NSR Query Results


Output year order : Descending
Format : Normal

NSR database version of April 26, 2024.

Search: Author = N.Hinohara

Found 41 matches.

Back to query form



2024HI03      Phys.Rev. C 109, 034302 (2024)

N.Hinohara, T.Oishi, K.Yoshida

Triplet-odd pairing in finite nuclear systems: Even-even singly closed nuclei

doi: 10.1103/PhysRevC.109.034302
Citations: PlumX Metrics


2023GI09      Phys.Rev. C 108, 044316 (2023)

H.Gil, N.Hinohara, C.H.Hyun, K.Yoshida

Nuclear mass table in density functional approach inspired by neutron-star observations

doi: 10.1103/PhysRevC.108.044316
Citations: PlumX Metrics


2023NA20      Phys.Rev. C 108, 014318 (2023)

T.Nakatsukasa, N.Hinohara

Local α-removal strength in the mean-field approximation

NUCLEAR STRUCTURE 112,116,120,124Sn; calculated nucleon density distributions for neutrons and protons, local α-removal strengths, integrated local α-removal strength, local α probabilities for excited residual nuclei, localization functions for neutrons and protons. Hartree-Fock+BCS method used for mean-field calculation. Defined "local α-removal strength" to quantify the possibility to form an α particle at a specific location inside the nucleus.

doi: 10.1103/PhysRevC.108.014318
Citations: PlumX Metrics


2022HI02      Phys.Rev. C 105, 044314 (2022)

N.Hinohara, J.Engel

Global calculation of two-neutrino double-β decay within the finite amplitude method in nuclear density functional theory

NUCLEAR STRUCTURE 76Ge, 76Se, 130Te, 130Xe, 136Xe, 136Ba, 150Nd, 150Sm; calculated ground state properties, quadrupole deformation, neutron and proton pairing gaps, total energies. 48Ca, 48Ti, 82Se, 82Kr, 96Zr, 96Mo, 100Mo, 100Ru, 116Cd, 116Sn, 128Te, 128Xe, 238U, 238Pu; calculated quadrupole deformation, neutron and proton pairing gaps. Proton-neutron version of the finite amplitude method (pnFAM) with SkM* functional. Comparison to experimental data.

RADIOACTIVITY 46,48Ca, 70Zn, 76Ge, 80,82Se, 86Kr, 94,96Zr, 98,100Mo, 104Ru, 110Pd, 114,116Cd, 122,124Sn, 128,130Te, 134,136Xe, 142Ce, 146,148,150Nd, 154Sm, 160Gd, 170Er, 176Yb, 186W, 192Os, 198Pt, 204Hg, 226Ra, 232Th, 238U, 244Pu, 248Cm(2β-); calculated matrix elements. 76Ge, 76Se, 130Te, 130Xe, 136Xe, 136Ba, 150Nd, 150Sm(2β-); calculated summed Fermi- and Gamow-Teller transitions. Proton-neutron version of the finite amplitude method (pnFAM) within time-dependent DFT. Used functional are fit globally to single-beta-decay half-lives and charge-exchange giant-resonance energies. Comparison to available experimental data.

doi: 10.1103/PhysRevC.105.044314
Citations: PlumX Metrics


2022KA44      Phys.Rev. C 106, 054312 (2022)

Y.Kanada-En'yo, N.Hinohara

Collective model for cluster motion in 8Be, 12C, and 16O systems based on microscopic 2α, 3α, and 4α models

NUCLEAR STRUCTURE 8Be, 12C, 16O; calculated levels, J, π, energies, rms radii. Generator coordinate method (GCM) calculations in restricted model space of nα systems within highly symmetric configurations. Description of radial cluster motion in the ground and excited states with collective model in one-dimensional coordinate by utilizing inputs from the parity-projected microscopic nα wave functions. Comparison to microscopic calculations and experimental data.

doi: 10.1103/PhysRevC.106.054312
Citations: PlumX Metrics


2021WA03      Phys.Rev. C 103, 014306 (2021)

