NSR Query Results


Output year order : Descending
Format : Normal

NSR database version of April 11, 2024.

Search: Author = T.Nakatsukasa

Found 112 matches.

    Showing 1 to 100.

   [Next]

Back to query form



2023NA06      Phys.Rev. C 107, 015802 (2023)

T.Nakatsukasa

Fermi operator expansion method for nuclei and inhomogeneous matter with a nuclear energy density functional

NUCLEAR STRUCTURE 16O, 40Ca; calculated nucleon density distributions at different temperatures, total and free energy. 24Mg; calculated intrinsic quadrupole moments at finite temperature, total and free energy. 16O, 40Ca, 32S; calculated density distribution for nuclei located in cell with different sizes - (17 fm)3, (23 fm)3 and at different temperatures. Calculations utilizing BKN energy density functional.

doi: 10.1103/PhysRevC.107.015802
Citations: PlumX Metrics


2023NA20      Phys.Rev. C 108, 014318 (2023)

T.Nakatsukasa, N.Hinohara

Local α-removal strength in the mean-field approximation

NUCLEAR STRUCTURE 112,116,120,124Sn; calculated nucleon density distributions for neutrons and protons, local α-removal strengths, integrated local α-removal strength, local α probabilities for excited residual nuclei, localization functions for neutrons and protons. Hartree-Fock+BCS method used for mean-field calculation. Defined "local α-removal strength" to quantify the possibility to form an α particle at a specific location inside the nucleus.

doi: 10.1103/PhysRevC.108.014318
Citations: PlumX Metrics


2022WE01      Phys.Rev. C 105, 034603 (2022)

K.Wen, T.Nakatsukasa

Microscopic collective inertial masses for nuclear reaction in the presence of nucleonic effective mass

NUCLEAR REACTIONS 16O(16O, X)32S*, E(cm)=1-10 MeV; 4He(16O, X)20Ne*, E(cm)<3 MeV; calculated collective reaction paths for fusion reactions, inertial mass, rotational moments of inertia, potential energy along collective path, astrophysical S factor for the subbarrier fusion. Adiabatic self-consistent collective coordinate (ASCC) method.

doi: 10.1103/PhysRevC.105.034603
Citations: PlumX Metrics


2021WA03      Phys.Rev. C 103, 014306 (2021)

K.Washiyama, N.Hinohara, T.Nakatsukasa

Finite-amplitude method for collective inertia in spontaneous fission

RADIOACTIVITY 240Pu, 256Fm(SF); calculated collective inertia for fission dynamics, potential energy and pairing gaps for neutrons and protons as a function of quadrupole moment using the local quasiparticle random-phase approximation (LQRPA) with fission path obtained from constrained Hartree-Fock-Bogoliubov method with Skyrme energy density functional (EDF), and the finite-amplitude method (FAM) with a contour integration technique. Relevance to fission dynamics in heavy and superheavy nuclei to microscopically describe large-amplitude nuclear collective motion.

doi: 10.1103/PhysRevC.103.014306
Citations: PlumX Metrics


2020KA27      Phys.Rev. C 101, 045804 (2020)

Y.Kashiwaba, T.Nakatsukasa

Coordinate-space solver for finite-temperature Hartree-Fock-Bogoliubov calculations using the shifted Krylov method

NUCLEAR STRUCTURE 146Ba; calculated neutron spin-up density, neutron pair density, neutron paring gap, quadrupole and octupole deformations, specific heat and nucleon density profiles. 184Hg; calculated potential energy surfaces, and shape coexistence as function of temperature. Extension of Hartree-Fock-Bogoliubov (HFB) theory to finite temperatures by shifted conjugate-orthogonal conjugate-residual (shifted COCR) method, and using three-dimensional (3D) coordinate-space representation with the Green's function. Benchmarking of the 3D coordinate-space solver. Relevance to the structure of inner crust of hot and cold neutron stars.

doi: 10.1103/PhysRevC.101.045804
Citations: PlumX Metrics


2020PE07      Phys.Rev. C 102, 014311 (2020)

C.M.Petrache, N.Minkov, T.Nakatsukasa, B.F.Lv, A.Astier, E.Dupont, K.K.Zheng, P.Greenlees, H.Badran, T.Calverley, D.M.Cox, T.Grahn, J.Hilton, R.Julin, S.Juutinen, J.Konki, J.Pakarinen, P.Papadakis, J.Partanen, P.Rahkila, P.Ruotsalainen, M.Sandzelius, J.Saren, C.Scholey, J.Sorri, S.Stolze, J.Uusitalo, B.Cederwall, A.Ertoprak, H.Liu, S.Guo, M.L.Liu, J.G.Wang, X.H.Zhou, I.Kuti, J.Timar, A.Tucholski, J.Srebrny, C.Andreoiu

Signatures of enhanced octupole correlations at high spin in 136Nd

NUCLEAR REACTIONS 100Mo(40Ar, 4n), E=152 MeV; measured Eγ, Iγ, γγ-coin, γγ(θ)(DCO) using the JUROGAM II array at the University of Jyvaskyla. Enriched target. 136Nd; deduced high-spin levels, J, π, multipolarities, bands, B(E1)/B(E2) ratios, electric dipole moments D0, configurations, alignments, enhanced octupole correlations at high spins. Comparison with cranked quasiparticle random phase approximation (QRPA) calculations, and with quadrupole-octupole rotations model (QORM).

doi: 10.1103/PhysRevC.102.014311
Citations: PlumX Metrics

Data from this article have been entered in the XUNDL database. For more information, click here.


2019KA43      Phys.Rev. C 100, 035804 (2019)

Y.Kashiwaba, T.Nakatsukasa

Self-consistent band calculation of the slab phase in the neutron-star crust

doi: 10.1103/PhysRevC.100.035804
Citations: PlumX Metrics


2018NI07      Phys.Rev. C 97, 044310 (2018)

F.Ni, T.Nakatsukasa

Comparative study of the requantization of the time-dependent mean field for the dynamics of nuclear pairing

doi: 10.1103/PhysRevC.97.044310
Citations: PlumX Metrics


2018NI17      Phys.Rev. C 98, 064327 (2018)

F.Ni, N.Hinohara, T.Nakatsukasa

Low-lying collective excited states in nonintegrable pairing models based on the stationary-phase approximation to the path integral

NUCLEAR STRUCTURE 186,188,190,192,194Pb; calculated eigenvalues of moving-frame quasi-random phase approximation equation as a function of collective coordinate, occupation numbers in each single-particle level, collective potentials, energies of first and second excited states, strength of pair-addition transitions, and pairing gap using stationary-phase approximation (SPA) to the path integral, combined with the adiabatic self-consistent collective coordinate method (ASCC+SPA). Description of low-lying excited 0+ states in nonintegrable pairing systems.

doi: 10.1103/PhysRevC.98.064327
Citations: PlumX Metrics


2017BA09      Acta Phys.Pol. B48, 259 (2017)

P.Baczyk, J.Dobaczewski, M.Konieczka, T.Nakatsukasa, K.Sato, W.Satula

Mirror and Triplet Displacement Energies Within Nuclear DFT: Numerical Stability

doi: 10.5506/APhysPolB.48.259
Citations: PlumX Metrics


2017EB01      Phys.Scr. 92, 064005 (2017)

S.Ebata, T.Nakatsukasa

Octupole deformation in the nuclear chart based on the 3D Skyrme Hartree-Fock plus BCS model

NUCLEAR STRUCTURE 142,144Xe, 144,146Ba, 144,146Ce, 150Sm, 150Gd, 196,198Dy, 200,202,204Er, 200,202,204Yb, 216,218,220Pb, 220,222,224Ra, 220,222Th, 220,224,226U; analyzed available data; deduced octupole-deformed nuclei.

doi: 10.1088/1402-4896/aa6c4c
Citations: PlumX Metrics


2017HI05      Phys.Rev. C 96, 014307 (2017)

Y.Hirayama, M.Mukai, Y.X.Watanabe, M.Ahmed, S.C.Jeong, H.S.Jung, Y.Kakiguchi, S.Kanaya, S.Kimura, J.Y.Moon, T.Nakatsukasa, M.Oyaizu, J.H.Park, P.Schury, A.Taniguchi, M.Wada, K.Washiyama, H.Watanabe, H.Miyatake

In-gas-cell laser spectroscopy of the magnetic dipole moment of the N ≈ 126 isotope 199Pt

NUCLEAR MOMENTS 199Pt, 199mPt; measured magnetic dipole and electric quadrupole moments, isotope shifts, mean-square charge radii by hyperfine splitting of the 48.792-nm transition using the in-gas-cell laser ionization spectroscopy (IGLIS), and the half-lives of the ground state and the isomer; discussed configurations. 192,196,198Pt; measured mean-square charge radii relative to that of 194Pt by hyperfine structure. Pt isotopes produced in 198Pt(136Xe, X), E=10.75 MeV/nucleon reaction using the on-line KEK Isotope Separation System (KISS) at RIKEN. Comparison with previous experimental results, and with self-consistent Bogoliubov (HFB) model calculations. Systematics of magnetic dipole moments of 5/2- and 13/2+ states in 193,195,197,199Pt and 197,199Hg. Systematics of mean square charge radius and quadrupole deformation in A=178-199 Pt isotopes.

doi: 10.1103/PhysRevC.96.014307
Citations: PlumX Metrics

Data from this article have been entered in the XUNDL database. For more information, click here.


