NSR Query Results


Output year order : Descending
Format : Normal

NSR database version of April 11, 2024.

Search: Author = M.Kortelainen

Found 57 matches.

Back to query form



2022GE04      Phys.Rev.Lett. 128, 152501 (2022)

S.Geldhof, M.Kortelainen, O.Beliuskina, P.Campbell, L.Caceres, L.Canete, B.Cheal, K.Chrysalidis, C.S.Devlin, R.P.de Groote, A.de Roubin, T.Eronen, Z.Ge, W.Gins, A.Koszorus, S.Kujanpaa, D.Nesterenko, A.Ortiz-Cortes, I.Pohjalainen, I.D.Moore, A.Raggio, M.Reponen, J.Romero, F.Sommer

Impact of Nuclear Deformation and Pairing on the Charge Radii of Palladium Isotopes

NUCLEAR MOMENTS 98,99,100,101,102Pd, 104,105,106Pd, 108,110,112,114,116,118Pd; measured frequencies; deduced isotope shifts and resulting changes in mean-square charge radii, precise relationship between nuclear quadrupole deformation and the nuclear size. Comparison with quadrupole deformation energy calculations.

doi: 10.1103/PhysRevLett.128.152501
Citations: PlumX Metrics

Data from this article have been entered in the XUNDL database. For more information, click here.


2022KO04      Phys.Rev. C 105, L021303 (2022)

M.Kortelainen, Z.Sun, G.Hagen, W.Nazarewicz, T.Papenbrock, P.-G.Reinhard

Universal trend of charge radii of even-even Ca-Zn nuclei

NUCLEAR STRUCTURE 36,38,40,42,44,46,48,50,52,54,56,58,60Ca, 42,44,46,48,50,52,54,56,58,60,62Ti, 44,46,48,50,52,54,56,58,60,62,64Cr, 46,48,50,52,54,56,58,60,62,64,66Fe, 48,50,52,54,56,58,60,62,64,66,68Ni, 60,62,64,66,68,70Zn; calculated ground state energies, charge rms radii. Coupled cluster (CC) and ab-initio density functional theory calculations extended to the open-shell deformed nuclei. Comparison to available data.

doi: 10.1103/PhysRevC.105.L021303
Citations: PlumX Metrics


2022MA04      Phys.Rev.Lett. 128, 022502 (2022)

S.Malbrunot-Ettenauer, S.Kaufmann, S.Bacca, C.Barbieri, J.Billowes, M.L.Bissell, K.Blaum, B.Cheal, T.Duguet, R.F.Garcia Ruiz, W.Gins, C.Gorges, G.Hagen, H.Heylen, J.D.Holt, G.R.Jansen, A.Kanellakopoulos, M.Kortelainen, T.Miyagi, P.Navratil, W.Nazarewicz, R.Neugart, G.Neyens, W.Nortershauser, S.J.Novario, T.Papenbrock, T.Ratajczyk, P.-G.Reinhard, L.V.Rodriguez, R.Sanchez, S.Sailer, A.Schwenk, J.Simonis, V.Soma, S.R.Stroberg, L.Wehner, C.Wraith, L.Xie, Z.Y.Xu, X.F.Yang, D.T.Yordanov

Nuclear Charge Radii of the Nickel Isotopes 58-68, 70Ni

NUCLEAR MOMENTS 58,59,60,61,62,63,64,65,66,67,68Ni, 70Ni; measured frequency-time spectrum; deduced isotope shifts, mean-square charge radii. Comparison with ab initio approaches. Collinear laser spectroscopy beam line COLLAPS, ISOLDE/CERN.

doi: 10.1103/PhysRevLett.128.022502
Citations: PlumX Metrics

Data from this article have been entered in the XUNDL database. For more information, click here.


2021KO08      Nat.Phys. 17, 439 (2021), Erratum Nat.Phys. 17, 539 (2021)

A.Koszorus, X.F.Yang, W.G.Jiang, S.J.Novario, S.W.Bai, J.Billowes, C.L.Binnersley, M.L.Bissell, T.E.Cocolios, B.S.Cooper, R.P.de Groote, A.Ekstrom, K.T.Flanagan, C.Forssen, S.Franchoo, R.F.Garcia Ruiz, F.P.Gustafsson, G.Hagen, G.R.Jansen, A.Kanellakopoulos, M.Kortelainen, W.Nazarewicz, G.Neyens, T.Papenbrock, P.-G.Reinhard, C.M.Ricketts, B.K.Sahoo, A.R.Vernon, S.G.Wilkins

Charge radii of exotic potassium isotopes challenge nuclear theory and the magic character of N = 32

NUCLEAR MOMENTS 36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52K; measured frequencies; deduced hyperfine structure spectra, charge radii, new magic numbers. Comparison with NNLO, HFB calculations.

doi: 10.1038/s41567-020-01136-5
Citations: PlumX Metrics

Data from this article have been entered in the XUNDL database. For more information, click here.


