024607 (2022)

O.Surer, F.M.Nunes, M.Plumlee, S.M.Wild

Uncertainty quantification in breakup reactions

NUCLEAR REACTIONS 208Pb(8B, p7Be), E=80 MeV/nucleon; calculated values and uncertainties for σ(θ) and σ(E), angular distributions. Standard emulation of the reaction by Gaussian processes trained with continuum discretized coupled channel method (CDCC) calculations coupled with Bayesian analysis.

doi: 10.1103/PhysRevC.106.024607
Citations: PlumX Metrics


2021PH05      J.Phys.(London) G48, 072001 (2021)

D.R.Phillips, R.J.Furnstahl, U.Heinz, T.Maiti, W.Nazarewicz, F.M.Nunes, M.Plumlee, M.T.Pratola, S.Pratt, F.G.Viens, S.M.Wild

Get on the BAND Wagon: a Bayesian framework for quantifying model uncertainties in nuclear dynamics

NUCLEAR REACTIONS 208Pb(p, p), E=30 MeV; calculated σ. Comparison with available data.

doi: 10.1088/1361-6471/abf1df
Citations: PlumX Metrics


2021RA07      Phys.Rev. C 103, 035502 (2021)

K.Raghavan, P.Balaprakash, A.Lovato, N.Rocco, S.M.Wild

Machine-learning-based inversion of nuclear responses

NUCLEAR STRUCTURE 4He; calculated response functions characterized by an elastic narrow peak and a quasieleastic (QE) peak, physics-informed neural network (Phys-NN) and maximum entropy (MaxEnt) testing metrics, comparison between the Phys-NN and MaxEnt reconstructions for the one-peak and two-peak datasets, energy-dependent entropy for the Phys-NN and Max-Ent for the one-peak and two-peak datasets; deduced Phys-NN and MaxEnt reconstruction performance. Physics-informed artificial neural network architecture for approximating the inverse of the Laplace transform using realistic, electromagnetic response functions. Relevance to short-range nuclear dynamics and for the correct interpretation of neutrino oscillation experiments.

doi: 10.1103/PhysRevC.103.035502
Citations: PlumX Metrics


2020SC08      J.Phys.(London) G47, 074001 (2020)

N.Schunck, J.O'Neal, M.Grosskopf, E.Lawrence, S.M.Wild

Calibration of energy density functionals with deformed nuclei

doi: 10.1088/1361-6471/ab8745
Citations: PlumX Metrics


2017LO02      Phys.Rev. C 95, 024611 (2017)

A.E.Lovell, F.M.Nunes, J.Sarich, S.M.Wild

Uncertainty quantification for optical model parameters

NUCLEAR REACTIONS 12C(d, d), (d, p), E=11.8 MeV; 90Zr(d, d), (d, p), E=12.0 MeV; 12C(n, n), (n, n'), E=17.29 MeV; 48Ca(n, n), (n, n'), E=7.97 MeV; 54Fe(n, n), (n, n'), E=16.93 MeV; 208Pb(n, n), (n, n'), E=26.0 MeV; analyzed differential σ(θ) data using optical potential method, and two reaction models: coupled-channels Born approximation (CCBA) for elastic- and inelastic-scattering calculations, and distorted-wave Born approximation (DWBA) for elastic scattering and transfer calculations; deduced best fit parameters using uncorrelated and correlated χ2 minimization functions, uncertainty quantification for nuclear theories; concluded that correlated χ2 functions, but with broader confidence bands, provide a more natural and better parameterization of the process.

doi: 10.1103/PhysRevC.95.024611
Citations: PlumX Metrics


2015MC02      Phys.Rev.Lett. 114, 122501 (2015)

J.D.McDonnell, N.Schunck, D.Higdon, J.Sarich, S.M.Wild, W.Nazarewicz

Uncertainty Quantification for Nuclear Density Functional Theory and Information Content of New Measurements

NUCLEAR STRUCTURE 130,132,134Sn, 134,136,138,140Te, 138,140Xe, 142,144,146Ba, 146,148,150Ce, 158,160Sm, 240Pu; calculated theoretical error bars for the masses of the even-even nuclei, two-neutron dripline, fission barrier. Comparison with available data.

doi: 10.1103/PhysRevLett.114.122501
Citations: PlumX Metrics


2015SC01      Nucl.Data Sheets 123, 115 (2015)

N.Schunck, J.D.McDonnell, D.Higdon, J.Sarich, S.Wild

Quantification of Uncertainties in Nuclear Density Functional Theory

NUCLEAR STRUCTURE Ca, Ni, Sn, Pb; calculated uncertainties for proton radii. Nuclear density functional theory.

doi: 10.1016/j.nds.2014.12.020
Citations: PlumX Metrics


2015SC07      J.Phys.(London) G42, 034024 (2015)

N.Schunck, J.D.McDonnell, J.Sarich, S.M.Wild, D.Higdon

Error analysis in nuclear density functional theory

doi: 10.1088/0954-3899/42/3/034024
Citations: PlumX Metrics


2015SC24      Eur.Phys.J. A 51, 169 (2015)

N.Schunck, J.D.McDonnell, D.Higdon, J.Sarich, S.M.Wild

Uncertainty quantification and propagation in nuclear density functional theory

doi: 10.1140/epja/i2015-15169-9
Citations: PlumX Metrics


2014KO13      Phys.Rev. C 89, 054314 (2014)

M.Kortelainen, J.McDonnell, W.Nazarewicz, E.Olsen, P.-G.Reinhard, J.Sarich, N.Schunck, S.M.Wild, D.Davesne, J.Erler, A.Pastore

