NSR Query Results


Output year order : Descending
Format : Normal

NSR database version of April 11, 2024.

Search: Author = P.Schuck

Found 216 matches.

    Showing 1 to 100.

   [Next]

Back to query form



2023PA39      Eur.Phys.J. A 59, 241 (2023)

A.Pastore, P.Schuck, X.Vinas

Generic size dependences of pairing in ultrasmall systems: electronic nano-devices and atomic nuclei

doi: 10.1140/epja/s10050-023-01155-9
Citations: PlumX Metrics


2023SC12      Eur.Phys.J. A 59, 164 (2023)

P.Schuck, M.Urban, X.Vinas

Corrections to local-density approximation for superfluid trapped fermionic atoms from the Wigner-Kirkwood h-bar expansion

doi: 10.1140/epja/s10050-023-01077-6
Citations: PlumX Metrics


2022BA09      Phys.Rev. C 105, 044323 (2022)

E.B.Balbutsev, I.V.Molodtsova, A.V.Sushkov, N.Yu.Shirikova, P.Schuck

Spin-isospin structure of the nuclear scissors mode

NUCLEAR STRUCTURE 148,150Nd, 148,150,152,154Sm, 156,158,160Gd, 160,162,164Dy, 166,168,170Er, 172,174,176Yb, 176,178,180Hf, 182,184,186W, 190,192Os, 194,196Pt, 232Th, 236,238U; calculated levels, J, π, B(M1), scissor resonances fine structure features. 164Dy; calculated B(E2), strengths of currents. Calculations with the use of the Wigner function moments (WFM) and quasiparticle-phonon nuclear model (QPNM) methods. Comparison to experimental values obtained with NRF and photoneutron measurements methods.

doi: 10.1103/PhysRevC.105.044323
Citations: PlumX Metrics


2022BL08      Eur.Phys.J. A 58, 236 (2022)

D.Blaschke, H.Horiuchi, M.Kimura, G.Ropke, P.Schuck

Topical collection on light clusters in nuclei and nuclear matter: nuclear structure and decay, heavy-ion collisions, and astrophysics

doi: 10.1140/epja/s10050-022-00867-8
Citations: PlumX Metrics


2022LE04      Eur.Phys.J. A 58, 58 (2022)

S.Lei, S.Li, Q.Zhao, N.Wan, M.Lyu, Z.Ren, H.Horiuchi, G.Ropke, P.Schuck, A.Tohsaki, C.Xu, B.Zhou

Investigating the proton-halo structure of 8B via the extended THSR wave function

NUCLEAR STRUCTURE 8B; calculated standard deviation of the ground state Tohsaki-Horiuchi-Schuck-Ropke (THSR) wave function, contour maps of the energy surface, spatial matter density and valence density distribution, proton density distributions, rms radii and quadrupole moments; deduced proton halo structure in the ground state.

doi: 10.1140/epja/s10050-022-00705-x
Citations: PlumX Metrics


2022ZH19      Phys.Rev. C 105, 044326 (2022)

Y.Zhang, A.Bjelcic, T.Niksic, E.Litvinova, P.Ring, P.Schuck

Many-body approach to superfluid nuclei in axial geometry

NUCLEAR STRUCTURE 28Si; calculated single-particle energies, Nilsson diagram, strength of the neutron states, low-energy isoscalar strength functions for varying quadrupole deformation, deformation parameters. 250Cf; calculated deformation parameters. 249,251Cf; calculated single-quasiparticle neutron states. Finite amplitude quasiparticle random phase approximation method. Comparison to experimental data.

doi: 10.1103/PhysRevC.105.044326
Citations: PlumX Metrics


2021BH02      Phys.Rev. C 103, 024320 (2021)

A.Bhagwat, M.Centelles, X.Vinas, P.Schuck

Woods-Saxon type of mean-field potentials with effective mass derived from the D1S Gogny force

NUCLEAR STRUCTURE 40Ca, 68Ni, 132Sn, 208Pb; calculated nucleon density distributions, neutron and proton mean fields for 132Sn and 208Pb, spin-orbit potentials and effective masses for 208Pb. 16O, 40,48Ca, 56,78Ni, 90Zr, 100,132Sn, 208Pb; calculated rms neutron and proton radii. Hartree-Fock, expectation value method (EVM), and ETF approaches, using D1S Gogny force.

doi: 10.1103/PhysRevC.103.024320
Citations: PlumX Metrics


2021BH03      Phys.Rev. C 103, 024321 (2021)

A.Bhagwat, M.Centelles, X.Vinas, P.Schuck

Microscopic-macroscopic approach for ground-state energies based on the Gogny force with the Wigner-Kirkwood averaging scheme