2020BE25      J.Phys.(London) G47, 105101 (2020)

K.Bennaceur, J.Dobaczewski, T.Haverinen, M.Kortelainen

Properties of spherical and deformed nuclei using regularized pseudopotentials in nuclear DFT

NUCLEAR STRUCTURE 100,120,132Sn; analyzed available data; deduced eigenvalues of the Hessian matrices parameters, infinite-nuclear-matter isoscalar effective mass and energies per particle in symmetric, neutron, polarized, and polarized neutron matter as functions of the nuclear density.

doi: 10.1088/1361-6471/ab9493
Citations: PlumX Metrics


2020LI40      Phys.Rev. C 102, 044305 (2020)

T.Li, M.Z.Chen, C.L.Zhang, W.Nazarewicz, M.Kortelainen

Nucleon localization function in rotating nuclei

NUCLEAR STRUCTURE 152Dy; calculated single-particle neutron and proton Routhians as functions of angular frequency using Skyrme interaction SkM* and the cranked Hartree-Fock (CHF), and cranked harmonic oscillator (CHO) methods for the SD band, current, spin, spin-kinetic and spin-current tensor densities for the SD band using CHF method; used the concept of nucleon localization function (NLF) to interpret the results from CHF method for fast rotation in nuclei. Discussed oscillating pattern of the NLF in terms of interference between kinetic-energy and particle densities, and nodal pattern of the NLF in terms of direction of major axis of a rotating nucleus, and aligned angular momentum.

doi: 10.1103/PhysRevC.102.044305
Citations: PlumX Metrics


2019HA39      Acta Phys.Pol. B50, 269 (2019)

T.Haverinen, M.Kortelainen, J.Dobaczewski, K.Bennaceur

Towards a Novel Energy Density Functional for Beyond-mean-field Calculations with Pairing and Deformation

NUCLEAR STRUCTURE Z=8-36; 20,22,24,26,28,30,32,34,36Mg, 100,102,104,106,108,110,112,114,116,118,120,122,124,126,128,130,132,134Sn; calculated binding energies. HFB calculations with optimization procedure of local finite-range pseudopotential up to next-to-leading order by using 10, 12, and 14 harmonic oscilator shells. Comparison to experimental data.

doi: 10.5506/aphyspolb.50.269
Citations: PlumX Metrics


2018DO14      Phys.Rev.Lett. 121, 232501 (2018)

J.Dobaczewski, J.Engel, M.Kortelainen, P.Becker

Correlating Schiff Moments in the Light Actinides with Octupole Moments

NUCLEAR MOMENTS 220,222,224Ra, 221,223,225Ra, 223Fr, 229Pa; analyzed available data on measured intrinsic octupole moments; deduced constrain the intrinsic Schiff moments.

doi: 10.1103/PhysRevLett.121.232501
Citations: PlumX Metrics


2018KO08      Phys.Rev. C 97, 034310 (2018)

M.Konieczka, M.Kortelainen, W.Satula

Gamow-Teller response in the configuration space of a density-functional-theory-rooted no-core configuration-interaction model

RADIOACTIVITY 8He, 8Li, 24Mg, 100Sn(β-); calculated Gamow-Teller (GT) strength distribution, Nilsson configurations, Gamow-Teller sum rule, superallowed Gamow-Teller decays of 100Sn. 8He, 8Li, 8Be, 24Mg, 100Sn, 100In; calculated single-neutron levels, configurations, J, π. Gamow-Teller transitions calculated by no-core configuration-interaction approach based on multireference density functional theory (DFT-NCCI). Comparison with available experimental data.

doi: 10.1103/PhysRevC.97.034310
Citations: PlumX Metrics


2018PE06      Phys.Rev. C 97, 034321 (2018)

K.Petrik, M.Kortelainen

Thouless-Valatin rotational moment of inertia from linear response theory

NUCLEAR STRUCTURE 160,162,164,166,168,170,172Er, 164,166,168,170,172,174Yb, 232,234,236,238,240,242U, 236,238,240,242,244,246Pu; calculated Thouless-Valatin rotational moment of inertia for volume pairing and vanishing pairing options. Comparison with experimental data for rotational bands. 166Er; calculated total current density, and partial induced currents from specific QRPA blocks with and without pairing. Finite-amplitude method (FAM) of the quasiparticle random-phase approximation (QRPA) with Skyrme energy density functional framework and Hartree-Fock-Bogoliubov theory for rotational properties of deformed nuclei.

doi: 10.1103/PhysRevC.97.034321
Citations: PlumX Metrics


2017BE06      J.Phys.(London) G44, 045106 (2017)

K.Bennaceur, A.Idini, J.Dobaczewski, P.Dobaczewski, M.Kortelainen, F.Raimon

Nonlocal energy density functionals for pairing and beyond-mean-field calculations

NUCLEAR STRUCTURE 40,48Ca, 56,78Ni, 100,120,132Sn, 208Pb; calculated partial penalty functions, infinite-nuclear-matter, eigenvalues of the Hessian matrices, propagated errors of the total binding energies, average neutron pairing gaps, and proton rms radii, ground-state energies.

doi: 10.1088/1361-6471/aa5fd7
Citations: PlumX Metrics


2017HA09      J.Phys.(London) G44, 044008 (2017)