K.Washiyama, N.Hinohara, T.Nakatsukasa

Finite-amplitude method for collective inertia in spontaneous fission

RADIOACTIVITY 240Pu, 256Fm(SF); calculated collective inertia for fission dynamics, potential energy and pairing gaps for neutrons and protons as a function of quadrupole moment using the local quasiparticle random-phase approximation (LQRPA) with fission path obtained from constrained Hartree-Fock-Bogoliubov method with Skyrme energy density functional (EDF), and the finite-amplitude method (FAM) with a contour integration technique. Relevance to fission dynamics in heavy and superheavy nuclei to microscopically describe large-amplitude nuclear collective motion.

doi: 10.1103/PhysRevC.103.014306
Citations: PlumX Metrics


2020HA14      Phys.Rev. C 101, 044311 (2020)

J.Ha, T.Sumikama, F.Browne, N.Hinohara, A.M.Bruce, S.Choi, I.Nishizuka, S.Nishimura, P.Doornenbal, G.Lorusso, P.-A.Soderstrom, H.Watanabe, R.Daido, Z.Patel, S.Rice, L.Sinclair, J.Wu, Z.Y.Xu, A.Yagi, H.Baba, N.Chiga, R.Carroll, F.Didierjean, Y.Fang, N.Fukuda, G.Gey, E.Ideguchi, N.Inabe, T.Isobe, D.Kameda, I.Kojouharov, N.Kurz, T.Kubo, S.Lalkovski, Z.Li, R.Lozeva, H.Nishibata, A.Odahara, Zs.Podolyak, P.H.Regan, O.J.Roberts, H.Sakurai, H.Schaffner, G.S.Simpson, H.Suzuki, H.Takeda, M.Tanaka, J.Taprogge, V.Werner, O.Wieland

Shape evolution of neutron-rich 106, 108, 110Mo isotopes in the triaxial degree of freedom

RADIOACTIVITY 106,108,110Nb, 106,108,110Zr(β-); 108,110Nb(β-n)[from 9Be(238U, F), E=345 MeV/nucleon, followed by separation of ions using BigRIPS fragment separator and transported through the ZeroDegree spectrometer at RIBF-RIKEN facility]; measured Eγ, Iγ, β-, β-γγ-coin, and half-lives of decays of 106Nb, 108Nb, 110Nb and 110Zr from β-delayed γ-decay curves, half-lives of the first 2+ states in 106Mo, 108Mo and 110Mo using WAS3ABi system for ion and β- detection, EURICA array for γ detection, and fast-timing array for level half-lives. 106,108,110Mo; deduced levels, J, π, bands, configurations, β feedings, logft, B(E2) ratios, quadrupole deformation, kinematic moment of inertia for the ground bands, staggering pattern. 108,110Nb; deduced %β-n or Pn from the β-delayed γ rays emitted from the daughter nuclei, two β-decaying states or an isomer in 110Nb. 106,108,110Nb; deduced J, π; discussed Nilsson configurations. Comparison with theoretical calculations. Systematics of E(4+)/E(first 2+) ratios in N(even)=56-72, Zr, Mo, Ru and Pd isotopes, and level energy staggering pattern relative to the first 2+ states in N=64, 66, 68 Mo, Ru, and Pd isotopes.

NUCLEAR STRUCTURE 106,108,110Mo; calculated levels, J, π, potential-energy surface (PES) contours and the collective-wave functions for low-lying positive-parity states. Comparison with beyond-meanfield calculations using the constrained Hartree-Fock-Bogoliubov and local quasiparticle-random-phase approximation with SLy5+T interaction. Comparison with experimental data.

doi: 10.1103/PhysRevC.101.044311
Citations: PlumX Metrics

Data from this article have been entered in the XUNDL database. For more information, click here.


2020SH26      Phys.Rev. C 102, 044325 (2020)

Y.Shi, N.Hinohara, B.Schuetrumpf

Implementation of nuclear time-dependent density-functional theory and its application to the nuclear isovector electric dipole resonance