ATOMIC MASSES A=20-264, Z=10-108; calculated ground state energies of 551 spherical and deformed even-even nuclei. A=58-80, Z=30; A-114-148, Z=56; A=168-202, Z=78; A=196-216, Z=86; calculated binding energies; deduced differences from the evaluated data. 102,104,106,108,110,112,114,116,118,120,122,124,126,128,130,132,134Sn, 146,148,150,152,154,156,158,160,162,164,166,168Dy, 180,182,184,186,188,190,192,194,196,198,200,202,204,206,208,210,212,214Pb; calculated S(2n). 72Kr, 90,92,94Se, 98,100,102Ru, 124Xe, 186Pb; calculated potential-energy surfaces (PES) in (β, γ) plane. Wigner-Kirkwood Macroscopic-Microscopic model based on the Gogny D1S interaction, and by the Mic-Mac Gogny-based models. Comparison with evaluated data in AME-2012. Data for all the nuclei listed in the supplemental material of the article.

doi: 10.1103/PhysRevC.103.024321
Citations: PlumX Metrics


2021LI57      Phys.Rev. C 104, 044330 (2021)

E.Litvinova, P.Schuck

Nuclear superfluidity at finite temperature

NUCLEAR STRUCTURE 68Ni; calculated neutron pairing gap around the Fermi surface, temperature dependence of the pairing gaps. 44,46Ca, 68Ni; calculated pairing gaps for states around Fermi energy and the average pairing gaps as function of temperature; discussed effects of the dynamical kernel at finite temperature. Bardeen, Cooper, and Schrieffer (BCS), and BCS with particle-vibration coupling (PVC) calculations.

doi: 10.1103/PhysRevC.104.044330
Citations: PlumX Metrics


2021LY02      Eur.Phys.J. A 57, 51 (2021)

M.Lyu, Z.Ren, H.Horiuchi, B.Zhou, Y.Funaki, G.Ropke, P.Schuck, A.Tohsaki, C.Xu, T.Yamada

Properties of 8-11Be sotopes with isospin-dependent spin-orbit potential in a cluster approach

NUCLEAR STRUCTURE 8,9,10,11Be; calculated single nucleon wave functions, energy levels, J, π, one-neutron separation energies, root-mean-square radii and density distributions, spectroscopic factor. Tohsaki-Horiuchi-Schuck-Ropke (THSR) wave functions.

doi: 10.1140/epja/s10050-021-00363-5
Citations: PlumX Metrics


2021MI14      Phys.Rev. C 104, L031305 (2021)

T.Mizusaki, P.Schuck

Symmetry projection to coupled-cluster singles plus doubles wave function through the Monte Carlo method

doi: 10.1103/PhysRevC.104.L031305
Citations: PlumX Metrics


2020BA44      Phys.Atomic Nuclei 83, 212 (2020)

E.B.Balbutsev, I.V.Molodtsova, P.Schuck

Triplet of Nuclear Scissors Modes

doi: 10.1134/S1063778820020040
Citations: PlumX Metrics


2020BA57      Phys.Rev. C 102, 061301 (2020)

V.V.Baran, D.R.Nichita, D.Negrea, D.S.Delion, N.Sandulescu, P.Schuck

Bridging the quartet and pair pictures of isovector proton-neutron pairing

doi: 10.1103/PhysRevC.102.061301
Citations: PlumX Metrics


2020EB01      Phys.Rev. C 102, 014305 (2020)

J.-P.Ebran, M.Girod, E.Khan, R.D.Lasseri, P.Schuck

α-particle condensation: A nuclear quantum phase transition

NUCLEAR STRUCTURE 16O; calculated binding energy as a function of deformation parameters β20, β30, β32, nucleon radial density for rms radii, neutron single particle levels, single-nucleon occupation numbers, Mott-like transition towards α-clusterized states using microscopic energy density functional (EDF) theory with the relativistic and the Gogny approaches. Discussed phase transition in nucleon density from Fermi gas to tetrahedral α-clustered configuration at critical density.

doi: 10.1103/PhysRevC.102.014305
Citations: PlumX Metrics


2020JE05      Eur.Phys.J. A 56, 268 (2020)

M.Jemai, P.Schuck

Symmetry conserving coupled cluster doubles wave function and the self-consistent odd particle number RPA

doi: 10.1140/epja/s10050-020-00276-9
Citations: PlumX Metrics


2020LI36      Phys.Rev. C 102, 034310 (2020)

E.Litvinova, P.Schuck

Many-body correlations in nuclear superfluidity

NUCLEAR STRUCTURE 44,46Ca, 66,68Ni, 112,114,116,120,124Sn; calculated state-dependent pairing gaps using static constant-gap approximation with a phenomenological kernel, and with dynamical particle-vibration coupling (PVC) effects. Discussed two-fermion two-time correlation function in the pairing channel within the equation of motion (EOM), in the form of Dyson Bethe-Salpeter equation.