R.Haverinen, M.Kortelainen

Uncertainty propagation within the UNEDF models

NUCLEAR STRUCTURE Gd, Dy, Sn; calculated binding energies, two-neutron separation energies, deformation parameters, quadrupole moments, rms radii and their uncertainties; deduced error budget. Comparison with available data.

doi: 10.1088/1361-6471/aa5e07
Citations: PlumX Metrics


2017OI01      Phys.Rev. C 96, 044327 (2017)

T.Oishi, M.Kortelainen, A.Pastore

Dependence of two-proton radioactivity on nuclear pairing models

RADIOACTIVITY 6Be(2p); 6Be; calculated density distribution of the initial 2p state obtained with the surface SDDC pairing interaction, 2p-decay width, time-dependent 2p-density distribution, time-dependent 2p-density distribution of a decaying state, Time-invariant discrete energy distribution, radial strength for three SDDC pairing potentials. Schematic density-dependent contact (SDDC) pairing three-body (α+p+p) model.

doi: 10.1103/PhysRevC.96.044327
Citations: PlumX Metrics


2017TO03      Eur.Phys.J. A 53, 33 (2017)

S.V.Tolokonnikov, I.N.Borzov, M.Kortelainen, Yu.S.Lutostansky, E.E.Saperstein

Alpha-decay energies of superheavy nuclei for the Fayans functional

NUCLEAR STRUCTURE 287,288Mc, 291Lv, 293,294Ts, 294Og; calculated Qα values for α-decay chains starting from given nuclei using self-consistent mean-field approach with Fayans FaNDF0 functional and two Skyrme functionals and also using MMM (Macro-Micro Method), T1/2 using semi-phenomenological formulas. Compared with available data and systematics.

doi: 10.1140/epja/i2017-12220-y
Citations: PlumX Metrics


2017WA30      Phys.Rev. C 96, 031301 (2017)

K.Wang, M.Kortelainen, J.C.Pei

Probing surface quantum flows in deformed pygmy dipole modes

NUCLEAR STRUCTURE 40Mg; calculated transition strength functions of isovector dipole resonances, transition density distributions of pygmy and giant dipole resonances, neutron transition current density of pygmy dipole resonance (PDR), transition current density for neutron K=0 prolate GDR, neutron current density for K=1 oblate GDR, and proton current density for K=0 prolate PDR and K=0 prolate GDR; deduced surface flow patterns become more complicated as excitation energies increase. Fully self-consistent continuum finite-amplitude quasiparticle random phase approximation (FAM-QRPA) calculation in a large deformed spatial mesh.

doi: 10.1103/PhysRevC.96.031301
Citations: PlumX Metrics


2016OI01      Phys.Rev. C 93, 034329 (2016)

T.Oishi, M.Kortelainen, N.Hinohara

Finite amplitude method applied to the giant dipole resonance in heavy rare-earth nuclei

NUCLEAR STRUCTURE 152,154,156,158,160,162,164Gd, 156,160,162,164,166,168Dy, 162,164,166,168,170,172,174Er, 168,170,172,174,176,178Yb, 174,176,178,180,182,184Hf, 180,182,184,186,188,190W; calculated axial deformation β, pairing gaps for neutrons and protons, energy-weighted sum rule, and its enhancement factor from the Thomas-Reiche-Kuhn (TRK) sum rule for ground states. Hartree-Fock-Bogoliubov (HFB) calculation with Skyrme EDF framework (SkM* parameterization).

NUCLEAR REACTIONS 144,145Sm, 152,154,156,158,160,162,164Gd, 156,160,162,164,166,168Dy, 162,164,166,168,170,172,174Er, 168,170,172,174,176,178Yb, 174,176,178,180,182,184Hf, 180,182,184,186,188,190W(γ, X), E not given; calculated E1 photoabsorption σ as function of excitation energy, mean giant dipole resonance (GDR) frequencies and widths within a parallelized finite amplitude method, and quasiparticle random phase approximation (FAM-QRPA) scheme, with the Skyrme energy density functional in the nuclear density functional theory (DFT) applied for ground states and FAM-QRPA for excitations. Comparison with experimental data. Discussed role of role of the Thomas-Reiche-Kuhn (TRK) sum rule enhancement factor, connected to the isovector effective mass.

doi: 10.1103/PhysRevC.93.034329
Citations: PlumX Metrics


2016PI08      Phys.Rev. D 93, 095012 (2016)

P.Pirinen, P.C.Srivastava, J.Suhonen, M.Kortelainen

Shell-model study on event rates of lightest supersymmetric particles scattering off 83Kr and 125Te

NUCLEAR STRUCTURE 83Kr, 125Te; calculated energy levels, J, π, B(E2), electric quadrupole and magnetic moments. Comparison with experimental data.

doi: 10.1103/PhysRevD.93.095012
Citations: PlumX Metrics


2016VE05      J.Phys.(London) G43, 115002 (2016)

J.D.Vergados, F.T.Avignone, III, M.Kortelainen, P.Pirinen, P.C.Srivastava, J.Suhonen, A.W.Thomas