NUCLEAR STRUCTURE 16O, 24,34Mg, 40Ca, 92,94,96,98,100Mo, 90,92,94Zr; calculated isovector electric dipole resonance response functions, cross sections, photoabsorption σ(E), ground-state energies decomposed into various terms, root-mean-square radii, time evolution of the isovector density, E1 strength functions, EWSR values of the isovector dipole (IVD) operator, isovector E1 σ(E). 98,100,102,104,106,108Zr, 100,102,104,106,108,110Mo, 102,104,106,108,110,112Ru; calculated potential energy surfaces in (Q20, Q22) plane, photoabsorption σ(E), pairing energies, quadrupole moments, and triaxial parameters γ. Time-dependent density functional theory (TDDFT) with BCS pairing for isovector (IV) electric dipole (E1) observables, and finite-amplitude method for quasiparticle random phase approximation (FAM-QRPA) calculations for 16O, 24,34Mg, 40Ca for benchmarking.

doi: 10.1103/PhysRevC.102.044325
Citations: PlumX Metrics


2019HI07      Phys.Rev. C 100, 024310 (2019)

N.Hinohara

Energy-weighted sum rule for nuclear density functional theory

NUCLEAR STRUCTURE 166Dy, 208Pb; calculated energy-weighted sum rule (EWSR) for the isoscalar and isovector multipole operators up to L=3 for selected spherical and axially deformed nuclei using nuclear density functional theory (DFT), without using EDF Hamiltonian.

doi: 10.1103/PhysRevC.100.024310
Citations: PlumX Metrics


2018HI01      J.Phys.(London) G45, 024004 (2018)

N.Hinohara

Extending pairing energy density functional using pairing rotational moments of inertia

NUCLEAR STRUCTURE Sn, Pb; calculated neutron pairing gap, neutron pairing rotational moment of inertia, neutron pair density and kinetic energy. The pairing energy density functionals (EDFs).

doi: 10.1088/1361-6471/aa9f8b
Citations: PlumX Metrics


2018NI17      Phys.Rev. C 98, 064327 (2018)

F.Ni, N.Hinohara, T.Nakatsukasa

Low-lying collective excited states in nonintegrable pairing models based on the stationary-phase approximation to the path integral

NUCLEAR STRUCTURE 186,188,190,192,194Pb; calculated eigenvalues of moving-frame quasi-random phase approximation equation as a function of collective coordinate, occupation numbers in each single-particle level, collective potentials, energies of first and second excited states, strength of pair-addition transitions, and pairing gap using stationary-phase approximation (SPA) to the path integral, combined with the adiabatic self-consistent collective coordinate method (ASCC+SPA). Description of low-lying excited 0+ states in nonintegrable pairing systems.

doi: 10.1103/PhysRevC.98.064327
Citations: PlumX Metrics


2016HI02      Phys.Rev.Lett. 116, 152502 (2016)

N.Hinohara, W.Nazarewicz

Pairing Nambu-Goldstone Modes within Nuclear Density Functional Theory

NUCLEAR STRUCTURE 116Sn, Ca, Sn, Er, Pb; calculated neutron pairing-rotational energy, chemical potential and pairing-rotational moment of inertia, pairing-rotational moments of inertia; deduced T=1 pairing-rotational moments of inertia of semimagic and doubly-open-shell nuclei within the NG formalism of the broken gauge symmetry.

doi: 10.1103/PhysRevLett.116.152502
Citations: PlumX Metrics


2016MA10      J.Phys.(London) G43, 024006 (2016)

K.Matsuyanagi, M.Matsuo, T.Nakatsukasa, K.Yoshida, N.Hinohara, K.Sato

Microscopic derivation of the quadrupole collective Hamiltonian for shape coexistence/mixing dynamics

NUCLEAR STRUCTURE 72Kr, 30,32,34Mg; calculated potential energy surfaces, J, π, energy levels. Large-amplitude collective motions (LACM).

doi: 10.1088/0954-3899/43/2/024006
Citations: PlumX Metrics


2016MA71      Phys.Scr. 91, 063014 (2016)

K.Matsuyanagi, M.Matsuo, T.Nakatsukasa, K.Yoshida, N.Hinohara, K.Sato

Microscopic derivation of the Bohr-Mottelson collective Hamiltonian and its application to quadrupole shape dynamics

doi: 10.1088/0031-8949/91/6/063014
Citations: PlumX Metrics


2016ME02      Phys.Rev. C 93, 014305 (2016)