2017WA39      Phys.Rev. C 96, 041304 (2017)

K.Washiyama, T.Nakatsukasa

Multipole modes of excitation in triaxially deformed superfluid nuclei

NUCLEAR STRUCTURE 24Mg, 92,94Zr, 110Ru, 190Pt; calculated isoscalar quadrupole strengths, EWSR values for 110Ru. 100Zr; calculated isoscalar (IS) and isovector (IV) monopole strengths. Fully microscopic and nonempirical construction of five-dimensional quadrupole collective Hamiltonian with a 3D FAM-QRPA code for triaxial deformed nuclei with superfluidity.

doi: 10.1103/PhysRevC.96.041304
Citations: PlumX Metrics


2017WE07      Phys.Rev. C 96, 014610 (2017)

K.Wen, T.Nakatsukasa

Adiabatic self-consistent collective path in nuclear fusion reactions

NUCLEAR REACTIONS 16O(16O, X)32S*, E(cm)<12 MeV; 4He(16O, X)20Ne*, E(cm)<3 MeV; calculated collective reaction paths for fusion reactions, octupole moment Q30 as a function of relative distance, density distribution contours and superdeformed state for 32S, single-particle energies for the fusion path, astrophysical S factor for the subbarrier fusion. Adiabatic self-consistent collective coordinate (ASCC) method.

doi: 10.1103/PhysRevC.96.014610
Citations: PlumX Metrics


2016MA10      J.Phys.(London) G43, 024006 (2016)

K.Matsuyanagi, M.Matsuo, T.Nakatsukasa, K.Yoshida, N.Hinohara, K.Sato

Microscopic derivation of the quadrupole collective Hamiltonian for shape coexistence/mixing dynamics

NUCLEAR STRUCTURE 72Kr, 30,32,34Mg; calculated potential energy surfaces, J, π, energy levels. Large-amplitude collective motions (LACM).

doi: 10.1088/0954-3899/43/2/024006
Citations: PlumX Metrics


2016MA71      Phys.Scr. 91, 063014 (2016)

K.Matsuyanagi, M.Matsuo, T.Nakatsukasa, K.Yoshida, N.Hinohara, K.Sato

Microscopic derivation of the Bohr-Mottelson collective Hamiltonian and its application to quadrupole shape dynamics

doi: 10.1088/0031-8949/91/6/063014
Citations: PlumX Metrics


2016NA48      Phys.Scr. 91, 073008 (2016)

T.Nakatsukasa, K.Matsuyanagi, M.Matsuzaki, Y.R.Shimizu

Quantal rotation and its coupling to intrinsic motion in nuclei

doi: 10.1088/0031-8949/91/7/073008
Citations: PlumX Metrics


2016WE13      Phys.Rev. C 94, 054618 (2016)

K.Wen, T.Nakatsukasa

Self-consistent collective coordinate for reaction path and inertial mass

NUCLEAR STRUCTURE 8Be; calculated eigenfrequencies for the ground state and the two well-separated α particles, density distribution, inertial mass, collective path, potential energy, cranking inertial mass, nuclear phase shift for scattering between two α particles as a function of incident energy of up to 40 MeV. Adiabatic self-consistent collective coordinate (ASCC) method. Comparison with theoretical results from constrained Hartree-Fock method, Inglis's cranking formula, and the adiabatic time-dependent Hartree-Fock (ATDHF) method.

doi: 10.1103/PhysRevC.94.054618
Citations: PlumX Metrics


2015AG09      Phys.Rev. C 92, 054310 (2015)

S.E.Agbemava, A.V.Afanasjev, T.Nakatsukasa, P.Ring

Covariant density functional theory: Reexamining the structure of superheavy nuclei

NUCLEAR STRUCTURE 236,238,240,242,244,246,248,250,252,254,256,258,260,262,264,266,268,270,272,274,276,278,280,282,284,286,288,290,292Cm, 238,240,242,244,246,248,250,252,254,256,258,260,262,264,266,268,270,272,274,276,278,280,282,284,286,288,290,292,294Cf, 240,242,244,246,248,250,252,254,256,258,260,262,264,266,268,270,272,274,276,278,280,282,284,286,288,290,292,294,296Fm, 242,244,246,248,250,252,254,256,258,260,262,264,266,268,270,272,274,276,278,280,282,284,286,288,290,292,294,296,298No, 246,248,250,252,254,256,258,260,262,264,266,268,270,272,274,276,278,280,282,284,286,288,290,292,294,296,298,300Rf, 250,252,254,256,258,260,262,264,266,268,270,272,274,276,278,280,282,284,286,288,290,292,294,296,298,300,302Sg, 258,260,262,264,266,268,270,272,274,276,278,280,282,284,286,288,290,292,294,296,298,300,302,304Hs, 264,266,268,270,272,274,276,278,280,282,284,286,288,290,292,294,296,298,300,302,304,306Ds, 270,272,274,276,278,280,282,284,286,288,290,292,294,296,298,300,302,304,306,308Cn, 276,278,280,282,284,286,288,290,292,294,296,298,300,302,304,306,308,310Fl, 282,284,286,288,290,292,294,296,298,300,302,304,306,308,310,312Lv, 290,292,294,296,298,300,302,304,306,308,310,312,314Og, 292,294,296,298,300,302,304,306,308,310,312,314,316120, 298,300,302,304,306,308,310,312,314,316,318122, 304,306,308,310,312,314,316,318,320124, 312,314,316,318,320,322126, 318,320,322,324128, 324,326130; calculated binding energies, proton and neutron quadrupole deformations, charge radii, root-mean square (rms) proton radii, neutron skin thicknesses, S(2n), S(2p), Q(α) and T1/2(α) using Viola-Seaborg formula. 292,304120; calculated neutron and proton single-particle states, shell gaps. Relativistic Hartree-Bogoliubov theory with DD-PC1 and PC-PK1 interactions, and five most up-to-date covariant energy density functionals of different types.

doi: 10.1103/PhysRevC.92.054310
Citations: PlumX Metrics


2014EB02      Phys.Rev. C 90, 024303 (2014); Erratum Phys.Rev. C 92, 069902 (2015)

S.Ebata, T.Nakatsukasa, T.Inakura

Systematic investigation of low-lying dipole modes using the canonical-basis time-dependent Hartree-Fock-Bogoliubov theory

NUCLEAR STRUCTURE 8,10,12,14,16,18,20,22C, 14,16,18,20,22,24,26O, 20,22,24,26,28,30,32Ne, 18,20,22,24,26,28,30,32,34,36,38,40Mg, 24,26,28,30,32,34,36,38,40,42,44,46Si, 26,28,30,32,34,36,38,40,42,44,46,48,50S, 32,34,36,38,40,42,44,46,48,50,52,54,56Ar, 34,36,38,40,42,44,46,48,50,52,54,56,58,60,62,64Ca, 56,58,60,62,64,66,68,70,72,74,76,78,80,82,84Ni, 60,62,64,66,68,70,72,74,76,78,80,82,84,86,88Zn, 64,66,68,70,72,74,76,78,80,82,84,86,88,90,92,94,96,98Ge, 68,70,72,74,76,78,80,82,84,86,88,90,92,94,96,98,100,102,104Se, 72,74,76,78,80,82,84,86,88,90,92,94,96,98,100,102,104,106,108,110,112,114,116,118Kr, 76,78,80,82,84,86,88,90,92,94,96,98,100,102,104,106,108,110,112,114,116,118Sr, 80,82,84,86,88,90,92,94,96,98,100,102,104,106,108,110,112,114,116,118,120,122,124,126,128,130,132Zr, 84,86,88,90,92,94,96,98,100,102,104,106,108,110,112,114,116,118,120,122,124,126,128,130,132Mo, 88,90,92,94,96,98,100,102,104,106,108,110,112,114,116,118,120,122,124,126,128,130Ru, 92,94,96,98,100,102,104,106,108,110,112,114,116,118,120,122,124,126,128,130,132,134Pd, 96,98,100,102,104,106,108,110,112,114,116,118,120,122,124,126,128,130,132,134,136,138Cd, 100,102,104,106,108,110,112,114,116,118,120,122,124,126,128,130,132,134,136,138,140Sn; calculated low-lying electric dipole (E1) strengths of pygmy dipole resonances (PDR), the PDR fraction as functions of the neutron number and neutron skin thickness, proton number dependence of the PDR fraction, shell structure, neutron skin thickness, neutron and proton pairing gaps and chemical potentials, quadrupole deformation parameters β2 and γ. 128,130,132,134,136,138,140,142Te; calculated Proton number dependence of the PDR fraction. Canonical-basis time-dependent Hartree-Fock-Bogoliubov (Cb-TDHFB) theory.