Inelastic WIMP-nucleus scattering to the first excited state in 125Te

NUCLEAR STRUCTURE 125Te; calculated energy levels, J, π, B(E2), B(M1). Comparison with available data.

doi: 10.1088/0954-3899/43/11/115002
Citations: PlumX Metrics


2015HI03      Phys.Rev. C 91, 044323 (2015)

No.Hinohara, M.Kortelainen, W.Nazarewicz, E.Olsen

Complex-energy approach to sum rules within nuclear density functional theory

NUCLEAR STRUCTURE 24Mg; calculated energy weighted Kπ=0+ sum rule for the oblate minimum. 142,144,146,148,150,152Nd, 144,146,148,150,152,154Sm; calculated isoscalar monopole and quadrupole energy-weighted Kπ=0+ sum rules, quadrupole deformation β, neutron and proton pairing gaps, total rms radius. Complex-energy finite-amplitude method (FAM) based on quasiparticle random-phase approximation (QRPA), and Hartree-Fock-Bogoliubov (HFB) techniques.

doi: 10.1103/PhysRevC.91.044323
Citations: PlumX Metrics


2015KO18      Phys.Rev. C 92, 051302 (2015)

M.Kortelainen, N.Hinohara, W.Nazarewicz

Multipole modes in deformed nuclei within the finite amplitude method

NUCLEAR STRUCTURE 154Sm; calculated levels, B(E3). 240Pu; calculated isoscalar and isovector quadrupole and isovector octupole strength of giant resonances. Finite amplitude method (FAM) quasiparticle random phase approximation (QRPA).

doi: 10.1103/PhysRevC.92.051302
Citations: PlumX Metrics


2015TO07      J.Phys.(London) G42, 075102 (2015)

S.V.Tolokonnikov, I.N.Borzov, M.Kortelainen, Y.S.Lutostansky, E.E.Saperstein

First applications of the Fayans functional to deformed nuclei

NUCLEAR STRUCTURE 220,222,224,226,228,230,232,234,236,238,240,242,244U, 172,174,176,178,180,182,184,186,188,190,192,194,196,198,200,202,204,206,208,210,212,214Pb ; calculated two-neutron separation and deformation energies, quadrupole deformation parameter. Comparison with available data.

doi: 10.1088/0954-3899/42/7/075102
Citations: PlumX Metrics


2015VE08      Phys.Rev. D 92, 015015 (2015)

J.D.Vergados, F.T.Avignone, III, P.Pirinen, P.C.Srivastava, M.Kortelainen, J.Suhonen

Theoretical direct WIMP detection rates for transitions to the first excited state in 83Kr

NUCLEAR STRUCTURE 83Kr; calculated energy levels, J, π, B(E2), B(M1), electric quadrupole moments. Comparison with available data.

doi: 10.1103/PhysRevD.92.015015
Citations: PlumX Metrics


2015VO05      Phys.Rev. C 91, 044307 (2015)

A.Voss, F.Buchinger, B.Cheal, J.E.Crawford, J.Dilling, M.Kortelainen, A.A.Kwiatkowski, A.Leary, C.D.P.Levy, F.Mooshammer, M.L.Ojeda, M.R.Pearson, T.J.Procter, W.Al Tamimi

Nuclear moments and charge radii of neutron-deficient francium isotopes and isomers

NUCLEAR MOMENTS 204,204m,205,206,206m,208Fr; measured optical fluorescence and hyperfine structure spectra using Collinear laser fluorescence spectroscopy technique at TRIUMF-ISAC facility; deduced spins, isotope shifts, hyperfine coupling constants, magnetic moments, charge radii, spectroscopic electric quadrupole moments, two isomeric states in 206Fr. Comparison with previous experimental results, and with theoretical calculations within the energy density functional (EDF) framework using Skyrme parametrization UNEDF0 and HFBTHO computer code for A=204-213 Fr isotopes. Activities of Fr produced in U(p, X), E=500 MeV reaction.

doi: 10.1103/PhysRevC.91.044307
Citations: PlumX Metrics


2014KO13      Phys.Rev. C 89, 054314 (2014)

M.Kortelainen, J.McDonnell, W.Nazarewicz, E.Olsen, P.-G.Reinhard, J.Sarich, N.Schunck, S.M.Wild, D.Davesne, J.Erler, A.Pastore

Nuclear energy density optimization: Shell structure

NUCLEAR STRUCTURE 48Ca, 208Pb; calculated neutron and proton single-particle levels, B(E1) strengths. Z=10-105, N=10-160; calculated binding energies, S(2p), S(2n) for even-even nuclei; deduced deviations from experimental data. 226,228Ra, 228,230,232,234Th, 232,234,236,238,240U, 236,238,240,242,244,246Pu, 242,244,246,248,250Cm, 250,252Cf; calculated inner fission barrier residuals, fission isomer excitation energies, outer fission barriers. Skyrme Hartree-Fock-Bogoliubov theory with POUNDERS optimization algorithm and a new parametrization UNEDF2 of the energy density functional. Comparison with other energy density functionals (UNEDF) parametrizations, and with experimental data.

doi: 10.1103/PhysRevC.89.054314
Citations: PlumX Metrics


2014PE19      Phys.Rev. C 90, 051304 (2014)