J.Menendez, No.Hinohara, J.Engel, G.Martinez-Pinedo, T.R.Rodriguez

Testing the importance of collective correlations in neutrinoless ββ decay

RADIOACTIVITY 42,44,46,48,50,52,54,56,58,60Ca, 44,46,48,50,52,54,56,58Ti, 46,48,50,52,54,56,58,60Cr(2β-); calculated Gamow-Teller part of the 0νββ decay matrix elements, percentage of ground state in daughter nuclei belonging to SU(4) irreducible representations using shell model with KB3G interaction, full collective interaction Hcoll, Hcoll with the quadrupole-quadrupole term removed, Hcoll with the isoscalar pairing term removed, and Hcoll with both the isoscalar-pairing and spin-isospin removed. 48Ca, 76Ge, 82Se, 124Sn, 130Te, 136Xe(2β-); calculated Gamow-Teller matrix elements for 0νββ decay and estimated effect of isoscalar pairing. Role of collective correlations in 0νββ decay. Comparison of GCM calculations for fp shell nuclei with full shell-model calculations.

NUCLEAR STRUCTURE 46,48,50,52,54,56,58,60Cr; calculated B(E2) for first 2+ states using shell model with KB3G interaction, full collective interaction Hcoll, and by Hcoll without the quadrupole-quadrupole part. Comparison with experimental values.

doi: 10.1103/PhysRevC.93.014305
Citations: PlumX Metrics


2016OI01      Phys.Rev. C 93, 034329 (2016)

T.Oishi, M.Kortelainen, N.Hinohara

Finite amplitude method applied to the giant dipole resonance in heavy rare-earth nuclei

NUCLEAR STRUCTURE 152,154,156,158,160,162,164Gd, 156,160,162,164,166,168Dy, 162,164,166,168,170,172,174Er, 168,170,172,174,176,178Yb, 174,176,178,180,182,184Hf, 180,182,184,186,188,190W; calculated axial deformation β, pairing gaps for neutrons and protons, energy-weighted sum rule, and its enhancement factor from the Thomas-Reiche-Kuhn (TRK) sum rule for ground states. Hartree-Fock-Bogoliubov (HFB) calculation with Skyrme EDF framework (SkM* parameterization).

NUCLEAR REACTIONS 144,145Sm, 152,154,156,158,160,162,164Gd, 156,160,162,164,166,168Dy, 162,164,166,168,170,172,174Er, 168,170,172,174,176,178Yb, 174,176,178,180,182,184Hf, 180,182,184,186,188,190W(γ, X), E not given; calculated E1 photoabsorption σ as function of excitation energy, mean giant dipole resonance (GDR) frequencies and widths within a parallelized finite amplitude method, and quasiparticle random phase approximation (FAM-QRPA) scheme, with the Skyrme energy density functional in the nuclear density functional theory (DFT) applied for ground states and FAM-QRPA for excitations. Comparison with experimental data. Discussed role of role of the Thomas-Reiche-Kuhn (TRK) sum rule enhancement factor, connected to the isovector effective mass.

doi: 10.1103/PhysRevC.93.034329
Citations: PlumX Metrics


2015HI03      Phys.Rev. C 91, 044323 (2015)

No.Hinohara, M.Kortelainen, W.Nazarewicz, E.Olsen

Complex-energy approach to sum rules within nuclear density functional theory

NUCLEAR STRUCTURE 24Mg; calculated energy weighted Kπ=0+ sum rule for the oblate minimum. 142,144,146,148,150,152Nd, 144,146,148,150,152,154Sm; calculated isoscalar monopole and quadrupole energy-weighted Kπ=0+ sum rules, quadrupole deformation β, neutron and proton pairing gaps, total rms radius. Complex-energy finite-amplitude method (FAM) based on quasiparticle random-phase approximation (QRPA), and Hartree-Fock-Bogoliubov (HFB) techniques.

doi: 10.1103/PhysRevC.91.044323
Citations: PlumX Metrics


2015HI07      Phys.Rev. C 92, 034321 (2015)