doi: 10.1103/PhysRevC.90.024303
Citations: PlumX Metrics


2014IN03      Phys.Rev. C 89, 064316 (2014)

T.Inakura, W.Horiuchi, Y.Suzuki, T.Nakatsukasa

Mean-field analysis of ground-state and low-lying electric dipole strength in 22C

NUCLEAR STRUCTURE 22C; calculated ground-state properties, neutron single-particle energies, rms matter radius, S(2n) using various Skyrme interactions, E1 strength distributions, neutron Fermi level dependence of low-lying E1 strength, dipole and neutron transition densities. Mean-field approach with Skyrme energy density functionals, and random-phase approximation for E1 strength. Importance of core excitations with the 1d5/2 orbit.

doi: 10.1103/PhysRevC.89.064316
Citations: PlumX Metrics


2014LI14      Phys.Scr. 89, 054018 (2014)

H.Liang, T.Nakatsukasa, Z.Niu, J.Meng

Finite-amplitude method: an extension to the covariant density functionals

NUCLEAR STRUCTURE 208Pb; calculated isoscalar giant monopole resonances. The finite-amplitude method for optimizing the computational performance of the random-phase approximation.

doi: 10.1088/0031-8949/89/5/054018
Citations: PlumX Metrics


2014MA98      Phys.Scr. 89, 054020 (2014)

M.Matsuo, N.Hinohara, K.Sato, K.Matsuyanagi, T.Nakatsukasa, K.Yoshida

Quadrupole shape dynamics from the viewpoint of a theory of large-amplitude collective motion

NUCLEAR STRUCTURE 58,60,62,64,66Cr; calculated low-lying quadrupole shape dynamics using large-scale collective motion; deduced deformation, shape-coexistence, shape-mixing, shape-transitional behavior, B(E2). Partially compared with data.

doi: 10.1088/0031-8949/89/5/054020
Citations: PlumX Metrics


2014SH11      Phys.Rev. C 89, 054317 (2014)

J.A.Sheikh, N.Hinohara, J.Dobaczewski, T.Nakatsukasa, W.Nazarewicz, K.Sato

Isospin-invariant Skyrme energy-density-functional approach with axial symmetry

NUCLEAR STRUCTURE A=78, 48, 40; calculated total Hartree-Fock (HF) energy, single-particle energies and Routhians with and without isospin-symmetry-breaking Coulomb term, neutron and proton rms radii for isobaric analog chains. 78Ni, 78Zn, 78Ge, 78Se, 78Kr, 78Sr, 78Zr, 78Mo, 78Ru, 78Pd, 78Cd, 78Sn; calculated g9/2 proton effective HF potential, rms radii, single-particle energies. binding energy. Extension of existing axial DFT solver HFBTHO to isospin-invariant Skyrme EDF approach with all possible p-n (isospin) mixing terms. Comparison between HFODD and HFBTHO results.

doi: 10.1103/PhysRevC.89.054317
Citations: PlumX Metrics


2013AV01      Phys.Rev. C 87, 014331 (2013)

P.Avogadro, T.Nakatsukasa

Efficient calculation for the quasiparticle random-phase approximation matrix

NUCLEAR STRUCTURE 120Sn; calculated isoscalar monopole strength function. 208,210,212,214,216,218,220,222,224Pb; calculated chemical potentials, average pairing gaps, neutron pair transfer strengths. Iterative finite-amplitude (i-FAM) QRPA matrix finite-amplitude (m-FAM) methods. Discussed computational aspects of different FAM approaches.

doi: 10.1103/PhysRevC.87.014331
Citations: PlumX Metrics


2013EB03      J.Phys.:Conf.Ser. 445, 012021 (2013)

S.Ebata, T.Nakatsukasa, T.Inakura

Systematic investigation of El strength for the isotopes from Z = 28 to 50

NUCLEAR STRUCTURE Ge, Se, Kr, Sr, Zr, Mo, Ru, Pd, Cd, Sn; calculated radius, neutron skin, electric dipole polarizability, pygmy-dipole-ratio using canonical-basis time-dependent Hartree-Fock-Bogoliubov (Cb-TDHFB) theory.

doi: 10.1088/1742-6596/445/1/012021
Citations: PlumX Metrics


2013FU09      Phys.Rev. C 88, 014321 (2013)

Y.Fukuoka, S.Shinohara, Y.Funaki, T.Nakatsukasa, K.Yabana

Deformation and cluster structures in 12C studied with configuration mixing using Skyrme interactions

NUCLEAR STRUCTURE 12C; calculated levels, J, π, B(E2), B(E3), E0 transition probability, mass rms radius of excited states, elastic form factor for E0 transitions, Slater determinants, nuclear density contour plots. Coupling between shell-model and cluster configurations. Configuration-mixing method with different parameters of Skyrme interaction. Three-α linear-chain configuration of second excited 0+ state. Comparison with previous theoretical studies, and with experimental data.

doi: 10.1103/PhysRevC.88.014321
Citations: PlumX Metrics


2013IN06      Phys.Rev. C 88, 051305 (2013)

T.Inakura, T.Nakatsukasa, K.Yabana

Low-energy $E1$ strength in select nuclei: Possible constraints on neutron skin and symmetry energy

NUCLEAR STRUCTURE 24O, 26Ne, 48,52,54Ca, 58Cr, 68,78,84Ni, 208Pb; calculated correlations between low-lying electric dipole (E1) strength (PDR) and neutron-skin thickness. 84Ni; calculated E1 strengths for PDR GDR. Self-consistent random-phase approximation by using several Skyrme energy functionals.

doi: 10.1103/PhysRevC.88.051305
Citations: PlumX Metrics


2013LI20      Phys.Rev. C 87, 054310 (2013)

H.Liang, T.Nakatsukasa, Z.Niu, J.Meng

Feasibility of the finite-amplitude method in covariant density functional theory

NUCLEAR STRUCTURE 16O; calculated unperturbed 0+ excitation strengths. 132Sn, 208Pb; calculated isoscalar giant monopole resonance (ISGMR). Self-consistent relativistic random-phase approximation (RPA) and finite-amplitude method (FAM) based on RMF theory. Comparison with experimental data. Discussed effects of the Dirac sea in the matrix-FAM scheme.

doi: 10.1103/PhysRevC.87.054310
Citations: PlumX Metrics


2013SA59      Phys.Rev. C 88, 061301 (2013)

K.Sato, J.Dobaczewski, T.Nakatsukasa, W.Satula

Energy-density-functional calculations including proton-neutron mixing

NUCLEAR STRUCTURE A=14, 40-56; 48Cr; calculated single particle Routhians, IAS, isospin states using Skyrme energy density functional including mixing between protons and neutrons, high-isospin states in 48Cr using augmented Lagrange method.

doi: 10.1103/PhysRevC.88.061301
Citations: PlumX Metrics


2013YO08      Phys.Rev. C 88, 034309 (2013)

K.Yoshida, T.Nakatsukasa

Shape evolution of giant resonances in Nd and Sm isotopes

NUCLEAR STRUCTURE 142,144,146,148,150,152Nd, 144,146,148,150,152,154Sm; calculated chemical potentials, deformation parameters, quadrupole moments, average pairing gaps, and root-mean-square radii for ground states, isoscalar dipole, quadrupole and octupole transition-strength distributions in the low-energy and giant-resonance regions, strength distributions of isoscalar and isovector giant monopole resonances (ISGMR, IVGMR), giant quadrupole resonances (ISGQR, IVGQR), giant dipole resonances (ISGDR, IVGDR), and giant octupole resonances (ISGOR, IVGOR), centroid energies and widths of ISGQR, ISGMR, ISGDR, high-energy octupole resonances (HEOR), low-energy octupole resonances (LEOR), excitation energies of lowest 0+, 2+, 0- and 1- states, peak energies of the ISGMR and ISGQR. Quasiparticle-random-phase approximation (QRPA) on the basis of the Skyrme energy-density-functional method. Deformation effects on giant resonances investigated. Comparison with experimental data.

doi: 10.1103/PhysRevC.88.034309
Citations: PlumX Metrics


2012EB01      Prog.Theor.Phys.(Kyoto), Suppl. 196, 316 (2012)

S.Ebata, T.Nakatsukasa, Ts.Inakura

Cb-TDHFB Calculation for the Low-Lying E1 Strength of Heavy Nuclei around the r-Process Path

doi: 10.1143/PTPS.196.316
Citations: PlumX Metrics


2012EB02      J.Phys.:Conf.Ser. 381, 012104 (2012)