J.C.Pei, M.Kortelainen, Y.N.Zhang, F.R.Xu

Emergent soft monopole modes in weakly bound deformed nuclei

NUCLEAR STRUCTURE 100Zr, 38,40,42,44Mg; calculated isoscalar monopole strengths using finite amplitude method for the quasiparticle random-phase approximation (FAM-QRPA) based on HFB-AX and HFBTHO codes for 100Zr and based on HFB-AX using the SLy4 and SkM* interactions for Mg isotopes. Evidence of enhanced soft monopole strengths and collectivity.

doi: 10.1103/PhysRevC.90.051304
Citations: PlumX Metrics


2014WA27      Phys.Rev. C 90, 014312 (2014)

X.B.Wang, J.Dobaczewski, M.Kortelainen, L.F.Yu, M.V.Stoitsov

Lipkin method of particle-number restoration to higher orders

NUCLEAR STRUCTURE 100,102,104,106,108,110,112,114,116,118,120,122,124,126,128,130,132,134,136,138,140Sn, 182,184,186,188,190,192,194,196,198,200,202,204,206,208,210,212,214,216,218,220,222Pb; calculated variation-after-projection (VAP) energies and energy kernels for open shells in Sn and Pb nuclei using Lipkin, Lipkin-Nogami (LN), projected LN methods in the framework of superfluid nuclear energy-density functional theory (DFT). Derived method of approximate particle-number symmetry restoration. 124Xe; calculated reduced energy kernel in two dimensions, as a function of neutron and proton gauge angles.

doi: 10.1103/PhysRevC.90.014312
Citations: PlumX Metrics


2013BO19      Comput.Phys.Commun. 184, 085101 (2013)

S.Bogner, A.Bulgac, J.Carlson, J.Engel, G.Fann, R.J.Furnstahl, S.Gandolfi, G.Hagen, M.Horoi, C.Johnson, M.Kortelainen, E.Lusk, P.Maris, H.Nam, P.Navratil, W.Nazarewicz, E.Ng, G.P.A.Nobre, E.Ormand, T.Papenbrock, J.Pei, S.C.Pieper, S.Quaglioni, K.J.Roche, J.Sarich, N.Schunck, M.Sosonkina, J.Terasaki, I.Thompson, J.P.Vary, S.M.Wild

Computational nuclear quantum many-body problem: The UNEDF project

NUCLEAR REACTIONS 3He(d, p), 7Be(p, γ), E<1MeV; 172Yb, 188Os, 238U(γ, X), E<24 MeV; calculated σ. Comparison with experimental data.

NUCLEAR STRUCTURE 100Zr; calculated quadrupole deformation parameter, radii, neutron separation energy.

doi: 10.1016/j.cpc.2013.05.020
Citations: PlumX Metrics


2013GA12      Phys.Rev. C 87, 034324 (2013)

Y.Gao, J.Dobaczewski, M.Kortelainen, J.Toivanen, D.Tarpanov

Propagation of uncertainties in the Skyrme energy-density-functional model

NUCLEAR STRUCTURE Z=20, 28, 50, 82, N=20, 28, 50, 82, 126; calculated standard uncertainties in binding energies, S(2n), S(2p), neutron and proton rms radii. Skyrme energy-density-functional (UNEDF0-EDF) model.

doi: 10.1103/PhysRevC.87.034324
Citations: PlumX Metrics


2013HI05      Phys.Rev. C 87, 064309 (2013)

N.Hinohara, M.Kortelainen, W.Nazarewicz

Low-energy collective modes of deformed superfluid nuclei within the finite-amplitude method

NUCLEAR STRUCTURE 24Mg; calculated low-lying QRPA energies of K=0 states, isoscalar and isovector monopole strengths. 166,168,172Yb, 170Er; calculated FAM-QRPA energies, B(E2), isoscalar and isovector quadrupole strength for low-lying K=0 states. Superfluid nuclear density functional theory with Skyrme energy density functionals, the FAM-QRPA approach, and the conventional matrix formulation of the QRPA.

doi: 10.1103/PhysRevC.87.064309
Citations: PlumX Metrics


2013KO22      Phys.Rev. C 88, 031305 (2013)

M.Kortelainen, J.Erler, W.Nazarewicz, N.Birge, Y.Gao, E.Olsen

Neutron-skin uncertainties of Skyrme energy density functionals

NUCLEAR STRUCTURE Z<120, A<400; analyzed systematic and statistical uncertainties in theoretical neutron-skin thickness predicted by various Skyrme EDF models. Statistical covariance technique.

doi: 10.1103/PhysRevC.88.031305
Citations: PlumX Metrics


2012ER06      Nature(London) 486, 509 (2012)

J.Erler, N.Birge, M.Kortelainen, W.Nazarewicz, E.Olsen, A.M.Perhac, M.Stoitsov

The limits of the nuclear landscape

NUCLEAR STRUCTURE Z=1-120; calculated neutron and proton drip lines, two-neutron separation energies. 140,148,156,164Er; deduced two-neutron dripline patterns. UNEDF, ab initio and other methods, comparison with available data.