doi: 10.1103/PhysRevC.102.034310
Citations: PlumX Metrics


2020YA03      Phys.Rev. C 101, 024316 (2020)

S.Yang, C.Xu, G.Ropke, P.Schuck, Z.Ren, Y.Funaki, H.Horiuchi, A.Tohsaki, T.Yamada, B.Zhou

α decay to a doubly magic core in the quartetting wave function approach

NUCLEAR STRUCTURE 102Sn, 102,104Te, 210Pb, 210,212Po; calculated single-particle wave functions of protons and neutrons in the quartet, effective potentials of the α cluster, normalized bound state wave functions, scattering wave functions for α-emitters, α-cluster preformation probabilities and α-decay half-lives. Microscopic calculation of α-cluster formation using the quartetting wave function approach. Comparison with experimental data.

RADIOACTIVITY 102Sn, 102,104Te, 210Pb, 210,212Po(α); calculated α-cluster preformation probabilities and α-decay half-lives. Comparison with experimental half-lives.

doi: 10.1103/PhysRevC.101.024316
Citations: PlumX Metrics


2019GU01      Phys.Rev. C 99, 014310 (2019)

W.Guo, U.Lombardo, P.Schuck

Medium-polarization effects in 3SD1 spin-triplet pairing

doi: 10.1103/PhysRevC.99.014310
Citations: PlumX Metrics


2019JE02      Phys.Rev. C 100, 034311 (2019)

M.Jemai, P.Schuck

Coupled self-consistent random-phase approximation equations for even and odd particle numbers: Tests with solvable models

doi: 10.1103/PhysRevC.100.034311
Citations: PlumX Metrics


2019LI56      Phys.Rev. C 100, 064320 (2019), Erratum Phys.Rev. C 107, 029903 (2023)

E.Litvinova, P.Schuck

Toward an accurate strongly coupled many-body theory within the equation-of-motion framework

NUCLEAR STRUCTURE 42,48Ca, 68Ni; calculated isoscalar dipole and giant dipole strength distributions, low-energy dipole E1 strength using relativistic quasiparticle random phase approximation (RQRPA), relativistic quasiparticle time blocking approximation (RQTBA), and equation of motion relativistic quasiparticle time blocking approximation (EOM/RQ-TBA3). Comparison with experimental data and with other theoretical models. Relevance to mechanisms of emergent collective phenomena, superfluidity and other dynamical aspects of strongly correlated many-body systems.

doi: 10.1103/PhysRevC.100.064320
Citations: PlumX Metrics


2019SC16      Phys.Rev. C 100, 031301(R) (2019)

P.Schuck, M.Urban

Macroscopic manifestations of rotating triaxial superfluid nuclei

NUCLEAR STRUCTURE 110Ru, 150Nd, 156Gd, 166,168Er, 172Yb, 182,184W, 186,188,190,192Os; calculated the three moments of inertia of triaxial superfluid nuclei from β and γ deformation parameters, pairing gaps for neutrons and protons from D1S Gogny force, and from nuclear masses using a five-point formula for triaxial nuclei. Comparison with experimental data.

doi: 10.1103/PhysRevC.100.031301
Citations: PlumX Metrics


2019SC22      Eur.Phys.J. A 55, 250 (2019)

P.Schuck

Mean-field theory for fermion pairs and the ab initio particle-vibration coupling approach

doi: 10.1140/epja/i2019-12798-x
Citations: PlumX Metrics


2019TO07      Eur.Phys.J. A 55, 74 (2019)

M.Tohyama, P.Schuck

Truncation scheme of time-dependent density-matrix approach III

doi: 10.1140/epja/i2019-12746-x
Citations: PlumX Metrics


2019ZH24      Phys.Rev. C 99, 051303 (2019)

B.Zhou, Y.Funaki, H.Horiuchi, M.Kimura, Z.Ren, G.Ropke, P.Schuck, A.Tohsaki, C.Xu, T.Yamada

Nonlocalized motion in a two-dimensional container of α particles in 3- and 4- states of 12C

NUCLEAR STRUCTURE 12C; calculated level energies, Tohsaki-Horiuchi-Schuck-Ropke (THSR) wave functions, energy curves and contours, and density profiles of the first 3- and 4- states in 12C using container model. Comparison with generator coordinate method (GCM).

doi: 10.1103/PhysRevC.99.051303
Citations: PlumX Metrics


2019ZH33      Phys.Rev. C 100, 014306 (2019)

Q.Zhao, Z.Ren, M.Lyu, H.Horiuchi, Y.Kanada-En'yo, Y.Funaki, G.Ropke, P.Schuck, A.Tohsaki, C.Xu, T.Yamada, B.Zhou