S.Ebata, T.Nakatsukasa, T.Inakura

Study of pygmy dipole resonance with a new time-dependent mean field theory

NUCLEAR STRUCTURE O, Ne, Mg, S, Ar, Ca, Sr, Zr, Mo, Ru, Pd, Cd, Sn, Te, Xe; calculated ratio of pygmy dipole resonance strength using Cb-TDHFB (canonical basis TDHFB).

doi: 10.1088/1742-6596/381/1/012104
Citations: PlumX Metrics


2012HI02      Phys.Rev. C 85, 024323 (2012)

N.Hinohara, Z.P.Li, T.Nakatsukasa, T.Niksic, D.Vretenar

Effect of time-odd mean fields on inertial parameters of the quadrupole collective Hamiltonian

NUCLEAR STRUCTURE 128,130,132Xe, 130,132,134Ba; calculated triaxial quadrupole binding energy maps, and quadrupole energy surfaces in β-γ plane, ratios of moments of inertia, ratios of vibrational mass parameters, cranking mass parameters, low-lying levels, J, π. Hybrid model based on microscopic collective Hamiltonian and CHFB+LQRPA method to estimate the contribution of time-odd mean fields (Thouless-Valatin contribution). Comparison with experimental data.

doi: 10.1103/PhysRevC.85.024323
Citations: PlumX Metrics


2012HI08      Prog.Theor.Phys.(Kyoto), Suppl. 196, 328 (2012)

N.Hinohara, K.Sato, K.Yoshida, T.Nakatsukasa, M.Matsuo, K.Matsuyanagi

Microscopic Analysis of Shape Coexistence/Mixing and Shape Phase Transition in Neutron-Rich Nuclei around 32Mg

NUCLEAR STRUCTURE 30,32,34,36Mg; analyzed quadrupole dynamics data; deduced enhancement of the quadrupole collectivity using collective Hamiltonian approach.

doi: 10.1143/PTPS.196.328
Citations: PlumX Metrics


2012HO19      Phys.Rev. C 86, 024614 (2012)

W.Horiuchi, T.Inakura, T.Nakatsukasa, Y.Suzuki

Glauber-model analysis of total reaction cross sections for Ne, Mg, Si, and S isotopes with Skyrme-Hartree-Fock densities

NUCLEAR REACTIONS 12C(17Ne, X), (18Ne, X), (19Ne, X), (20Ne, X), (21Ne, X), (22Ne, X), (23Ne, X), (24Ne, X), (25Ne, X), (26Ne, X), (27Ne, X), (28Ne, X), (29Ne, X), (30Ne, X), (31Ne, X), (32Ne, X), (33Ne, X), (34Ne, X), (20Mg, X), (21Mg, X), (22Mg, X), (23Mg, X), (24Mg, X), (25Mg, X), (26Mg, X), (27Mg, X), (28Mg, X), (29Mg, X), (30Mg, X), (31Mg, X), (32Mg, X), (33Mg, X), (34Mg, X), (35Mg, X), (36Mg, X), (37Mg, X), (38Mg, X), (24Si, X), (25Si, X), (26Si, X), (27Si, X), (28Si, X), (29Si, X), (30Si, X), (31Si, X), (32Si, X), (33Si, X), (34Si, X), (35Si, X), (36Si, X), (37Si, X), (38Si, X), (39Si, X), (40Si, X), (41Si, X), (42Si, X), (43Si, X), (44Si, X), (45Si, X), (46Si, X), (26S, X), (27S, X), (28S, X), (29S, X), (30S, X), (31S, X), (32S, X), (33S, X), (34S, X), (35S, X), (36S, X), (37S, X), (38S, X), (39S, X), (40S, X), (41S, X), (42S, X), (43S, X), (44S, X), (45S, X), (46S, X), (47S, X), (48S, X), (49S, X), (50S, X), E=240 MeV/nucleon; 12C(13O, X), (14O, X), (15O, X), (16O, X), (17O, X), (18O, X), (19O, X), (20O, X), (21O, X), (22O, X), (23O, X), (24O, X), (17Ne, X), (18Ne, X), (19Ne, X), (20Ne, X), (21Ne, X), (22Ne, X), (23Ne, X), (24Ne, X), (25Ne, X), (26Ne, X), (27Ne, X), (28Ne, X), (29Ne, X), (30Ne, X), (31Ne, X), (32Ne, X), (33Ne, X), (34Ne, X), (20Mg, X), (21Mg, X), (22Mg, X), (23Mg, X), (24Mg, X), (25Mg, X), (26Mg, X), (27Mg, X), (28Mg, X), (29Mg, X), (30Mg, X), (31Mg, X), (32Mg, X), (33Mg, X), (34Mg, X), (35Mg, X), (36Mg, X), (37Mg, X), (38Mg, X), E=1000 MeV/nucleon; calculated total reaction σ. Glauber model for high-energy nucleus-nucleus collisions with SkM* interaction. Comparison with experimental data. Role of nuclear deformation in determining the matter radius.

NUCLEAR STRUCTURE 20,21,22,23,24,25,26,27,28,29,30,31,32,33,34Ne, 22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38Mg, 24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46Si, 26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50S; calculated point matter, neutron and proton radii, neutron Fermi energy for Ne isotopes, quadrupole deformation parameter. Skyrme-Hartree-Fock calculation SkM* and SLy4 interactions.

doi: 10.1103/PhysRevC.86.024614
Citations: PlumX Metrics


2012IN02      Prog.Theor.Phys.(Kyoto), Suppl. 196, 365 (2012)

T.Inakura, T.Nakatsukasa, K.Yabana

Shell and Neutron-Skin Effects on Pygmy Dipole Resonances

NUCLEAR STRUCTURE Z=16-40; calculated low-lying dipole resonances, pygmy dipole resonances, E1 strengths. 68,84Ni; Comparison with available data.

doi: 10.1143/PTPS.196.365
Citations: PlumX Metrics


2012NA28      J.Phys.:Conf.Ser. 387, 012015 (2012)

T.Nakatsukasa, S.Ebata, P.Avogadro, L.Guo, T.Inakura, K.Yoshida

Density functional approaches to nuclear dynamics

NUCLEAR STRUCTURE 120Sn; calculated isoscalar monopole γ strength function. 132,134,136,138,140Xe; calculated B(E1) strength distribution. Density functional approach.

doi: 10.1088/1742-6596/387/1/012015
Citations: PlumX Metrics


2012SA33      Phys.Rev. C 86, 024316 (2012)

K.Sato, N.Hinohara, K.Yoshida, T.Nakatsukasa, M.Matsuo, K.Matsuyanagi

Shape transition and fluctuations in neutron-rich Cr isotopes around N=40

NUCLEAR STRUCTURE 58,60,62,64,66Cr; calculated potential energy surface contours in β-γ plane, levels, B(E2), vibrational wave functions contours, E0 transition strengths. Solution of Schrodinger equation for five-dimensional quadrupole collective Hamiltonian, with constrained Hartree-Fock-Bogoliubov plus local quasiparticle random-phase approximation (CHFB+LQRPA) method. Large-amplitude shape fluctuations in low-lying states. Comparison with experimental data.

doi: 10.1103/PhysRevC.86.024316
Citations: PlumX Metrics


2012SA63      J.Phys.:Conf.Ser. 381, 012103 (2012)

K.Sato, N.Hinohara, T.Nakatsukasa, M.Matsuo, K.Matsuyanagi

Microscopic approach to large-amplitude deformation dynamics with local QRPA inertial masses

NUCLEAR STRUCTURE 72Kr; calculated levels, J, π, deformation, B(E2) using CHFB (constrained HFB) + LQRPA (local QRPA). 58,60,62,64Cr; calculated levels, J, π, deformation, spectroscopic quadrupole moment, B(E2) using CHFB.

doi: 10.1088/1742-6596/381/1/012103
Citations: PlumX Metrics


2012TO02      Phys.Rev. C 85, 031302 (2012)

M.Tohyama, T.Nakatsukasa

Fragmentation of electric dipole strength in N=82 isotones

NUCLEAR STRUCTURE 140Ce, 142Nd, 144Sm; calculated E1 strength functions, low energy E1 strength distributions, excitation energies, B(E1). Second random-phase approximation (SRPA). Comparison with experimental data.

doi: 10.1103/PhysRevC.85.031302
Citations: PlumX Metrics


2012WA35      Phys.Rev. C 86, 064319 (2012)

D.Ward, A.O.Macchiavelli, R.M.Clark, D.Cline, M.Cromaz, M.A.Deleplanque, R.M.Diamond, P.Fallon, A.Gorgen, A.B.Hayes, G.J.Lane, I.-Y.Lee, T.Nakatsukasa, G.Schmidt, F.S.Stephens, C.E.Svensson, R.Teng, K.Vetter, C.Y.Wu

Band structure of 235U

NUCLEAR REACTIONS 235U(136Xe, 136Xe'), E=720 MeV; 235U(40Ca, 40Ca'), E=184 MeV; measured Eγ, Iγ, (particle)γ-, γγ-coin, Coulomb excitation yields, γ branching ratios using Gammasphere, 8π and CHICO arrays. 235U; deduced high-spin levels, J, π, B(M1), B(E2), B(E3) from Winther-deBoer analysis, gK, magnetic decoupling parameter, rotational bands, configurations. Analyzed coriolis interaction in j15/2 orbital. Comparison with quasiparticle random phase approximation (QRPA) calculations for B(E3). Discussed E3 correlations and Coriolis effects.

doi: 10.1103/PhysRevC.86.064319
Citations: PlumX Metrics

Data from this article have been entered in the XUNDL database. For more information, click here.