doi: 10.1038/nature11188
Citations: PlumX Metrics


2012HA25      Phys.Rev.Lett. 109, 032501 (2012)

J.Hakala, J.Dobaczewski, D.Gorelov, T.Eronen, A.Jokinen, A.Kankainen, V.S.Kolhinen, M.Kortelainen, I.D.Moore, H.Penttila, S.Rinta-Antila, J.Rissanen, A.Saastamoinen, V.Sonnenschein, J.Aysto

Precision Mass Measurements beyond 132Sn: Anomalous Behavior of Odd-Even Staggering of Binding Energies

ATOMIC MASSES 121,122,123,124,125,126,127,128Cd, 129,131In, 130,131,132,133,134,135Sn, 131,132,133,134,135,135Sb, 132,133,134,135,136,137,138,139,140Te; measured cyclotron frequency ratios; deduced masses. JYFLTRAP Penning trap, comparison with available data.

doi: 10.1103/PhysRevLett.109.032501
Citations: PlumX Metrics


2012KO06      Phys.Rev. C 85, 024304 (2012)

M.Kortelainen, J.McDonnell, W.Nazarewicz, P.-G.Reinhard, J.Sarich, N.Schunck, M.V.Stoitsov, S.M.Wild

Nuclear energy density optimization: Large deformations

NUCLEAR STRUCTURE 236,238U, 240Pu, 242Cm; calculated energies of fission isomers in UNEDF1 optimization. 192,194Hg, 192,194,196Pb; calculated energies of bandheads in superdeformed nuclei. 208Pb; calculated single particle energies. 236,238U, 238,240,242,244Pu, 242,244,246,248Cm; calculated inner barrier heights, outer barrier heights. N=14-156, Z=10-104; deduced rms deviations from experimental values for binding energy, S(2n), S(2p), three-point odd-even mass difference, rms proton radii for even-even nuclei. Hartree-Fock-Bogoliubov theory, POUNDerS optimization algorithm, UNEDF0 and UNEDF1 parameterizations. Neutron drops. Comparison with experimental data.

doi: 10.1103/PhysRevC.85.024304
Citations: PlumX Metrics


2011BO22      Phys.Rev. C 84, 044306 (2011)

S.K.Bogner, R.J.Furnstahl, H.Hergert, M.Kortelainen, P.Maris, M.Stoitsov, J.P.Vary

Testing the density matrix expansion against ab initio calculations of trapped neutron drops

doi: 10.1103/PhysRevC.84.044306
Citations: PlumX Metrics


2011ST20      Phys.Rev. C 84, 041305 (2011)

M.Stoitsov, M.Kortelainen, T.Nakatsukasa, C.Losa, W.Nazarewicz

Monopole strength function of deformed superfluid nuclei

NUCLEAR STRUCTURE 24Mg, 100Zr, 240Pu; calculated isoscalar and isovector monopole strengths, strength functions. Finite-amplitude method (FAM) in nuclear density functional theory with quasiparticle random-phase approximation (QRPA).

doi: 10.1103/PhysRevC.84.041305
Citations: PlumX Metrics


2010KO15      Phys.Lett. B 684, 17 (2010)

V.S.Kolhinen, V.-V.Elomaa, T.Eronen, J.Hakala, A.Jokinen, M.Kortelainen, J.Suhonen, J.Aysto

Accurate Q value for the 74Se double-electron-capture decay

ATOMIC MASSES 74Ge, 74Se; measured masses using JYFLTRAP penning trap; deduced Q-value for neutrino-less 2EC decay.

RADIOACTIVITY 74Se(2EC); deduced Q-value for neutrino-less 2EC decay from atomic mass measurements; calculated T1/2 and nuclear matrix elements using QRPA wave functions in a multiple-commutator model.

doi: 10.1016/j.physletb.2009.12.052
Citations: PlumX Metrics


2010KO22      Phys.Rev. C 82, 011304 (2010)

M.Kortelainen, R.J.Furnstahl, W.Nazarewicz, M.V.Stoitsov

Natural units for nuclear energy density functional theory

doi: 10.1103/PhysRevC.82.011304
Citations: PlumX Metrics


2010KO29      Phys.Rev. C 82, 024313 (2010)

M.Kortelainen, T.Lesinski, J.More, W.Nazarewicz, J.Sarich, N.Schunck, M.V.Stoitsov, S.Wild

Nuclear energy density optimization

NUCLEAR STRUCTURE 48Ca, 208Pb; calculated neutron and proton single-particle energies. 92,94,96,98,100,102,104Zr, 106Zr, 108Zr, 110Zr; calculated deformation energy curves as function of β2 deformation. Z, N>8; calculated S(2n) and nuclear binding energies for 520 even-even nuclei. Nuclear binding energy and proton charge radius data for 28 even-even spherical nuclei (Z=20, N=20-30; Z=28, N=28-36; Z=50, N-58-74; Z=82, N=116-132) and 44 deformed nuclei (Z=64-108, N=88-156) used to optimize the standard Skyrme functional. Hartree-Fock-Bogoliubov theory with optimization of a nuclear energy density of Skyrme type. Comparison with experimental data.