Investigation of isospin-triplet and isospin-singlet pairing in the A=10 nuclei 10B, 10Be, and 10C with an extension of the Tohsaki-Horiuchi-Schuck-Ropke wave function

NUCLEAR STRUCTURE 10Be, 10B, 10C; calculated ground state energies, first 1+ energy in 10B, overlap between total wave function, molecular-orbit component, and pairing component, density distributions of valence nucleons, and average distance between nucleons, and optimized β parameters for the wave functions of ground states and first 1+ state in 10B. Tohsaki-Horiuchi-Schuck-Ropke (THSR) wave function, with and without pairing effects. Comparison with experimental data.

doi: 10.1103/PhysRevC.100.014306
Citations: PlumX Metrics


2018BA15      Phys.Rev. C 97, 044316 (2018)

E.B.Balbutsev, I.V.Molodtsova, P.Schuck

Experimental status of the nuclear spin scissors mode

NUCLEAR STRUCTURE 232Th, 236,238U, 134Ba, 144,146,148,150Nd, 148,150,152,154Sm, 154,156,158,160Gd, 160,162,164Dy, 166,168,170Er, 172,174,176Yb, 176,178,180Hf, 182,184,186W, 190,192Os, 194,196Pt; calculated energy centroids, B(M1), nuclear spin and orbital scissors for 1+ states using Wigner function moments (WFM) method, and compared with experimental data. A=130-200; calculated (WFM) mean excitation energies and summed M1 strengths of scissors mode excitations, and compared with experimental data.

NUCLEAR REACTIONS 232Th(d, d'), (d, p), E=12 MeV; 232Th(3He, 3He'), (3He, d), (3He, t), (3He, α), E=24 MeV; 238U(d, d'), (d, p), (d, t), E=15 MeV; compiled observed radiative strength functions (RSF) for scissors resonances by 2014Gu04. 232Th, 236,238U(γ, γ'), E=1.5-3.5 MeV; 134Ba, 144,146,148,150Nd, 148,150,152,154Sm, 154,156,158,160Gd, 160,162,164Dy, 166,168,170Er, 172,174,176Yb, 176,178,180Hf, 182,184,186W, 190,192Os, 194,196Pt(γ, γ'), E=2.0-4.0; compiled experimentally observed spectra of 1+ excitations and B(M1)(up) in various studies.

doi: 10.1103/PhysRevC.97.044316
Citations: PlumX Metrics


2018BA48      Phys.Atomic Nuclei 81, 550 (2018)

E.B.Balbutsev, I.V.Molodtsova, P.Schuck

The Nuclear Spin Scissors Mode-Theory and Experiment

doi: 10.1134/S1063778818050034
Citations: PlumX Metrics


2018ZH24      Phys.Rev. C 97, 054323 (2018)

Q.Zhao, Z.Ren, M.Lyu, H.Horiuchi, Y.Funaki, G.Ropke, P.Schuck, A.Tohsaki, C.Xu, T.Yamada, B.Zhou

Investigation of the 9B nucleus and its cluster-nucleon correlations

NUCLEAR STRUCTURE 9B; calculated levels, J, π, 3/2- rotational band levels, rms radii of six levels, density distributions of valence proton, energy of the 1/2+ excited state. New superposed Tohsaki-Horiuchi-Schuck-Ropke (THSR) wavefunction for cluster-correlated dynamics of valence nucleons. Comparison with experimental values and, with other theoretical predictions.

doi: 10.1103/PhysRevC.97.054323
Citations: PlumX Metrics


2017BA03      Phys.Rev. C 95, 014318 (2017)

M.Baldo, L.M.Robledo, P.Schuck, X.Vinas

Barcelona-Catania-Paris-Madrid functional with a realistic effective mass

NUCLEAR STRUCTURE Z=8-108, N=8-156; calculated binding energy differences of theoretical values computed with the HFB method and experimental values from AME-2012 for 620 even-even nuclei, rms charge deviations between experimental and theoretical values for the 315 even-even nuclei. 234U, 240,244Pu, 242,246Cm; calculated first and second fission barrier heights and the excitation energy of the fission isomers from Barcelona-Catania-Paris-Madrid (BCPM* and BCPM) functionals, and compared to experimental data. 90Zr, 106,110,112,114,116Cd, 112,114,116,118,120,122,124Sn, 144Sm, 208Pb; calculated average excitation energy of the giant monopole resonance (GMR) and giant quadrupole resonance (GQR) including pairing correlations, and compared with experimental data. Proposed a variant of Barcelona-Catania-Paris-Madrid (BCPM) energy density functional, with bare mass replaced by a density dependent effective mass.