2011AV06      Phys.Rev. C 84, 014314 (2011)

P.Avogadro, T.Nakatsukasa

Finite amplitude method for the quasiparticle random-phase approximation

NUCLEAR STRUCTURE 174Sn; calculated transition strengths for isoscalar monopole 0+ excitation. Quasiparticle random-phase approximation (QRPA) with finite amplitude method.

doi: 10.1103/PhysRevC.84.014314
Citations: PlumX Metrics


2011EB04      J.Phys.:Conf.Ser. 312, 092023 (2011)

S.Ebata, T.Nakatsukasa, K.Yabana

Linear response calculation using the canonical-basis TDHFB with a schematic pairing functional

NUCLEAR STRUCTURE 18,20,22,24,26,28Mg; calculated quadrupole deformation parameters, pairing gaps, chemical potentials, E1 strength distribution.

doi: 10.1088/1742-6596/312/9/092023
Citations: PlumX Metrics


2011HI03      Acta Phys.Pol. B42, 443 (2011)

N.Hinohara, K.Sato, T.Nakatsukasa, M.Matsuo

Local QRPA Vibrational and Rotational Inertial Functions for Large-amplitude Quadrupole Collective Dynamics

NUCLEAR STRUCTURE 68,76Se; calculated collective potential, energies, J, π. Comparison with experimental data.

doi: 10.5506/APhysPolB.42.443
Citations: PlumX Metrics


2011HI18      Phys.Rev. C 84, 061302 (2011)

N.Hinohara, K.Sato, K.Yoshida, T.Nakatsukasa, M.Matsuo, K.Matsuyanagi

Shape fluctuations in the ground and excited 0+ states of 30, 32, 34Mg

NUCLEAR STRUCTURE 30,32,34,36Mg; calculated collective potential surfaces, levels, J, π, B(E2) values for low-lying positive-parity states, vibrational wave functions. Five-dimensional (5D) quadrupole collective Schrodinger equation, constrained Hartree-Fock-Bogoliubov plus local quasiparticle random phase approximation. Ground and excited 0+ states. Comparison with experimental data.

doi: 10.1103/PhysRevC.84.061302
Citations: PlumX Metrics


2011IN02      Phys.Rev. C 84, 021302 (2011)

T.Inakura, T.Nakatsukasa, K.Yabana

Emergence of pygmy dipole resonances: Magic numbers and neutron skins

NUCLEAR STRUCTURE 20,22,24,26,28,30,32,34Ne, 40,42,44,46,48,50,52,54,56,58,60Ca; calculated photoabsorption cross sections. Z=8-40, N=8-82; calculated fraction of photoabsorption cross section of pygmy dipole resonances (PDR) for even-even spherical and deformed nuclei. Z=16-40, N=16-82; calculated correlations between fraction of photoabsorption cross section of pygmy dipole resonances (PDR) and neutron skin thickness for even-even nuclei. B(E1) strengths. Random-phase approximation (RPA) calculations with the Skyrme functional SkM* using finite amplitude method (FAM).

doi: 10.1103/PhysRevC.84.021302
Citations: PlumX Metrics


2011NA03      Acta Phys.Pol. B42, 609 (2011)

T.Nakatsukasa, P.Avogadro, S.Ebata, T.Inakura, K.Yoshida

Self-consistent Description of Nuclear Photoabsorption Cross-sections

NUCLEAR REACTIONS 154Sm(γ, X), E<40 MeV; calculated σ. QRPA and FAM calculations, comparison with experimental data.

NUCLEAR STRUCTURE 50Ca; calculated isoscalar monopole strength distribution. QRPA and FAM calculations.

doi: 10.5506/APhysPolB.42.609
Citations: PlumX Metrics


2011ST20      Phys.Rev. C 84, 041305 (2011)

M.Stoitsov, M.Kortelainen, T.Nakatsukasa, C.Losa, W.Nazarewicz

Monopole strength function of deformed superfluid nuclei

NUCLEAR STRUCTURE 24Mg, 100Zr, 240Pu; calculated isoscalar and isovector monopole strengths, strength functions. Finite-amplitude method (FAM) in nuclear density functional theory with quasiparticle random-phase approximation (QRPA).

doi: 10.1103/PhysRevC.84.041305
Citations: PlumX Metrics


2011WA26      Phys.Lett. B 704, 270 (2011)

H.Watanabe, K.Yamaguchi, A.Odahara, T.Sumikama, S.Nishimura, K.Yoshinaga, Z.Li, Y.Miyashita, K.Sato, L.Prochniak, H.Baba, J.S.Berryman, N.Blasi, A.Bracco, F.Camera, J.Chiba, P.Doornenbal, S.Go, T.Hashimoto, S.Hayakawa, C.Hinke, N.Hinohara, E.Ideguchi, T.Isobe, Y.Ito, D.G.Jenkins, Y.Kawada, N.Kobayashi, Y.Kondo, R.Krucken, S.Kubono, G.Lorusso, T.Nakano, T.Nakatsukasa, M.Kurata-Nishimura, H.J.Ong, S.Ota, Zs.Podolyak, H.Sakurai, H.Scheit, K.Steiger, D.Steppenbeck, K.Sugimoto, K.Tajiri, S.Takano, A.Takashima, T.Teranishi, Y.Wakabayashi, P.M.Walker, O.Wieland, H.Yamaguchi

Development of axial asymmetry in the neutron-rich nucleus 110Mo

RADIOACTIVITY 110Nb(β-) [from Be(238U, X), E=345 MeV/nucleon]; measured decay products, Eγ, Iγ, X-rays. 110Mo; deduced energy levels, J, π, quasi-γ-band state, B(e2) ratio. Comparison with general Bohr Hamiltonian method calculations, systematics of low-lying levels of even-even Mo nuclei.

NUCLEAR STRUCTURE 104,106,108,110Mo; calculated moments of inertia, potential energy surface, the nuclear landscape. General Bohr Hamiltonian method calculations.

doi: 10.1016/j.physletb.2011.09.050
Citations: PlumX Metrics

Data from this article have been entered in the XUNDL database. For more information, click here.


2011YO02      Phys.Rev. C 83, 021304 (2011)

K.Yoshida, T.Nakatsukasa

Dipole responses in Nd and Sm isotopes with shape transitions

NUCLEAR REACTIONS 142,144,146,148,150,152Nd, 144,146,148,150,152,154Sm(γ, X), E=5-25 MeV; calculated photoabsorption cross sections, B(E1) strengths of GDR, transition densities. Quasiparticle-random-phase approximation based on the Hartree-Fock-Bogoliubov ground states using Skyrme energy and SkM*, SLy4, and SkP density functional. Role of deformation on B(E1) strengths. Comparison with experimental data.

doi: 10.1103/PhysRevC.83.021304
Citations: PlumX Metrics


2010EB01      Phys.Rev. C 82, 034306 (2010)

S.Ebata, T.Nakatsukasa, T.Inakura, K.Yoshida, Y.Hashimoto, K.Yabana

Canonical-basis time-dependent Hartree-Fock-Bogoliubov theory and linear-response calculations

NUCLEAR STRUCTURE 20,22,24,26,28,30,32Ne, 24,26,28,30,32,34,36,38,40Mg; calculated quadrupole deformation parameters, pairing gaps, chemical potentials, E1 and isoscalar quadrupole strength distributions, photoabsorption cross sections from equations derived from canonical-basis (Cb) formulation of the time-dependent Hartree-Fock-Bogoliubov (TDHFB) theory.

doi: 10.1103/PhysRevC.82.034306
Citations: PlumX Metrics


2010HI09      Phys.Rev. C 82, 064313 (2010)

N.Hinohara, K.Sato, T.Nakatsukasa, M.Matsuo, K.Matsuyanagi

Microscopic description of large-amplitude shape-mixing dynamics with inertial functions derived in local quasiparticle random-phase approximation