doi: 10.1103/PhysRevC.82.024313
Citations: PlumX Metrics


2010ST12      Phys.Rev. C 82, 054307 (2010)

M.Stoitsov, M.Kortelainen, S.K.Bogner, T.Duguet, R.J.Furnstahl, B.Gebremariam, N.Schunck

Microscopically based energy density functionals for nuclei using the density matrix expansion: Implementation and pre-optimization

NUCLEAR STRUCTURE 40Ca, 208Pb; calculated kinetic energies for neutrons and protons, surface, volume and total energies, single-particle neutron and proton energies. 54,56,58,60,62,64,66Ni, 68Ni, 70,72,74,76,78,80,82,84,86,88,90,92Ni; calculated two-neutron separation energies, neutron rms radii, and average neutron pairing gaps. 100Zr; calculated deformation energy. 40,42,44,46,48Ca; calculated proton rms radii. Energy density functionals SLy4' and density matrix expansion (DME) in LO, NLO and N2LO.

doi: 10.1103/PhysRevC.82.054307
Citations: PlumX Metrics


2009TO03      Phys.Rev. C 79, 044302 (2009)

P.Toivanen, M.Kortelainen, J.Suhonen, J.Toivanen

Large-scale shell-model calculations of elastic and inelastic scattering rates of lightest supersymmetric particles (LSP) on 127I, 129Xe, 131Xe, and 133Cs nuclei

NUCLEAR STRUCTURE 127I, 129,131Xe, 133Cs; calculated level energies, magnetic moments, B(M1), spin structure functions and nuclear form factors for elastic and inelastic scattering of lightest supersymmetric particles (LSP) using shell model calculations. Comparisons with experimental data.

doi: 10.1103/PhysRevC.79.044302
Citations: PlumX Metrics


2008CA23      Phys.Rev. C 78, 044326 (2008), Erratum Phys.Rev. C 81, 029904 (2010)

B.G.Carlsson, J.Dobaczewski, M.Kortelainen

Local nuclear energy density functional at next-to-next-to-next-to-leading order

doi: 10.1103/PhysRevC.78.044326
Citations: PlumX Metrics


2008KO09      Phys.Rev. C 77, 064307 (2008)

M.Kortelainen, J.Dobaczewski, K.Mizuyama, J.Toivanen

Dependence of single-particle energies on coupling constants of the nuclear energy density functional

NUCLEAR STRUCTURE 16O, 40,48Ca, 48,56Ni, 100,132Sn, 208Pb; calculated single particle levels, regression coefficients, neutron densities, coupling constants. Energy density functional methods, Skyrme functionals.

doi: 10.1103/PhysRevC.77.064307
Citations: PlumX Metrics


2008SU05      Int.J.Mod.Phys. E17, 1 (2008)

J.Suhonen, M.Kortelainen

Nuclear matrix elements of double beta decay

RADIOACTIVITY 76Ge, 82Se, 96Zr, 100Mo, 116Cd, 128,130Te, 136Xe(2β-); calculated nuclear matrix elements and half-lives using the QRPA formalism. Comparison with experimental data.

doi: 10.1142/S0218301308009495
Citations: PlumX Metrics


2008TO11      Phys.Rev. C 78, 034306 (2008)

J.Toivanen, J.Dobaczewski, M.Kortelainen, K.Mizuyama

Error analysis of nuclear mass fits

doi: 10.1103/PhysRevC.78.034306
Citations: PlumX Metrics


2007KO34      Phys.Lett. B 647, 128 (2007)

M.Kortelainen, O.Civitarese, J.Suhonen, J.Toivanen

Short-range correlations and neutrinoless double beta decay

RADIOACTIVITY 48Ca, 76Ge(2β-); calculated multipole and total 0ν2β-decay matrix elements. Shell model and quasi-particle RPA.

doi: 10.1016/j.physletb.2007.01.054
Citations: PlumX Metrics


2007KO39      Phys.Rev. C 75, 051303 (2007)

M.Kortelainen, J.Suhonen

Improved short-range correlations and 0νββ nuclear matrix elements of 76Ge and 82Se

NUCLEAR STRUCTURE 76Ge, 82Se; calculated nuclear matrix elements for neutrinoless double beta decay for the light neutrino exchange mechanism using realistic two-body forces within the proton-neutron QRPA.

doi: 10.1103/PhysRevC.75.051303
Citations: PlumX Metrics


2007KO52      Phys.Rev. C 76, 024315 (2007)

M.Kortelainen, J.Suhonen

Nuclear matrix elements of 0νββ decay with improved short-range correlations

NUCLEAR STRUCTURE 96Zr, 100Mo, 116Cd, 128Te, 130Te, 136Xe; calculated ββ-decay matrix elements and half lives using proton-neutron QRPA.

doi: 10.1103/PhysRevC.76.024315
Citations: PlumX Metrics


2006KO20      Czech.J.Phys. 56, 467 (2006)

M.Kortelainen, J.Suhonen, J.Toivanen, T.S.Kosmas

Theoretical LSP detection rates for dark-matter detectors

NUCLEAR STRUCTURE 23Na, 71Ga, 73Ge, 127I; calculated static spin matrix elements, detection rates for lightest supersymmetric particle. Shell model.