doi: 10.1103/PhysRevC.95.014318
Citations: PlumX Metrics


2017TO10      Eur.Phys.J. A 53, 186 (2017)

M.Tohyama, P.Schuck

Truncation scheme of time-dependent density-matrix approach II

doi: 10.1140/epja/i2017-12377-3
Citations: PlumX Metrics


2017XU03      Phys.Rev. C 95, 061306 (2017)

C.Xu, G.Ropke, P.Schuck, Z.Ren, Y.Funaki, H.Horiuchi, A.Tohsaki, T.Yamada, B.Zhou

a-cluster formation and decay in the quartetting wave function approach

RADIOACTIVITY 190,192,194,196,198,200,202,204,206,208,210,212,214,216,218Po, 210Pb, 214Rn, 216Ra, 218Th, 260Sg, 264,268Hs, 270Ds, 286,288Fl, 290,292Lv, 294Og(α); calculated α-cluster preformation probabilities, comparison of experimental and theoretical half-lives. Microscopic calculations for α-cluster formation using quartetting wave function approach.

doi: 10.1103/PhysRevC.95.061306
Citations: PlumX Metrics


2016LY03      Phys.Rev. C 93, 054308 (2016)

M.Lyu, Z.Ren, B.Zhou, Y.Funaki, H.Horiuchi, G.Ropke, P.Schuck, A.Tohsaki, C.Xu, T.Yamada

Investigation of 10Be and its cluster dynamics with the nonlocalized clustering approach

NUCLEAR STRUCTURE 10Be; calculated energies of the first two 0+ states, rms radii, rotational bands built on 0+ states, density distribution and correlations of two valence neutrons, dynamics of α clusters using Tohsaki-Horiuchi-Schuck-Ropke (THSR) wave functions. Comparison with experimental data.

doi: 10.1103/PhysRevC.93.054308
Citations: PlumX Metrics


2016SC21      Phys.Scr. 91, 123001 (2016)

P.Schuck, Y.Funaki, H.Horiuchi, G.Ropke, A.Tohsaki, T.Yamada

Alpha particle clusters and their condensation in nuclear systems

doi: 10.1088/0031-8949/91/12/123001
Citations: PlumX Metrics


2016SC23      Eur.Phys.J. A 52, 307 (2016)

P.Schuck, M.Tohyama

Self-consistent RPA and the time-dependent density matrix approach

doi: 10.1140/epja/i2016-16307-7
Citations: PlumX Metrics


2016XU01      Phys.Rev. C 93, 011306 (2016)

C.Xu, Z.Ren, G.Ropke, P.Schuck, Y.Funaki, H.Horiuchi, A.Tohsaki, T.Yamada, B.Zhou

α-decay width of 212Po from a quartetting wave function approach

RADIOACTIVITY 212Po(α); calculated preformation probability and decay half-life using different sets of effective c.m. potentials and implementing four-nucleon correlations. Comparison of calculated α-decay width with experimental value.

doi: 10.1103/PhysRevC.93.011306
Citations: PlumX Metrics


2016ZH15      Phys.Rev. C 93, 044329 (2016)

S.S.Zhang, L.G.Cao, U.Lombardo, P.Schuck

Medium polarization in asymmetric nuclear matter

doi: 10.1103/PhysRevC.93.044329
Citations: PlumX Metrics


2015BA18      Phys.Rev. C 91, 064312 (2015)

E.B.Balbutsev, I.V.Molodtsova, P.Schuck

Orbital and spin scissors modes in superfluid nuclei

NUCLEAR STRUCTURE 134Ba, 148,150Nd, 150,152,154Sm, 156,158,160Gd, 160,162,164Dy, 164,166,168,170Er, 172,174,176Yb, 178,180Hf, 182,184,186W, 190,192Os; calculated centroid energies and B(M1) of spin and orbital scissors. Wigner-function moments method generalized to include spin degrees of freedom and pair correlations simultaneously; deduced new phenomenon of opposite rotation of spin-up and spin-down nucleons, or the phenomenon of hidden angular momenta. Comparison with experimental values.

doi: 10.1103/PhysRevC.91.064312
Citations: PlumX Metrics


2015LY01      Phys.Rev. C 91, 014313 (2015)

M.Lyu, Z.Ren, B.Zhou, Y.Funaki, H.Horiuchi, G.Ropke, P.Schuck, A.Tohsaki, C.Xu, T.Yamada

Investigation of 9Be from a nonlocalized clustering concept

NUCLEAR STRUCTURE 9Be; calculated levels, J, π, bands, contour maps of binding energy surface as function of β parameters, density distribution contour of the intrinsic ground state. Nonlocalized clustering calculations based on Tohsaki-Horiuchi-Schuck-Ropke (THSR) wave function with a new phase factor. Comparison with available experimental results.