NUCLEAR STRUCTURE 68,70,72Se; calculated, in β-γ plane, collective potential surfaces, monopole and quadrupole pairing gaps, vibrational masses, rotational masses, vibrational wave functions, B(E2), excitation energies, and spectroscopic quadrupole moments using constrained Hartree-Fock-Bogoliubov (CHFB) and local quasiparticle random-phase approximation (LQRPA) based on adiabatic self-consistent collective coordinate (ASCC) method. Comparison with experimental data.

doi: 10.1103/PhysRevC.82.064313
Citations: PlumX Metrics


2010SA01      Prog.Theor.Phys.(Kyoto) 123, 129 (2010)

K.Sato, N.Hinohara, T.Nakatsukasa, M.Matsuo, K.Matsuyanagi

A Model Analysis of Triaxial Deformation Dynamics in Oblate-Prolate Shape Coexistence Phenomena

doi: 10.1143/PTP.123.129
Citations: PlumX Metrics


2010SE10      Nucl.Phys. A834, 357c (2010)

D.Seweryniak, T.L.Khoo, I.Ahmad, F.G.Kondev, A.Robinson, S.K.Tandel, M.Asai, B.B.Back, M.P.Carpenter, P.Chowdhury, C.N.Davids, S.Eeckhaudt, J.P.Greene, P.T.Greenlees, S.Gros, K.Hauschild, A.Heinz, R.-D.Herzberg, R.V.F.Janssens, D.G.Jenkins, G.D.Jones, S.Ketelhut, T.Lauritsen, C.J.Lister, A.Lopez-Martens, P.Marley, E.A.McCutchan, T.Nakatsukasa, P.Papadakis, D.Peterson, J.Qian, D.Rostron, I.Stefanescu, U.S.Tandel, X.F.Wang, S.F.Zhu

Bridging the nuclear structure gap between stable and super heavy nuclei

NUCLEAR STRUCTURE 249Bk; calculated single-proton energies using different interactions; 252,254No, 256,257Rf; deduced configurations. Comparison with data.

doi: 10.1016/j.nuclphysa.2010.01.039
Citations: PlumX Metrics


2009HI07      Phys.Rev. C 80, 014305 (2009)

N.Hinohara, T.Nakatsukasa, M.Matsuo, K.Matsuyanagi

Microscopic description of oblate-prolate shape mixing in proton-rich Se isotopes

NUCLEAR STRUCTURE 68,70,72Se; calculated levels, J, π, B(E2), quadrupole deformation, collective paths, monopole and quadrupole pairing gaps, collective potential and mass, frequencies at Hartree-Bogoliubov (HB) equilibrium, vibrational wave functions and spectroscopic quadrupole moments using adiabatic self-consistent collective coordinate (ASCC) method.

doi: 10.1103/PhysRevC.80.014305
Citations: PlumX Metrics


2009IN03      Phys.Rev. C 80, 044301 (2009)

T.Inakura, T.Nakatsukasa, K.Yabana

Self-consistent calculation of nuclear photoabsorption cross sections: Finite amplitude method with Skyrme functionals in the three-dimensional real space

NUCLEAR REACTIONS 16O(γ, X), E=0-50 MeV; 24Mg, 40Ca(γ, X), E=10-35 MeV; 90Zr, 120Sn, 208Pb(γ, X), E=5-25 MeV; calculated photoabsorption σ, transition density contour maps, GDR energies and widths using Finite Amplitude method with different Skyrme energy functionals in the 3-dimensional real space. Comparison with experimental data.

doi: 10.1103/PhysRevC.80.044301
Citations: PlumX Metrics


2009IN04      Int.J.Mod.Phys. E18, 2088 (2009)

T.Inakura, T.Nakatsukasa, K.Yabana

Response functions in the continuum of deformed nuclei studied with the time-dependent density-functional calculations

NUCLEAR REACTIONS 16O, 24Mg, 28Si, 90Zr, 208Pb(γ, X), E<35 MeV; calculated photoabsorption σ, giant dipole resonance (GDR) peaks. Time-dependent density-functional theory (TDDFT).

doi: 10.1142/S0218301309014342
Citations: PlumX Metrics


2009IN05      Eur.Phys.J. A 42, 591 (2009)

T.Inakura, T.Nakatsukasa, K.Yabana

Systematic study of electric-dipole excitations with fully self-consistent Skyrme HF plus RPA from light-to-medium-mass deformed nuclei

NUCLEAR REACTIONS 16O, 24Mg, 28Si, 40Ca, 90Zr, 208Pb(γ, X), E<35MeV; calculated photoabsorption σ; analyzed deformation parameter. Finite amplitude method.

doi: 10.1140/epja/i2009-10811-9
Citations: PlumX Metrics


2009LO04      Phys.Lett. B 680, 428 (2009)

W.H.Long, T.Nakatsukasa, H.Sagawa, J.Meng, H.Nakada, Y.Zhang

Non-local mean field effect on nuclei near Z=64 sub-shell

NUCLEAR STRUCTURE 132Sn, 134Te, 136Xe, 138Ba, 140Ce, 142Nd, 144Sm, 146Gd, 148Dy, 150Er, 152Yb, 154Hf, 156W; calculated (pseudo-)spin-orbit splitting and proton state energy differences for N=82 isotones using density dependent relativistic HartreeFock model. Comparison with other models and experimental data.

doi: 10.1016/j.physletb.2009.09.034
Citations: PlumX Metrics


2009WA04      Phys.Rev.Lett. 102, 122501 (2009)

X.Wang, R.V.F.Janssens, M.P.Carpenter, S.Zhu, I.Wiedenhover, U.Garg, S.Frauendorf, T.Nakatsukasa, I.Ahmad, A.Bernstein, E.Diffenderfer, S.J.Freeman, J.P.Greene, T.L.Khoo, F.G.Kondev, A.Larabee, T.Lauritsen, C.J.Lister, B.Meredith, D.Seweryniak, C.Teal, P.Wilson

Structure of 240Pu: Evidence for Octupole Phonon Condensation?

NUCLEAR REACTIONS 240Pu(208Pb, 208Pb'), E=1300 MeV; measured Eγ, Iγ, γγ-coin. 240Pu; deduced levels, J, π.

doi: 10.1103/PhysRevLett.102.122501
Citations: PlumX Metrics

Data from this article have been entered in the XUNDL database. For more information, click here.


2009YA20      Phys.Rev. C 80, 064301 (2009)

M.Yamagami, Y.R.Shimizu, T.Nakatsukasa

Optimal pair density functional for the description of nuclei with large neutron excess

NUCLEAR STRUCTURE A=118-196; calculated proton and neutron pairing gaps and rms deviations using Hartree-Fock-Bogoliubov (HFB) method for 156 nuclei in the A=118-196 range and with (N-Z)/A<0.25. Optimization of parameters in the pair density-functional (DF) for large neutron excess nuclei. Comparison with experimental data.

doi: 10.1103/PhysRevC.80.064301
Citations: PlumX Metrics


2008HI02      Prog.Theor.Phys.(Kyoto) 119, 59 (2008)

N.Hinohara, T.Nakatsukasa, M.Matsuo, K.Matsuyanagi

Microscopic Derivation of Collective Hamiltonian by Means of the Adiabatic Self-Consistent Collective Coordinate Method -Shape Mixing in Low-Lying States of 68Se and 72Kr-

NUCLEAR STRUCTURE 68Se, 72Kr; calculated level energies, B(E2), quadrupole deformation parameters, and pairing gaps using the ASCC method in conjunction with P+Q hamiltonian.

doi: 10.1143/PTP.119.59
Citations: PlumX Metrics


2008NA08      Eur.Phys.J. Special Topics 156, 249 (2008)

T.Nakatsukasa, K.Yabana, M.Ito

Time-dependent approaches for reaction and response in unstable nuclei

doi: 10.1140\epjst/e2008-00622-2
Citations: PlumX Metrics


2008RO21      Phys.Rev. C 78, 034308 (2008)

A.P.Robinson, T.L.Khoo, I.Ahmad, S.K.Tandel, F.G.Kondev, T.Nakatsukasa, D.Seweryniak, M.Asai, B.B.Back, M.P.Carpenter, P.Chowdhury, C.N.Davids, S.Eeckhaudt, J.P.Greene, P.T.Greenlees, S.Gros, A.Heinz, R.-D.Herzberg, R.V.F.Janssens, G.D.Jones, T.Lauritsen, C.J.Lister, D.Peterson, J.Qian, U.S.Tandel, X.Wang, S.Zhu

Kπ = 8- isomers and Kπ = 2- octupole vibrations in N = 150 shell-stabilized isotones

NUCLEAR REACTIONS 206Pb(48Ca, 2n), E=217 MeV; measured Eγ, Iγ, conversion electron spectra, γγ-, (ce)γ-coin, half-life. 252No; deduced levels, J, π. 244Pu, 248Cf, 250Fm; systematics of 2- and 8- states.