doi: 10.1007/s10582-006-0110-x
Citations: PlumX Metrics


2006SU10      Czech.J.Phys. 56, 519 (2006)

J.Suhonen, M.Kortelainen

Muon-capture rates and their relation with the double-beta decay

NUCLEAR REACTIONS 46Ti, 76Se(μ-, ν), E at rest; analyzed ordinary muon capture rates, strength distributions, parameter dependence. Implications for 2β-decay matrix elements discussed.

doi: 10.1007/s10582-006-0116-4
Citations: PlumX Metrics


2005SU01      Nucl.Phys. B(Proc.Supp.) S138, 227 (2005)

J.Suhonen, M.Kortelainen

Analysis of the 2νββ decay and muon capture reactions for the mass A = 46 and A = 48 nuclei using the nuclear shell model

RADIOACTIVITY 46,48Ca(2β-); calculated 2ν2β-decay matrix elements, T1/2.

NUCLEAR REACTIONS 46,48Ti(μ-, ν), E not given; calculated ordinary muon capture rates.

doi: 10.1016/j.nuclphysbps.2004.11.055
Citations: PlumX Metrics


2004HO15      Phys.Lett. B 584, 31 (2004)

E.Holmlund, M.Kortelainen, T.S.Kosmas, J.Suhonen, J.Toivanen

Microscopic calculation of the LSP detection rates for the 71Ga, 73Ge and 127I dark-matter detectors

NUCLEAR STRUCTURE 71Ga, 73Ge, 127I; calculated levels, J, π, μ, supersymmetric particle scattering cross sections. Implications for dark matter search discussed.

doi: 10.1016/j.physletb.2004.01.045
Citations: PlumX Metrics


2004HO16      Yad.Fiz. 67, 1220 (2004); Phys.Atomic Nuclei 67, 1198 (2004)

E.Holmlund, M.Kortelainen, T.S.Kosmas, J.Suhonen, J.Toivanen

Theoretical LSP Detection Rates for 71Ga, 73Ge, and 127I Dark-Matter Detectors

NUCLEAR STRUCTURE 71Ga, 73Ge, 127I; calculated interaction rates with light supersymmetric particles. Microscopic quasiparticle-phonon model.

doi: 10.1134/1.1772459
Citations: PlumX Metrics


2004KO39      Yad.Fiz. 67, 1224 (2004); Phys.Atomic Nuclei 67, 1202 (2004)

M.Kortelainen, J.Suhonen

Analysis of the 2νββ Decay and Muon-Capture Reactions for the Mass A = 46 and A = 48 Nuclei Using the Nuclear Shell Model

RADIOACTIVITY 46,48Ca(2β-); calculated 2ν-accompanied 2β decay matrix elements, T1/2.

NUCLEAR STRUCTURE 46,48Ti levels calculated ordinary muon capture rates.

doi: 10.1134/1.1772460
Citations: PlumX Metrics


2004KO62      J.Phys.(London) G30, 2003 (2004)

M.Kortelainen, J.Suhonen

Nuclear muon capture as a powerful probe of double-beta decays in light nuclei

NUCLEAR STRUCTURE 36Ar, 46,48Ca, 50Cr; calculated levels, J, π, ordinary muon capture rates, related matrix elements.

RADIOACTIVITY 46,48Ca(2β-); 36Ar, 50Cr(2EC); calculated 2ν-accompanied 2β-decay T1/2.

doi: 10.1088/0954-3899/30/12/017
Citations: PlumX Metrics


2003KO02      Nucl.Phys. A713, 501 (2003)

M.Kortelainen, J.Suhonen

Microscopic study of muon-capture transitions in nuclei involved in double-beta-decay processes

NUCLEAR REACTIONS 76Se, 82Kr, 100Ru, 106,110Cd, 116Sn, 128Xe, 136Ce(μ-, ν), E at rest; calculated total and partial muon capture rates, strength distributions. Proton-neutron quasiparticle RPA. Implications for 2β-decay studies discussed.

doi: 10.1016/S0375-9474(02)01303-9
Citations: PlumX Metrics


2002KO50      Europhys.Lett. 58, 666 (2002)

M.Kortelainen, J.Suhonen

Ordinary muon capture as a probe of virtual transitions of ββ decay

NUCLEAR REACTIONS 76Se, 106Cd(μ-, X), E not given; calculated partial and total ordinary muon capture rates. Implications for ββ decay discussed.

doi: 10.1209/epl/i2002-00401-5
Citations: PlumX Metrics


2000KO06      J.Phys.(London) G26, L33 (2000)

M.Kortelainen, M.Aunola, T.Siiskonen, J.Suhonen

Mean-Field Effects on Muon-Capture Observables

NUCLEAR REACTIONS 12C, 20Ne, 23Na, 28Si, 32S(μ, X), E at rest; calculated muon capture rates, pseudoscalar coupling. Potential models compared, comparison with experimental values.

doi: 10.1088/0954-3899/26/2/103
Citations: PlumX Metrics


Back to query form