NSR Query Results


Output year order : Descending
Format : Normal

NSR database version of April 27, 2024.

Search: Author = E.Olsen

Found 15 matches.

Back to query form



2021SC16      Eur.Phys.J. A 57, 333 (2021)

G.Scamps, S.Goriely, E.Olsen, M.Bender, W.Ryssens

Skyrme-Hartree-Fock-Bogoliubov mass models on a 3D mesh: effect of triaxial shape

doi: 10.1140/epja/s10050-021-00642-1
Citations: PlumX Metrics


2020CA18      Phys.Rev. C 102, 024311 (2020)

Y.Cao, S.E.Agbemava, A.V.Afanasjev, W.Nazarewicz, E.Olsen

Landscape of pear-shaped even-even nuclei

NUCLEAR STRUCTURE Z=40-100, N=40-200; calculated ground state octupole deformations β3 and octupole deformation energies of even-even nuclei in the (Z, N) plane using the Skyrme energy density functionals (SEDFs): UNEDF0, UNEDF1, UNEDF2, SLy4, and SV-min. 80Zr, 112,146Ba, 224Ra, 286Th; calculated Single-particle energy splitting between the unusual-parity intruder shell and the normal-parity shell using (SEDFs): UNEDF0, UNEDF1, UNEDF2, SLy4, SV-min, DD-ME2, NL3*, DD-PC1 and PC-PK1. 212,214,216,218,220,222,224,226,228,230Rn, 214,216,218,220,222,224,226,228,230,232Ra, 216,218,220,222,224,226,228,230,232,234Th, 216,218,220,222,224,226,228,230,232,234U, 138,140,142,144,146,148,150,152Ba, 140,142,144,146,148,150,152,154Ce, 142,144,146,148,150,152,154,156Nd; calculated deformation parameters β2, β3, and octupole deformation energies using the Skyrme energy density functionals models. 112,114,144,146,148Ba, 144,146,148Ce, 146,148,196,198Nd, 150,194,196,198Sm, 196,198,200Gd, 198,200,202Dy, 200,202Er, 218,220,222,224,278,280,282Rn, 218,220,222,224,226,228,280,282,284,286,288Ra, 220,222,224,226,228,282,284,286,288,290Th, 222,224,226,228,230,282,284,286,288,290U, 224,226,228,230,232,284,286,288,290,292Pu, 224,226,228,230,284,286,288,290,292,294Cm, 226,228,230,284,286,288,290,292,294,296Cf, 226,228,230,232,284,286,288,290,292,294,296,298Fm, 230,286,288,290,292,294,296,298No, 288,290,292,294,296,300Rf, 290,292,294Sg; calculated β3 deformation parameter, octupole deformation energies, proton moments Q20 and Q30 for octupole-deformed nuclei obtained in five Skyrme energy density functionals, and four covariant energy density functionals. Comparison between Skyrme and covariant models, and with relevant experimental data. See also supplemental material.

doi: 10.1103/PhysRevC.102.024311
Citations: PlumX Metrics


2020NE02      Phys.Rev. C 101, 014319 (2020)

L.Neufcourt, Y.Cao, S.Giuliani, W.Nazarewicz, E.Olsen, O.B.Tarasov

Beyond the proton drip line: Bayesian analysis of proton-emitting nuclei

RADIOACTIVITY 19Mg, 45Fe, 48Ni, 54Zn, 67Kr(2p); calculated Q(2p) using eleven global mass models: Skyrme models SkM*, SkP, SLy4, SV-min, UNEDF0, UNEDF1, UNEDF2, BCPM and D1M, FRDM-2012 and HFB-24, and Bayesian model averaging (BMA) results: BMA-0, BMA-I, BMA-II, BMA-III, and comparing with experimental data from AME2016 and later literature. Z=17-82; calculated nuclear binding-energy, and probability of proton decay, relative to the neutron number of the lightest proton-bound isotope with known experimental S(p) or S(2p), in the proton-rich region using BMA-I and BMA-II model averaging methods. 25,26,27S, 29,30,31Ar, 33,34,35Ca, 37,38,39Ti, 40,41,42,43Cr, 44,45,46Fe, 47,48,49,50Ni, 52,53,54,55Zn, 56,57,58,59Ge, 61,62,63,64Se, 64,65,66,67,68Kr, 68,69,70,71,72Sr, 72,73,74,75,76Zr, 76,77,78,79,80Mo, 80,81,82,83,84Ru, 83,84,85,86,87,88Pd, 87,88,89,90,91Cd, 91,92,93,94,95Sn, 100,101,102,103Te, 104,105,106,107Xe, 108,109,110,111,112Ba, 111,112,113,114,115,116Ce, 115,116,117,118,119Nd, 119,120,121,122,123,124Sm, 123,124,125,126,127,128,129Gd, 128,129,130,131,132,133,134Dy, 131,132,133,134,135,136,137Er, 135,136,137,138,139,140,141,142Yb, 141,142,143,144,145,146,147Hf, 145,146,147,148,149,150W, 150,151,152,153,154,155Os, 152,153,154,155,156,157,158Pt, 156,157,158,159,160,161,162Hg(2p); calculated Q(2p) and half-lives using BMA-1 method. 30Ar, 34Ca, 39Ti, 42Cr, 58Ge, 62Se, 66Kr, 70Sr, 74Zr, 78Mo, 82Ru, 86Pd, 90Cd, 103Te; predicted as most promising 2p emitters. 131,132Dy, 134,135Er, 144,145Hf; predicted as excellent candidates for the sequential emission of two protons. Bayesian Gaussian processes for separation-energy residuals and combined via Bayesian model averaging for mass predictions, with uncertainty quantification of theoretical predictions.