RADIOACTIVITY 246Am(β-) [from 244Pu(α, pn), E=42 MeV]; measured Eγ, Iγ, conversion electron spectra, γγ-, (ce)γ-spectra, isomer half-life. 246Cm; deduced levels, J, π.

doi: 10.1103/PhysRevC.78.034308
Citations: PlumX Metrics

Data from this article have been entered in the XUNDL database. For more information, click here.


2007HI03      Prog.Theor.Phys.(Kyoto) 117, 451 (2007)

N.Hinohara, T.Nakatsukasa, M.Matsuo, K.Matsuyanagi

Gauge-Invariant Formulation of the Adiabatic Self-Consistent Collective Coordinate Method

doi: 10.1143/PTP.117.451
Citations: PlumX Metrics


2007IT05      Nucl.Phys. A787, 267c (2007)

M.Ito, K.Yabana, T.Nakatsukasa, M.Ueda

Fusion reaction of halo nuclei : A real-time wave-packet method for three-body tunneling dynamics

NUCLEAR REACTIONS 209Bi(10Be, X), (11Be, X), E(cm)=36-50 MeV; 238U(α, X), (6He, X), E(cm)=14-32 MeV; calculated fusion σ. Three-body model, time-dependent wave-packet method to solve Schroedinger equation. Comparison with data.

doi: 10.1016/j.nuclphysa.2006.12.042
Citations: PlumX Metrics


2007NA19      Phys.Rev. C 76, 024318 (2007)

T.Nakatsukasa, T.Inakura, K.Yabana

Finite amplitude method for the solution of the random-phase approximation

doi: 10.1103/PhysRevC.76.024318
Citations: PlumX Metrics


2007NA23      Nucl.Phys. A788, 349c (2007)

T.Nakatsukasa, K.Yabana

Real-time Skyrme TDHF dynamics of giant resonances

NUCLEAR STRUCTURE 8,14Be; calculated E1 strength distribution.

doi: 10.1016/j.nuclphysa.2007.01.064
Citations: PlumX Metrics


2006HI03      Prog.Theor.Phys.(Kyoto) 115, 567 (2006)

N.Hinohara, T.Nakatsukasa, M.Matsuo, K.Matsuyanagi

Effects of Time-Odd Components in Mean Field on Large Amplitude Collective Dynamics

doi: 10.1143/PTP.115.567
Citations: PlumX Metrics


2006IT04      Phys.Lett. B 637, 53 (2006)

M.Ito, K.Yabana, T.Nakatsukasa, M.Ueda

Suppressed fusion cross section for neutron halo nuclei

NUCLEAR REACTIONS 209Bi(10B, X), (11B, X), E(cm)=30-50 MeV; 238U(α, X), (6He, X), E(cm)=14-32 MeV; calculated fusion σ. Three-body time-dependent wave-packet model, comparison with data.

doi: 10.1016/j.physletb.2006.03.027
Citations: PlumX Metrics


2006SH22      Phys.Rev. C 74, 054315 (2006)

S.Shinohara, H.Ohta, T.Nakatsukasa, K.Yabana

Configuration mixing calculation for complete low-lying spectra with a mean-field Hamiltonian

NUCLEAR STRUCTURE 12C, 16O, 20Ne; calculated levels, J, π, configurations. Extended mean-field approach, configuration mixing.

doi: 10.1103/PhysRevC.74.054315
Citations: PlumX Metrics


2005KO05      Prog.Theor.Phys.(Kyoto) 113, 129 (2005)

M.Kobayashi, T.Nakatsukasa, M.Matsuo, K.Matsuyanagi

Collective Paths Connecting the Oblate and Prolate Shapes in 68Se and 72Kr Suggested by the Adiabatic Self-Consistent Collective Coordinate Method

NUCLEAR STRUCTURE 68Se, 72Kr; calculated deformation parameters, pair gaps, shape coexistence features. Adiabatic self-consistent collective coordinate method, pairing-plus-quadrupole interaction.


2005KO42      Eur.Phys.J. A 25, Supplement 1, 547 (2005)

M.Kobayasi, T.Nakatsukasa, M.Matsuo, K.Matsuyanagi

Collective path connecting the oblate and prolate local minima in proton-rich N = Z nuclei around 68Se

NUCLEAR STRUCTURE 68Se, 72Kr; calculated potential energy surfaces, shape coexistence features. Adiabatic self-consistent collective coordinate method.

doi: 10.1140/epjad/i2005-06-039-7
Citations: PlumX Metrics


2005NA06      Phys.Rev. C 71, 024301 (2005)

T.Nakatsukasa, K.Yabana

Linear response theory in the continuum for deformed nuclei: Green's function vs time-dependent Hartree-Fock with the absorbing boundary condition

NUCLEAR STRUCTURE 16O, 20Ne; calculated continuum strength functions. 16O; calculated continuum isovector GDR energies, energy-weighted sum rule. 8,10,12,14Be; calculated quadrupole deformation, electric dipole strength functions, energy-weighted sum rule. Linear response theory, continuum RPA, time-dependent Hartree-Fock.

doi: 10.1103/PhysRevC.71.024301
Citations: PlumX Metrics


2005NA42      Eur.Phys.J. A 25, Supplement 1, 527 (2005)

T.Nakatsukasa, K.Yabana

Unrestricted TDHF studies of nuclear response in the continuum

NUCLEAR STRUCTURE 16O; calculated octupole strength distribution. 12,14Be; calculated dipole states energies, B(E1). Time-dependent Hartree-Fock theory.

doi: 10.1140/epjad/i2005-06-052-x
Citations: PlumX Metrics


2005OH09      Eur.Phys.J. A 25, Supplement 1, 549 (2005)

H.Ohta, T.Nakatsukasa, K.Yabana

Light exotic nuclei studied with the parity-projected Hartree-Fock method

NUCLEAR STRUCTURE 30,32,34Mg; calculated levels, J, π, deformation. Variation after projection.

doi: 10.1140/epjad/i2005-06-055-7
Citations: PlumX Metrics


2004KO47      Prog.Theor.Phys.(Kyoto) 112, 363 (2004)

M.Kobayasi, T.Nakatsukasa, M.Matsuo, K.Matsuyanagi

Collective Path Connecting the Oblate and Prolate Local Minima in 68Se

NUCLEAR STRUCTURE 68Se; calculated potential energy surface, pairing gaps, shape coexistence features. Adiabatic self-consistent collective coordinate method.

doi: 10.1143/PTP.112.363
Citations: PlumX Metrics


2004NA13      Eur.Phys.J. A 20, 163 (2004)

T.Nakatsukasa, K.Yabana

Giant resonances in the deformed continuum

NUCLEAR STRUCTURE 24Mg; calculated GDR features. Time-dependent Hartree-Fock theory, continuum effect.

doi: 10.1140/epja/i2002-10344-9
Citations: PlumX Metrics


2004NA27      Prog.Theor.Phys.(Kyoto), Suppl. 154, 85 (2004)

T.Nakatsukasa, K.Yabana, M.Ito, M.Kobayashi, M.Ueda

Fusion Reaction of Halo Nuclei: Proton Halo versus Neutron Halo

doi: 10.1143/PTPS.154.85
Citations: PlumX Metrics


2004OH06      Phys.Rev. C 70, 014301 (2004)

H.Ohta, K.Yabana, T.Nakatsukasa

Variation after parity projection calculation with the Skyrme interaction for light nuclei

NUCLEAR STRUCTURE 12C, 20Ne; calculated levels, J, π, B(E2), matter density distributions; deduced cluster correlations. Self-consistent approach, Skyrme interaction, variation after parity projection.

doi: 10.1103/PhysRevC.70.014301
Citations: PlumX Metrics


2004UE04      Nucl.Phys. A738, 288 (2004)

M.Ueda, K.Yabana, T.Nakatsukasa

Absorbing Boundary Condition Approach to Breakup Reactions of One-Neutron Halo Nuclei

NUCLEAR REACTIONS 12C(11Be, n10Be), E=50, 67 MeV/nucleon; calculated fragments relative energy, σ(θ). Absorbing boundary condition method, comparison with data.

doi: 10.1016/j.nuclphysa.2004.04.047
Citations: PlumX Metrics


2004YA19      Nucl.Phys. A738, 303 (2004)

K.Yabana, M.Ito, M.Kobayashi, M.Ueda, T.Nakatsukasa

Fusion reaction of halo nuclei: a time-dependent approach

doi: 10.1016/j.nuclphysa.2004.04.050
Citations: PlumX Metrics


2003KO71      Prog.Theor.Phys.(Kyoto) 110, 65 (2003)

M.Kobayasi, T.Nakatsukasa, M.Matsuo, K.Matsuyanagi

Application of the Adiabatic Self-Consistent Collective Coordinate Method to a Solvable Model of Prolate-Oblate Shape Coexistence

doi: 10.1143/PTP.110.65
Citations: PlumX Metrics


2003UE01      Phys.Rev. C 67, 014606 (2003)