N.Hinohara

Collective inertia of the Nambu-Goldstone mode from linear response theory

NUCLEAR STRUCTURE 26Mg; calculated Thouless-Valatin inertia, FAM strength function for the proton pairing-rotational angle operator. 110,112,114,116,118,120,122,124,126Sn; 120,122,124,126,128,130,132,134,136Xe; 134Te, 136Xe, 138Ba, 140Ce, 142Nd, 144Sm, 146Gd, 148Dy, 150Er; 126Sn, 128Te, 130Xe, 132Ba, 134Ce, 136Nd, 138Sm, 140Gd; 130Sm, 130Nd, 130Ce, 130Ba, 130Xe, 130Te, 130Sn, 130Cd; 122Sn, 126Te, 130Xe, 134Ba, 138Ce, 142Nd; calculated neutron and proton pairing rotational energies with the Thouless-Valatin collective inertias. Spurious zero-energy Nambu-Goldstone (NG) mode. Finite amplitude method (FAM) for response function of superfluid nuclei with SLy4+volume pairing nuclear density functional theory. Comparison with other theoretical approaches, and with experimental data.

doi: 10.1103/PhysRevC.92.034321
Citations: PlumX Metrics


2015KO18      Phys.Rev. C 92, 051302 (2015)

M.Kortelainen, N.Hinohara, W.Nazarewicz

Multipole modes in deformed nuclei within the finite amplitude method

NUCLEAR STRUCTURE 154Sm; calculated levels, B(E3). 240Pu; calculated isoscalar and isovector quadrupole and isovector octupole strength of giant resonances. Finite amplitude method (FAM) quasiparticle random phase approximation (QRPA).

doi: 10.1103/PhysRevC.92.051302
Citations: PlumX Metrics


2014HI06      Phys.Rev. C 90, 031301 (2014)

N.Hinohara, J.Engel

Proton-neutron pairing amplitude as a generator coordinate for double-β decay

RADIOACTIVITY 76Ge(2β-); calculated matrix elements for neutrinoless double β decay (0νββ), and square of the collective wave functions using generator coordinate method (GCM) and larger single-particle spaces than the shell model.

doi: 10.1103/PhysRevC.90.031301
Citations: PlumX Metrics


2014MA98      Phys.Scr. 89, 054020 (2014)

M.Matsuo, N.Hinohara, K.Sato, K.Matsuyanagi, T.Nakatsukasa, K.Yoshida

Quadrupole shape dynamics from the viewpoint of a theory of large-amplitude collective motion

NUCLEAR STRUCTURE 58,60,62,64,66Cr; calculated low-lying quadrupole shape dynamics using large-scale collective motion; deduced deformation, shape-coexistence, shape-mixing, shape-transitional behavior, B(E2). Partially compared with data.

doi: 10.1088/0031-8949/89/5/054020
Citations: PlumX Metrics


2014SH11      Phys.Rev. C 89, 054317 (2014)

J.A.Sheikh, N.Hinohara, J.Dobaczewski, T.Nakatsukasa, W.Nazarewicz, K.Sato

Isospin-invariant Skyrme energy-density-functional approach with axial symmetry

NUCLEAR STRUCTURE A=78, 48, 40; calculated total Hartree-Fock (HF) energy, single-particle energies and Routhians with and without isospin-symmetry-breaking Coulomb term, neutron and proton rms radii for isobaric analog chains. 78Ni, 78Zn, 78Ge, 78Se, 78Kr, 78Sr, 78Zr, 78Mo, 78Ru, 78Pd, 78Cd, 78Sn; calculated g9/2 proton effective HF potential, rms radii, single-particle energies. binding energy. Extension of existing axial DFT solver HFBTHO to isospin-invariant Skyrme EDF approach with all possible p-n (isospin) mixing terms. Comparison between HFODD and HFBTHO results.

doi: 10.1103/PhysRevC.89.054317
Citations: PlumX Metrics


2013HI05      Phys.Rev. C 87, 064309 (2013)

N.Hinohara, M.Kortelainen, W.Nazarewicz

Low-energy collective modes of deformed superfluid nuclei within the finite-amplitude method

NUCLEAR STRUCTURE 24Mg; calculated low-lying QRPA energies of K=0 states, isoscalar and isovector monopole strengths. 166,168,172Yb, 170Er; calculated FAM-QRPA energies, B(E2), isoscalar and isovector quadrupole strength for low-lying K=0 states. Superfluid nuclear density functional theory with Skyrme energy density functionals, the FAM-QRPA approach, and the conventional matrix formulation of the QRPA.