doi: 10.1103/PhysRevC.101.014319
Citations: PlumX Metrics


2020NE04      Phys.Rev. C 101, 044307 (2020)

L.Neufcourt, Y.Cao, S.A.Giuliani, W.Nazarewicz, E.Olsen, O.B.Tarasov

Quantified limits of the nuclear landscape

NUCLEAR STRUCTURE Z=5-119, N=11-293; calculated S(n) for odd-N. Z=8-119, N=20-296; calculated S(2n) for even-N. Z=25-119, N-21-176; calculated S(p) for odd-Z. Z=14-118, N=8-170; calculated S(2p) for even-Z. Quantified predictions of proton and neutron separation energies and Bayesian probabilities of existence of particle-bound isotopes throughout the nuclear landscape using nuclear density-functional theory with several energy density functionals, together with current global mass models and experimental atomic mass data in the general framework of Bayesian model averaging (BMA); deduced existence of 7759 particle-bound nuclei with Z<120, having existence probability of >0.5. Relevance to discovery potential with modern radioactive ion-beam facilities, such as FRIB at MSU.

doi: 10.1103/PhysRevC.101.044307
Citations: PlumX Metrics


2019GI06      Rev.Mod.Phys. 91, 011001 (2019)

S.A.Giuliani, Z.Matheson, W.Nazarewicz, E.Olsen, P.-G.Reinhard, J.Sadhukhan, B.Schuetrumpf, N.Schunck, P.Schwerdtfeger

Colloquium: Superheavy elements: Oganesson and beyond

doi: 10.1103/RevModPhys.91.011001
Citations: PlumX Metrics


2019NE02      Phys.Rev.Lett. 122, 062502 (2019)

L.Neufcourt, Y.Cao, W.Nazarewicz, E.Olsen, F.Viens

Neutron Drip Line in the Ca Region from Bayesian Model Averaging

NUCLEAR STRUCTURE 50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82Ca, 52Cl, 53Ar, 49S; calculated one- and two-neutron separation energies, posterior probability of existence of neutron-rich nuclei in the Ca region.

doi: 10.1103/PhysRevLett.122.062502
Citations: PlumX Metrics


2019OL01      Phys.Rev. C 99, 014317 (2019)

E.Olsen, W.Nazarewicz

α-decay energies of superheavy nuclei: Systematic trends

RADIOACTIVITY 250,256,258,260Fm, 254,260,262,264No, 258,264,266,268Rf, 262,268,270,272Sg, 266,272,274,276Hs, 270,276,278,280Ds, 280,282,284Cn, 284,286,288Fl, 288,290,292Lv, 292,294Og, 296,298120(α); calculated Q(α), shape transitions using nuclear superfluid density functional theory with several Skyrme energy density functionals (EDFs). Comparison with available experimental values, and with other theoretical predictions.

doi: 10.1103/PhysRevC.99.014317
Citations: PlumX Metrics


2016MA22      Phys.Rev.Lett. 116, 121101 (2016)

D.Martin, A.Arcones, W.Nazarewicz, E.Olsen

Impact of Nuclear Mass Uncertainties on the r Process

NUCLEAR STRUCTURE A=80-240; calculated isotopic abundances for neutron star and supernovae, two-neutron separation energies using SkM, SLy4, and UNEDF0 models.

doi: 10.1103/PhysRevLett.116.121101
Citations: PlumX Metrics


2016MI27      Phys.Rev.Lett. 117, 252501 (2016)

K.Minamisono, D.M.Rossi, R.Beerwerth, S.Fritzsche, D.Garand, A.Klose, Y.Liu, B.Maass, P.F.Mantica, A.J.Miller, P.Muller, W.Nazarewicz, W.Nortershauser, E.Olsen, M.R.Pearson, P.-G.Reinhard, E.E.Saperstein, C.Sumithrarachchi, S.V.Tolokonnikov

Charge Radii of Neutron Deficient 52, 53Fe Produced by Projectile Fragmentation

NUCLEAR MOMENTS 52,53,56Fe; measured hyperfine spectra; deduced differential mean-square charge radii. Bunched-beam collinear laser spectroscopy, comparison with the nuclear density functional theory with Fayans and Skyrme energy density functionals calculations.

doi: 10.1103/PhysRevLett.117.252501
Citations: PlumX Metrics

Data from this article have been entered in the XUNDL database. For more information, click here.