doi: 10.1103/PhysRevC.91.014313
Citations: PlumX Metrics


2015PE17      Phys.Rev. C 92, 064316 (2015)

J.C.Pei, N.Fei, Y.N.Zhang, P.Schuck

Generalized second-order Thomas-Fermi method for superfluid Fermi systems

NUCLEAR STRUCTURE 238U; calculated binding energies and neutron pairing density within a quasiparticle energy interval from 25 to 65 MeV by extending the second-order Thomas-Fermi approximation of the Hartree-Fock-Bogoliubov solutions for superfluid systems by including the effective mass and the spin-orbit potential.

doi: 10.1103/PhysRevC.92.064316
Citations: PlumX Metrics


2015SC10      Rom.J.Phys. 60, 811 (2015)

P.Schuck

Theory for Quartet Condensation in Fermi Systems with Applications to Nuclear Matter

NUCLEAR STRUCTURE 208Pb; calculated critical temperatures for α-particle and deuteron condensation in symmetric nuclear matter.


2015TO06      Phys.Rev. C 91, 034316 (2015)

M.Tohyama, P.Schuck

Extension of time-dependent Hartree-Fock-Bogoliubov equations

NUCLEAR STRUCTURE 106,116,126Sn; calculated pairing energy as a function of an artificial factor f; deduced higher order effects of the pairing correlation. Extended time-dependent Hartree-Fock-Bogoliubov theory (ETDHFB) using a truncation scheme of the time-dependent density matrix theory.

doi: 10.1103/PhysRevC.91.034316
Citations: PlumX Metrics


2015VI04      Phys.Scr. 90, 114001 (2015)

X.Vinas, A.Bhagwat, M.Centelles, P.Schuck, R.Wyss

Applications to nuclear properties of the microscopic-macroscopic model based on the semiclassical Wigner-Kirkwood method

NUCLEAR STRUCTURE Zn, Ba, Pt, Rn; calculated 2 neutron separation energies. Comparison with experimental data.

RADIOACTIVITY 112,114,116Te, 116,118,120,122,124Ba, 114,116,118,120Xe, No, Rf, Sg, Hs, Ds(α); calculated Q-value, T1/2. Comparison with experimental data.

doi: 10.1088/0031-8949/90/11/114001
Citations: PlumX Metrics


2014RO20      Phys.Rev. C 90, 034304 (2014)

G.Ropke, P.Schuck, Y.Funaki, H.Horiuchi, Z.Ren, A.Tohsaki, C.Xu, T.Yamada, B.Zhou

Nuclear clusters bound to doubly magic nuclei: The case of 212Po

NUCLEAR STRUCTURE 212Po; calculated internal four-nucleon energy, Coulomb and isospin-dependent Woods-Saxon potentials, Thomas-Fermi density, Fermi energy, E(α). Shell model calculations with cluster formation in inhomogeneous nuclear systems, four-particle (α-like) correlations in doubly-magic 208Pb core. Tohsaki-Horiuchi-Schuck-Ropke wave function approach in shell-model calculations. Discussed different physics behavior of an α-like cluster as compared to a deuteron-like cluster.

doi: 10.1103/PhysRevC.90.034304
Citations: PlumX Metrics


2014TO06      Eur.Phys.J. A 50, 77 (2014)

M.Tohyama, P.Schuck

Truncation scheme of time-dependent density-matrix approach

doi: 10.1140/epja/i2014-14077-x
Citations: PlumX Metrics


2014ZH10      Phys.Rev. C 89, 034319 (2014)

B.Zhou, Y.Funaki, H.Horiuchi, Z.Ren, G.Ropke, P.Schuck, A.Tohsaki, C.Xu, T.Yamada

Nonlocalized cluster dynamics and nuclear molecular structure

NUCLEAR STRUCTURE 8Be, 12C, 20Ne; calculated levels, J, π, energy surfaces, density distributions, quadrupole moments using Tohsaki-Horiuchi-Schuck-Ropke (THSR) wave function. Container model. Nonlocalized cluster dynamics for 2α, 3α, and 16O+α cluster systems.

doi: 10.1103/PhysRevC.89.034319
Citations: PlumX Metrics


2013BA33      Phys.Rev. C 87, 064305 (2013)

M.Baldo, L.M.Robledo, P.Schuck, X.Vinas

New Kohn-Sham density functional based on microscopic nuclear and neutron matter equations of state