doi: 10.1103/PhysRevC.87.064309
Citations: PlumX Metrics


2012HI02      Phys.Rev. C 85, 024323 (2012)

N.Hinohara, Z.P.Li, T.Nakatsukasa, T.Niksic, D.Vretenar

Effect of time-odd mean fields on inertial parameters of the quadrupole collective Hamiltonian

NUCLEAR STRUCTURE 128,130,132Xe, 130,132,134Ba; calculated triaxial quadrupole binding energy maps, and quadrupole energy surfaces in β-γ plane, ratios of moments of inertia, ratios of vibrational mass parameters, cranking mass parameters, low-lying levels, J, π. Hybrid model based on microscopic collective Hamiltonian and CHFB+LQRPA method to estimate the contribution of time-odd mean fields (Thouless-Valatin contribution). Comparison with experimental data.

doi: 10.1103/PhysRevC.85.024323
Citations: PlumX Metrics


2012HI08      Prog.Theor.Phys.(Kyoto), Suppl. 196, 328 (2012)

N.Hinohara, K.Sato, K.Yoshida, T.Nakatsukasa, M.Matsuo, K.Matsuyanagi

Microscopic Analysis of Shape Coexistence/Mixing and Shape Phase Transition in Neutron-Rich Nuclei around 32Mg

NUCLEAR STRUCTURE 30,32,34,36Mg; analyzed quadrupole dynamics data; deduced enhancement of the quadrupole collectivity using collective Hamiltonian approach.

doi: 10.1143/PTPS.196.328
Citations: PlumX Metrics


2012SA33      Phys.Rev. C 86, 024316 (2012)

K.Sato, N.Hinohara, K.Yoshida, T.Nakatsukasa, M.Matsuo, K.Matsuyanagi

Shape transition and fluctuations in neutron-rich Cr isotopes around N=40

NUCLEAR STRUCTURE 58,60,62,64,66Cr; calculated potential energy surface contours in β-γ plane, levels, B(E2), vibrational wave functions contours, E0 transition strengths. Solution of Schrodinger equation for five-dimensional quadrupole collective Hamiltonian, with constrained Hartree-Fock-Bogoliubov plus local quasiparticle random-phase approximation (CHFB+LQRPA) method. Large-amplitude shape fluctuations in low-lying states. Comparison with experimental data.

doi: 10.1103/PhysRevC.86.024316
Citations: PlumX Metrics


2012SA63      J.Phys.:Conf.Ser. 381, 012103 (2012)

K.Sato, N.Hinohara, T.Nakatsukasa, M.Matsuo, K.Matsuyanagi

Microscopic approach to large-amplitude deformation dynamics with local QRPA inertial masses

NUCLEAR STRUCTURE 72Kr; calculated levels, J, π, deformation, B(E2) using CHFB (constrained HFB) + LQRPA (local QRPA). 58,60,62,64Cr; calculated levels, J, π, deformation, spectroscopic quadrupole moment, B(E2) using CHFB.

doi: 10.1088/1742-6596/381/1/012103
Citations: PlumX Metrics


2011HI01      Phys.Rev. C 83, 014321 (2011)

N.Hinohara, Y.Kanada-Enyo

Triaxial quadrupole deformation dynamics in sd-shell nuclei around 26Mg

NUCLEAR STRUCTURE 24Ne, 24,26Mg, 28Si; calculated collective potential contours in β-γ plane, neutron and proton pairing gaps, levels, J, π, B(E2) values, and spectroscopic quadrupole moments for ground-state bands, β-, and γ-vibrational states, vibrational wave functions, rotational moments of inertia, and E2 transition density contour plots in β-γ plane. Calculations based on quadrupole collective Hamiltonian constructed with the use of the constrained Hartree-Fock-Bogoliubov plus the local quasiparticle random-phase approximation (CHB+LQRPA) method. Large-amplitude quadrupole dynamics of axial and triaxial deformation. Comparison with experimental data for sd-shell nuclei.

doi: 10.1103/PhysRevC.83.014321
Citations: PlumX Metrics


2011HI03      Acta Phys.Pol. B42, 443 (2011)