M.Ueda, K.Yabana, T.Nakatsukasa

Application of an absorbing boundary condition to nuclear breakup reactions

NUCLEAR REACTIONS 12C(16O, 16O), E=139.2 MeV; calculated elastic scattering matrix elements. 58Ni(d, np), E=80 MeV; calculated deuteron breakup matrix elements. Absorbing boundary condition method, comparison with coupled discretized continuum channels approach.

doi: 10.1103/PhysRevC.67.014606
Citations: PlumX Metrics


2003YA17      Nucl.Phys. A722, 261c (2003)

K.Yabana, M.Ueda, T.Nakatsukasa

Time-dependent wave-packet approach for fusion reactions of halo nuclei

NUCLEAR REACTIONS 208Pb(11Be, X), E=30-45 MeV; calculated wave-packet dynamics, fusion probability.

doi: 10.1016/S0375-9474(03)01375-7
Citations: PlumX Metrics


2002NA30      Prog.Theor.Phys.(Kyoto), Suppl. 146, 447 (2002)

T.Nakatsukasa, K.Yabana

3D Real-Space Calculation of the Continuum Response

NUCLEAR STRUCTURE 8,10,12,14Be, 16O; calculated giant resonance strength functions.

doi: 10.1143/PTPS.146.447
Citations: PlumX Metrics


2002YA19      Prog.Theor.Phys.(Kyoto), Suppl. 146, 329 (2002)

K.Yabana, M.Ueda, T.Nakatsukasa

Absorbing Boundary Condition Approach for Breakup Reactions of Halo Nuclei

NUCLEAR REACTIONS 58Ni(d, d), E=80 MeV; calculated σ(θ). 12C(n, n), E=5-100 MeV; calculated σ. 12C(11Be, X), E=5-100 MeV/nucleon; calculated elastic breakup σ. Absorbing boundary condition approach, comparison with Eikonal approximation.

doi: 10.1143/PTPS.146.329
Citations: PlumX Metrics


2000MA47      Prog.Theor.Phys.(Kyoto) 103, 959 (2000)

M.Matsuo, T.Nakatsukasa, K.Matsuyanagi

Adiabatic Selfconsistent Collective Coordinate Method for Large Amplitude Collective Motion in Nuclei with Pairing Correlations

doi: 10.1143/PTP.103.959
Citations: PlumX Metrics


2000NA01      Phys.Rev. C61, 014302 (2000)

T.Nakatsukasa, N.R.Walet, G.Do Dang

Local Harmonic Approaches with Approximate Cranking Operators

NUCLEAR STRUCTURE Z=56-82; calculated equilibrium deformation, pairing gaps, transition strengths for even-even nuclides. Local harmonic approach, several approximations evaluated.

doi: 10.1103/PhysRevC.61.014302
Citations: PlumX Metrics


1999NA16      J.Phys.(London) G25, 795 (1999)

T.Nakatsukasa, Y.R.Shimizu

Microscopic Calculation of Transition Intensities for Vibrational Bands and High-K Isomers

NUCLEAR STRUCTURE 166Er, 232Th; calculated vibrational bands transitions B(E1), B(E2). 170,172,174,176,178,180Hf; calculated high-K isomers hindrance factors; deduced effects of residual correlations. Cranking formalism, microscopic approach.

doi: 10.1088/0954-3899/25/4/039
Citations: PlumX Metrics


1999NA17      J.Phys.(London) G25, 815 (1999)

T.Nakatsukasa, N.R.Walet

Self-Consistent Collective Subspaces and Diabatic/Adiabatic Motion in Nuclei

doi: 10.1088/0954-3899/25/4/044
Citations: PlumX Metrics


1999NA18      J.Phys.(London) G25, L23 (1999)

T.Nakatsukasa, N.R.Walet, G.Do Dang

A Basis of Cranking Operators for the Pairing-Plus-Quadrupole Model

NUCLEAR STRUCTURE 146,148,150,152,154Sm; calculated levels, vibrational features; deduced cranking operator in terms of one-body operators. RPA, pairing-plus-quadrupole model.

doi: 10.1088/0954-3899/25/5/102
Citations: PlumX Metrics


1998HA08      Phys.Rev. C57, R1056 (1998)

G.Hackman, R.V.F.Janssens, T.L.Khoo, I.Ahmad, J.P.Greene, H.Amro, D.Ackermann, M.P.Carpenter, S.M.Fischer, T.Lauritsen, L.R.Morss, P.Reiter, D.Seweryniak, D.Cline, C.Y.Wu, E.F.Moore, T.Nakatsukasa

High-Spin Properties of Octupole Bands in 240Pu and 248Cm

NUCLEAR REACTIONS 248Cm, 240Pu(208Pb, 208Pb'), E=1300 MeV; measured Eγ, Iγ, γγ-coin following Coulomb excitation. 248Cm, 240Pu deduced high-spin levels, J, π, band structure, branching ratios, octupole excitations. RPA calculations.

doi: 10.1103/PhysRevC.57.R1056
Citations: PlumX Metrics

Data from this article have been entered in the XUNDL database. For more information, click here.


1998HA26      Phys.Rev.Lett. 80, 4611 (1998)

G.Hackman, T.L.Khoo, M.P.Carpenter, T.Lauritsen, A.Lopez-Martens, I.J.Calderin, R.V.F.Janssens, D.Ackermann, I.Ahmad, S.Agarwala, D.J.Blumenthal, S.M.Fischer, D.Nisius, P.Reiter, J.Young, H.Amro, E.F.Moore, F.Hannachi, A.Korichi, I.Y.Lee, A.O.Macchiavelli, T.Dossing, T.Nakatsukasa

Hackman et al. Reply: ' Comment on ' Spins, Parity, Excitation Energies, and Octupole Structure of an Excited Superdeformed Band in 194Hg and Implications for Identical Bands ' '

doi: 10.1103/PhysRevLett.80.4611
Citations: PlumX Metrics


1998NA05      Phys.Rev. C57, 1192 (1998)

T.Nakatsukasa, N.R.Walet

Diabatic and Adiabatic Collective Motion in a Model Pairing System

doi: 10.1103/PhysRevC.57.1192
Citations: PlumX Metrics


1998NA35      Phys.Rev. C58, 3397 (1998)

T.Nakatsukasa, N.R.Walet

Collective Coordinates, Shape Transitions, and Shape Coexistence: A microscopic approach

doi: 10.1103/PhysRevC.58.3397
Citations: PlumX Metrics


1997AZ05      Acta Phys.Hung.N.S. 6, 289 (1997)

F.Azaiez, S.Bouneau, J.Duprat, I.Deloncle, M.-G.Porquet, U.J.van Severen, T.Nakatsukasa, M.M.Aleonard, A.Astier, G.Baldsiefen, C.W.Beausang, F.A.Beck, C.Bourgeois, D.Curien, N.Dozie, L.Ducroux, B.Gall, H.Hubel, M.Kaci, W.Korten, M.Meyer, N.Redon, H.Sergolle, J.F.Sharpey-Schafer

Octupole Vibrations of the Superdeformed 196Pb Nucleus

NUCLEAR REACTIONS 186W(16O, 6n), E=110 MeV; measured Eγ, Iγ, γγ-coin. 196Pb deduced superdeformed bands, possible octupole vibrations.


1997BO28      Z.Phys. A358, 179 (1997)

S.Bouneau, F.Azaiez, J.Duprat, I.Deloncle, M.-G.Porquet, U.J.van Severen, T.Nakatsukasa, M.-M.Aleonard, A.Astier, G.Baldsiefen, C.W.Beausang, F.A.Beck, C.Bourgeois, D.Curien, N.Dozie, L.Ducroux, B.J.P.Gall, H.Hubel, M.Kaci, W.Korten, M.Meyer, N.Redon, H.Sergolle, J.F.Sharpey-Schafer

New Results on the Superdeformed 196Pb Nucleus: Decay of the excited bands to the yrast band

NUCLEAR REACTIONS 186W(16O, 6n), E=110 MeV; measured Eγ, Iγ, γγγ-coin. 196Pb deduced superdeformed bands, dynamical moments of inertia. RPA model comparisons.

doi: 10.1007/s002180050299
Citations: PlumX Metrics


1997FA04      Phys.Rev. C55, R999 (1997)

P.Fallon, F.S.Stephens, S.Asztalos, B.Busse, R.M.Clark, M.A.Deleplanque, R.M.Diamond, R.Krucken, I.Y.Lee, A.O.Macchiavelli, R.W.MacLeod, G.Schmid, K.Vetter, T.Nakatsukasa

Octupole Vibrations and Signature Splitting in Even Mass Hg Superdeformed Bands

NUCLEAR STRUCTURE 190,192,194Hg; analyzed superdeformed bands octupole characteristics.

doi: 10.1103/PhysRevC.55.R999
Citations: PlumX Metrics


Back to query form    [Next]