NUCLEAR STRUCTURE Z=8-116, N=4-154; calculated binding energies; analyzed differences between the calculated and experimental values from AME-2003 for 579 nuclei; deduced energy rms value. N=4-154; calculated rms charge radii for even-even nuclei and compared with evaluated experimental values. Quadrupole and octupole deformations calculated for 818 nuclei. 240Pu, 262Sg; calculated spontaneous fission barrier heights, SF half-lives, quadrupole, octupole and hexadecapole moments. Comparison with experimental data. 90Zr, 144Sm, 208Pb, 106,110,112,114,116Cd, 112,114,116,118,120,122,124Sn; calculated energies of isoscalar giant monopole and quadrupole (ISGMR, ISGQR) resonances with and without pairing. Comparison with experimental data. A new version of Barcelona-Catania-Paris energy functional based on calculated ab initio nuclear and neutron matter equations of state. Comparison with other mean-field theories.

doi: 10.1103/PhysRevC.87.064305
Citations: PlumX Metrics


2013BA36      Phys.Rev. C 88, 014306 (2013)

E.B.Balbutsev, I.V.Molodtsova, P.Schuck

New type of nuclear collective motion: The spin scissors mode

NUCLEAR STRUCTURE 164Er; calculated isovector and isoscalar energies B(M1), B(E2) using the Wigner function moments method on the basis of time-dependent Hartree-Fock equations. Spin-spin interaction. Spin scissors excitation mode.

doi: 10.1103/PhysRevC.88.014306
Citations: PlumX Metrics


2013GI05      Phys.Rev.Lett. 111, 132503 (2013)

M.Girod, P.Schuck

α-Particle Clustering from Expanding Self-Conjugate Nuclei within the Hartree-Fock-Bogoliubov Approach

NUCLEAR STRUCTURE 16O, 24Mg, 32S, 40Ca; calculated total energy as a function of the radius, threshold energies as a function of the number n of α particles; deduced nuclear equation of state implications. HFB approach for self-conjugate nuclei.

doi: 10.1103/PhysRevLett.111.132503
Citations: PlumX Metrics


2013JE05      Phys.Rev. C 88, 044004 (2013)

M.Jemai, D.S.Delion, P.Schuck

Self-consistent random-phase approximation from a coupled-cluster wave function perspective

doi: 10.1103/PhysRevC.88.044004
Citations: PlumX Metrics


2013PA25      Phys.Rev. C 88, 034314 (2013)

A.Pastore, J.Margueron, P.Schuck, X.Vinas

Pairing in exotic neutron-rich nuclei near the drip line and in the crust of neutron stars

NUCLEAR STRUCTURE Z=20, A=36-120; Z=28, A=52-128; Z=40, A=80-240; Z=42, A=82-162; Z=50, A=100-250; Z=82, A=178-342; 66,68,70Ca; 122,124,126,128,130,166,250,500Zr; calculated pairing energies, neutron pairing gaps, single-particle energies and other properties for neutron drip line nuclei immersed in low-density gas of neutrons in outer crust of neutron stars. Skyrme energy density functional theory with density-dependent contact interaction, and Gogny finite range pairing functionals interactions. Hartree-Fock-Bogoliubov and BCS approaches compared. Strong impact of resonances in the continuum on pairing properties of drip line nuclei.

doi: 10.1103/PhysRevC.88.034314
Citations: PlumX Metrics


2013TO06      Phys.Rev. C 87, 044316 (2013)

M.Tohyama, P.Schuck

Odd particle number random-phase approximation and extensions: Applications to particle and hole states around 16O

NUCLEAR STRUCTURE 15N, 17F; calculated proton-hole and proton-particle state spectral functions S(E), spectroscopic factors, strength distributions using the hole-state and the particle-state random-phase approximation with a 16O core. Comparison with experimental data.

doi: 10.1103/PhysRevC.87.044316
Citations: PlumX Metrics


2013ZH25      Phys.Rev.Lett. 110, 262501 (2013)

B.Zhou, Y.Funaki, H.Horiuchi, Z.Ren, G.Ropke, P.Schuck, A.Tohsaki, C.Xu, T.Yamada

Nonlocalized Clustering: A New Concept in Nuclear Cluster Structure Physics

NUCLEAR STRUCTURE 20Ne; calculated energy surfaces, levels, J, π. The Tohsaki-Horiuchi-Schuck-Ropke (THSR) wave function, α+16O resonating group method.

doi: 10.1103/PhysRevLett.110.262501
Citations: PlumX Metrics


2012BH10      Phys.Rev. C 86, 044316 (2012)

A.Bhagwat, X.Vinas, M.Centelles, P.Schuck, R.Wyss

Microscopic-macroscopic approach for binding energies with the Wigner-Kirkwood method. II. Deformed nuclei

NUCLEAR STRUCTURE 63Ge, 65As, 67Se, 71,80,82,84,86,88,90,92,94,96,98,100,102,104Kr, 76,78,80,82,84,86,88,90,92,94,96,98,100,102Sr, 84,86,88,90,92,94,96,98,100,102,104,106,108Zr, 86,88,90,92,94,96,98,100,102,104,106,108,110Mo, 100,102,104,106,108,110,112,114,116,118,120,122,124,126,128,130,132,134Sn, 140,142,144,146,148,150,152,154,156,158,160,162Gd, 186,188,190,192,194,196,198,200,202,204,206,208,210,212,214Po; calculated S2n, β2, Sp, binding energy using Microscopic-macroscopic model with Wigner-Kirkwood expansion. Comparison with experimental data. Z, N>7; deduced difference between the calculated and the corresponding experimental binding energies for 561 nuclides.