N.Hinohara, K.Sato, T.Nakatsukasa, M.Matsuo

Local QRPA Vibrational and Rotational Inertial Functions for Large-amplitude Quadrupole Collective Dynamics

NUCLEAR STRUCTURE 68,76Se; calculated collective potential, energies, J, π. Comparison with experimental data.

doi: 10.5506/APhysPolB.42.443
Citations: PlumX Metrics


2011HI18      Phys.Rev. C 84, 061302 (2011)

N.Hinohara, K.Sato, K.Yoshida, T.Nakatsukasa, M.Matsuo, K.Matsuyanagi

Shape fluctuations in the ground and excited 0+ states of 30, 32, 34Mg

NUCLEAR STRUCTURE 30,32,34,36Mg; calculated collective potential surfaces, levels, J, π, B(E2) values for low-lying positive-parity states, vibrational wave functions. Five-dimensional (5D) quadrupole collective Schrodinger equation, constrained Hartree-Fock-Bogoliubov plus local quasiparticle random phase approximation. Ground and excited 0+ states. Comparison with experimental data.

doi: 10.1103/PhysRevC.84.061302
Citations: PlumX Metrics


2011SA09      Nucl.Phys. A849, 53 (2011)

K.Sato, N.Hinohara

Shape mixing dynamics in the low-lying states of proton-rich Kr isotopes

NUCLEAR STRUCTURE 72,74,76Kr; calculated levels, J, π, B(E2), deformation parameters and related properties using a 5-D quadrupole collective Hamiltonian. Comparison with data.

doi: 10.1016/j.nuclphysa.2010.11.003
Citations: PlumX Metrics


2011SA69      J.Phys.:Conf.Ser. 312, 092054 (2011)

K.Sato, N.Hinohara

Microscopic analysis of shape mixing in low-lying states of proton-rich nuclei in the Se-Kr region

NUCLEAR STRUCTURE 72,74,76Kr; calculated deformation, potential energy, moment of inertia, quadrupole moment. 72Kr; calculated levels, J, π, γ transitions, B(E2). CHFB (constrained HFB) + LQRPA (local QRPA). Compared to available data.

doi: 10.1088/1742-6596/312/9/092054
Citations: PlumX Metrics


2011WA26      Phys.Lett. B 704, 270 (2011)

H.Watanabe, K.Yamaguchi, A.Odahara, T.Sumikama, S.Nishimura, K.Yoshinaga, Z.Li, Y.Miyashita, K.Sato, L.Prochniak, H.Baba, J.S.Berryman, N.Blasi, A.Bracco, F.Camera, J.Chiba, P.Doornenbal, S.Go, T.Hashimoto, S.Hayakawa, C.Hinke, N.Hinohara, E.Ideguchi, T.Isobe, Y.Ito, D.G.Jenkins, Y.Kawada, N.Kobayashi, Y.Kondo, R.Krucken, S.Kubono, G.Lorusso, T.Nakano, T.Nakatsukasa, M.Kurata-Nishimura, H.J.Ong, S.Ota, Zs.Podolyak, H.Sakurai, H.Scheit, K.Steiger, D.Steppenbeck, K.Sugimoto, K.Tajiri, S.Takano, A.Takashima, T.Teranishi, Y.Wakabayashi, P.M.Walker, O.Wieland, H.Yamaguchi

Development of axial asymmetry in the neutron-rich nucleus 110Mo

RADIOACTIVITY 110Nb(β-) [from Be(238U, X), E=345 MeV/nucleon]; measured decay products, Eγ, Iγ, X-rays. 110Mo; deduced energy levels, J, π, quasi-γ-band state, B(e2) ratio. Comparison with general Bohr Hamiltonian method calculations, systematics of low-lying levels of even-even Mo nuclei.

NUCLEAR STRUCTURE 104,106,108,110Mo; calculated moments of inertia, potential energy surface, the nuclear landscape. General Bohr Hamiltonian method calculations.

doi: 10.1016/j.physletb.2011.09.050
Citations: PlumX Metrics

Data from this article have been entered in the XUNDL database. For more information, click here.