2015HI03      Phys.Rev. C 91, 044323 (2015)

No.Hinohara, M.Kortelainen, W.Nazarewicz, E.Olsen

Complex-energy approach to sum rules within nuclear density functional theory

NUCLEAR STRUCTURE 24Mg; calculated energy weighted Kπ=0+ sum rule for the oblate minimum. 142,144,146,148,150,152Nd, 144,146,148,150,152,154Sm; calculated isoscalar monopole and quadrupole energy-weighted Kπ=0+ sum rules, quadrupole deformation β, neutron and proton pairing gaps, total rms radius. Complex-energy finite-amplitude method (FAM) based on quasiparticle random-phase approximation (QRPA), and Hartree-Fock-Bogoliubov (HFB) techniques.

doi: 10.1103/PhysRevC.91.044323
Citations: PlumX Metrics


2014KO13      Phys.Rev. C 89, 054314 (2014)

M.Kortelainen, J.McDonnell, W.Nazarewicz, E.Olsen, P.-G.Reinhard, J.Sarich, N.Schunck, S.M.Wild, D.Davesne, J.Erler, A.Pastore

Nuclear energy density optimization: Shell structure

NUCLEAR STRUCTURE 48Ca, 208Pb; calculated neutron and proton single-particle levels, B(E1) strengths. Z=10-105, N=10-160; calculated binding energies, S(2p), S(2n) for even-even nuclei; deduced deviations from experimental data. 226,228Ra, 228,230,232,234Th, 232,234,236,238,240U, 236,238,240,242,244,246Pu, 242,244,246,248,250Cm, 250,252Cf; calculated inner fission barrier residuals, fission isomer excitation energies, outer fission barriers. Skyrme Hartree-Fock-Bogoliubov theory with POUNDERS optimization algorithm and a new parametrization UNEDF2 of the energy density functional. Comparison with other energy density functionals (UNEDF) parametrizations, and with experimental data.

doi: 10.1103/PhysRevC.89.054314
Citations: PlumX Metrics


2013KO22      Phys.Rev. C 88, 031305 (2013)

M.Kortelainen, J.Erler, W.Nazarewicz, N.Birge, Y.Gao, E.Olsen

Neutron-skin uncertainties of Skyrme energy density functionals

NUCLEAR STRUCTURE Z<120, A<400; analyzed systematic and statistical uncertainties in theoretical neutron-skin thickness predicted by various Skyrme EDF models. Statistical covariance technique.

doi: 10.1103/PhysRevC.88.031305
Citations: PlumX Metrics


2013OL02      Phys.Rev.Lett. 110, 222501 (2013)

E.Olsen, M.Pfutzner, N.Birge, M.Brown, W.Nazarewicz, A.Perhac

Landscape of Two-Proton Radioactivity

RADIOACTIVITY 19Mg, 45Fe, 48Ni, 54Zn, 57,58,59Ge, 62,63Se, 66,67Kr, 71Sr, 102,103Te, 73Zr, 77Mo, 81Ru, 85Pd, 113Ce, 117Nd, 121Sm, 125,126Gd, 130Dy, 133,134,135Er, 138,139Yb, 151,152Os, 154,155,156Pt, 158,159Hg, 109,110Ba, 114Ce, 127Gd, 131Dy, 144,145Hf, 147,148,149W(2p); analyzed available data; deduced list of candidates and competition between 2p- and α-decay modes. Nuclear density functional theory (DFT) with several Skyrme energy density functionals (EDFs).

doi: 10.1103/PhysRevLett.110.222501
Citations: PlumX Metrics


2012ER06      Nature(London) 486, 509 (2012)

J.Erler, N.Birge, M.Kortelainen, W.Nazarewicz, E.Olsen, A.M.Perhac, M.Stoitsov

The limits of the nuclear landscape

NUCLEAR STRUCTURE Z=1-120; calculated neutron and proton drip lines, two-neutron separation energies. 140,148,156,164Er; deduced two-neutron dripline patterns. UNEDF, ab initio and other methods, comparison with available data.

doi: 10.1038/nature11188
Citations: PlumX Metrics


2001HE39      Appl.Radiat.Isot. 54, 839 (2001)

G.Henriksen, S.Messelt, E.Olsen, R.H.Larsen

Optimisation of cyclotron production parameters for the 209Bi(α, 2n) 211At reaction related to biomedical use of 211At

NUCLEAR REACTIONS 209Bi(α, 2n), (α, 3n), E=27.6-30.1 MeV; measured yields. comparison with previous results.

doi: 10.1016/S0969-8043(00)00346-8
Citations: PlumX Metrics

Data from this article have been entered in the EXFOR database. For more information, access X4 datasetD0167.


Back to query form