Nuclear energy density optimization: Shell structure

NUCLEAR STRUCTURE 48Ca, 208Pb; calculated neutron and proton single-particle levels, B(E1) strengths. Z=10-105, N=10-160; calculated binding energies, S(2p), S(2n) for even-even nuclei; deduced deviations from experimental data. 226,228Ra, 228,230,232,234Th, 232,234,236,238,240U, 236,238,240,242,244,246Pu, 242,244,246,248,250Cm, 250,252Cf; calculated inner fission barrier residuals, fission isomer excitation energies, outer fission barriers. Skyrme Hartree-Fock-Bogoliubov theory with POUNDERS optimization algorithm and a new parametrization UNEDF2 of the energy density functional. Comparison with other energy density functionals (UNEDF) parametrizations, and with experimental data.

doi: 10.1103/PhysRevC.89.054314
Citations: PlumX Metrics


2013BO19      Comput.Phys.Commun. 184, 085101 (2013)

S.Bogner, A.Bulgac, J.Carlson, J.Engel, G.Fann, R.J.Furnstahl, S.Gandolfi, G.Hagen, M.Horoi, C.Johnson, M.Kortelainen, E.Lusk, P.Maris, H.Nam, P.Navratil, W.Nazarewicz, E.Ng, G.P.A.Nobre, E.Ormand, T.Papenbrock, J.Pei, S.C.Pieper, S.Quaglioni, K.J.Roche, J.Sarich, N.Schunck, M.Sosonkina, J.Terasaki, I.Thompson, J.P.Vary, S.M.Wild

Computational nuclear quantum many-body problem: The UNEDF project

NUCLEAR REACTIONS 3He(d, p), 7Be(p, γ), E<1MeV; 172Yb, 188Os, 238U(γ, X), E<24 MeV; calculated σ. Comparison with experimental data.

NUCLEAR STRUCTURE 100Zr; calculated quadrupole deformation parameter, radii, neutron separation energy.

doi: 10.1016/j.cpc.2013.05.020
Citations: PlumX Metrics


2013EK01      Phys.Rev.Lett. 110, 192502 (2013)

A.Ekstrom, G.Baardsen, C.Forssen, G.Hagen, M.Hjorth-Jensen, G.R.Jansen, R.Machleidt, W.Nazarewicz, T.Papenbrock, J.Sarich, S.M.Wild

Optimized Chiral Nucleon-Nucleon Interaction at Next-to-Next-to-Leading Order

NUCLEAR STRUCTURE 3H, 3,4He, 10B, 17,22,24O, 40,48,50,52,54,56Ca; calculated energy of the first 2+ state, energy per nucleon for neutron matter, phase shifts. The nucleon-nucleon interaction from chiral effective field theory at next-to-next-to-leading order (NNLO).

doi: 10.1103/PhysRevLett.110.192502
Citations: PlumX Metrics


2012BE03      Phys.Rev. C 85, 014322 (2012)

M.Bertolli, T.Papenbrock, S.M.Wild

Occupation-number-based energy functional for nuclear masses

NUCLEAR STRUCTURE Z=8-110, N=8-160; analyzed binding energies, charge radii using global fits to known masses for 2049 nuclei. Energy density functional based on Hohenberg-Kohn theory with shell-model occupations.

doi: 10.1103/PhysRevC.85.014322
Citations: PlumX Metrics


2012KO06      Phys.Rev. C 85, 024304 (2012)

M.Kortelainen, J.McDonnell, W.Nazarewicz, P.-G.Reinhard, J.Sarich, N.Schunck, M.V.Stoitsov, S.M.Wild

Nuclear energy density optimization: Large deformations

NUCLEAR STRUCTURE 236,238U, 240Pu, 242Cm; calculated energies of fission isomers in UNEDF1 optimization. 192,194Hg, 192,194,196Pb; calculated energies of bandheads in superdeformed nuclei. 208Pb; calculated single particle energies. 236,238U, 238,240,242,244Pu, 242,244,246,248Cm; calculated inner barrier heights, outer barrier heights. N=14-156, Z=10-104; deduced rms deviations from experimental values for binding energy, S(2n), S(2p), three-point odd-even mass difference, rms proton radii for even-even nuclei. Hartree-Fock-Bogoliubov theory, POUNDerS optimization algorithm, UNEDF0 and UNEDF1 parameterizations. Neutron drops. Comparison with experimental data.

doi: 10.1103/PhysRevC.85.024304
Citations: PlumX Metrics


2010KO29      Phys.Rev. C 82, 024313 (2010)

M.Kortelainen, T.Lesinski, J.More, W.Nazarewicz, J.Sarich, N.Schunck, M.V.Stoitsov, S.Wild

Nuclear energy density optimization

NUCLEAR STRUCTURE 48Ca, 208Pb; calculated neutron and proton single-particle energies. 92,94,96,98,100,102,104Zr, 106Zr, 108Zr, 110Zr; calculated deformation energy curves as function of β2 deformation. Z, N>8; calculated S(2n) and nuclear binding energies for 520 even-even nuclei. Nuclear binding energy and proton charge radius data for 28 even-even spherical nuclei (Z=20, N=20-30; Z=28, N=28-36; Z=50, N-58-74; Z=82, N=116-132) and 44 deformed nuclei (Z=64-108, N=88-156) used to optimize the standard Skyrme functional. Hartree-Fock-Bogoliubov theory with optimization of a nuclear energy density of Skyrme type. Comparison with experimental data.

doi: 10.1103/PhysRevC.82.024313
Citations: PlumX Metrics


Back to query form


Note: The following list of authors and aliases matches the search parameter S.M.Wild: , S.M.WILD