2011YO04      Phys.Rev. C 83, 061302 (2011)

K.Yoshida, N.Hinohara

Shape changes and large-amplitude collective dynamics in neutron-rich Cr isotopes

NUCLEAR STRUCTURE 58,60,62,64,66,68Cr; calculated total energy curves, energies of first 2+ and 4+ states, B(E2) and spectroscopic quadrupole moment of first 2+ states, rms radii, quadrupole masses, and collective wave functions of ground states. Microscopic model for the collective motion based on the Skyrme and the pairing energy density functionals (EDF). Comparison with experimental data.

doi: 10.1103/PhysRevC.83.061302
Citations: PlumX Metrics


2010HI09      Phys.Rev. C 82, 064313 (2010)

N.Hinohara, K.Sato, T.Nakatsukasa, M.Matsuo, K.Matsuyanagi

Microscopic description of large-amplitude shape-mixing dynamics with inertial functions derived in local quasiparticle random-phase approximation

NUCLEAR STRUCTURE 68,70,72Se; calculated, in β-γ plane, collective potential surfaces, monopole and quadrupole pairing gaps, vibrational masses, rotational masses, vibrational wave functions, B(E2), excitation energies, and spectroscopic quadrupole moments using constrained Hartree-Fock-Bogoliubov (CHFB) and local quasiparticle random-phase approximation (LQRPA) based on adiabatic self-consistent collective coordinate (ASCC) method. Comparison with experimental data.

doi: 10.1103/PhysRevC.82.064313
Citations: PlumX Metrics


2010SA01      Prog.Theor.Phys.(Kyoto) 123, 129 (2010)

K.Sato, N.Hinohara, T.Nakatsukasa, M.Matsuo, K.Matsuyanagi

A Model Analysis of Triaxial Deformation Dynamics in Oblate-Prolate Shape Coexistence Phenomena

doi: 10.1143/PTP.123.129
Citations: PlumX Metrics


2009HI07      Phys.Rev. C 80, 014305 (2009)

N.Hinohara, T.Nakatsukasa, M.Matsuo, K.Matsuyanagi

Microscopic description of oblate-prolate shape mixing in proton-rich Se isotopes

NUCLEAR STRUCTURE 68,70,72Se; calculated levels, J, π, B(E2), quadrupole deformation, collective paths, monopole and quadrupole pairing gaps, collective potential and mass, frequencies at Hartree-Bogoliubov (HB) equilibrium, vibrational wave functions and spectroscopic quadrupole moments using adiabatic self-consistent collective coordinate (ASCC) method.

doi: 10.1103/PhysRevC.80.014305
Citations: PlumX Metrics


2009KA17      Phys.Rev. C 79, 054305 (2009)

Y.Kanada-Enyo, N.Hinohara, T.Suhara, P.Schuck

Dineutron correlations in quasi-two-dimensional systems in a simplified model, and possible relation to neutron-rich nuclei

doi: 10.1103/PhysRevC.79.054305
Citations: PlumX Metrics


2008HI02      Prog.Theor.Phys.(Kyoto) 119, 59 (2008)

N.Hinohara, T.Nakatsukasa, M.Matsuo, K.Matsuyanagi

Microscopic Derivation of Collective Hamiltonian by Means of the Adiabatic Self-Consistent Collective Coordinate Method -Shape Mixing in Low-Lying States of 68Se and 72Kr-

NUCLEAR STRUCTURE 68Se, 72Kr; calculated level energies, B(E2), quadrupole deformation parameters, and pairing gaps using the ASCC method in conjunction with P+Q hamiltonian.

doi: 10.1143/PTP.119.59
Citations: PlumX Metrics


2007HI03      Prog.Theor.Phys.(Kyoto) 117, 451 (2007)

N.Hinohara, T.Nakatsukasa, M.Matsuo, K.Matsuyanagi

Gauge-Invariant Formulation of the Adiabatic Self-Consistent Collective Coordinate Method

doi: 10.1143/PTP.117.451
Citations: PlumX Metrics


2006HI03      Prog.Theor.Phys.(Kyoto) 115, 567 (2006)

N.Hinohara, T.Nakatsukasa, M.Matsuo, K.Matsuyanagi

Effects of Time-Odd Components in Mean Field on Large Amplitude Collective Dynamics

doi: 10.1143/PTP.115.567
Citations: PlumX Metrics


Back to query form