RADIOACTIVITY 279,280Rg, 282,283Nh, 287,288,289Fl, 287,288Mc, 291,292,293Lv, 294Og(α); calculated Q values and half-lives. Comparison with experimental data.

doi: 10.1103/PhysRevC.86.044316
Citations: PlumX Metrics


2012DE10      Phys.Rev. C 85, 064306 (2012)

D.S.Delion, R.J.Liotta, P.Schuck, A.Astier, M.-G.Porquet

Shell model plus cluster description of negative parity states in 212Po

NUCLEAR STRUCTURE 212Po; calculated negative-parity levels, J, π, B(E1), B(E2), octupole TDA amplitudes, α-decay widths. 208,210Pb, 210Po; calculated interaction energies, B(E2). Shell-model with α cluster approach. Comparison with experimental data.

doi: 10.1103/PhysRevC.85.064306
Citations: PlumX Metrics


2012FU10      Prog.Theor.Phys.(Kyoto), Suppl. 196, 439 (2012)

Y.Funaki, T.Yamada, H.Horiuchi, G.Ropke, P.Schuck, A.Tohsaki

Alpha Cluster States and Condensation in 16O

NUCLEAR STRUCTURE 16O, 12C, 20Ne; calculated energy spectra, J, π, rotational band of the α+Hoyle state. Orthogonality condition model and Gauss expansion method calculations.

doi: 10.1143/PTPS.196.439
Citations: PlumX Metrics


2012SC14      Prog.Theor.Phys.(Kyoto), Suppl. 196, 56 (2012)

P.Schuck, T.Sogo, G.Ropke

Quartetting in Nuclear Matter

doi: 10.1143/PTPS.196.56
Citations: PlumX Metrics


2012YA02      Phys.Rev. C 85, 034315 (2012)

T.Yamada, Y.Funaki, T.Myo, H.Horiuchi, K.Ikeda, G.Ropke, P.Schuck, A.Tohsaki

Isoscalar monopole excitations in 16O: α-cluster states at low energy and mean-field-type states at higher energy

NUCLEAR STRUCTURE 16O; calculated energies of 0+ levels, rms charge radii, E0 transition matrix elements, particle decay widths, spectroscopic factors, isoscalar monopole strength functions using four α cluster model and α+12C orthogonality condition model (OCM) model. Discussed dual nature of 16O ground state. Comparison with experimental data.

doi: 10.1103/PhysRevC.85.034315
Citations: PlumX Metrics


2012ZH29      Phys.Rev. C 86, 014301 (2012)

B.Zhou, Z.-z.Ren, C.Xu, Y.Funaki, T.Yamada, A.Tohsaki, H.Horiuchi, P.Schuck, G.Ropke

New concept for the ground-state band in 20Ne within a microscopic cluster model

NUCLEAR STRUCTURE 20Ne; calculated energy surface contour maps of ground-state and first 2+ states, wave function overlaps, minimum energies and distances between α cluster and 16O cluster with respect to different spin-projected states for the ground-state band members up to 8+. Brink microscopic cluster model based on generalized Tohsaki, Horiuchi, Schuck, Ropke (THSR) wave functions. Comparison with experimental data.

doi: 10.1103/PhysRevC.86.014301
Citations: PlumX Metrics


2011AS06      Int.J.Mod.Phys. E20, 785 (2011)

A.Astier, P.Petkov, M.-G.Porquet, D.S.Delion, P.Schuck

Pure α-208Pb states in 212Po revealed by their enhanced E1 decays, A novel α clustering

NUCLEAR REACTIONS 208Pb(18O, 14C)212Po, E=85 MeV; measured reaction products, Eγ, Iγ, γ-γ-γ-coin.; deduced energies, states, J, π, yrast states, B(E1), α-208Pb states.

doi: 10.1142/S0218301311018678
Citations: PlumX Metrics


2011AS09      J.Phys.:Conf.Ser. 312, 092014 (2011)

A.Astier, P.Petkov, M.-G.Porquet, D.S.Delion, P.Schuck

A novel manifestation of α clustering in 212Po: Pure α-208Pb states revealed by their enhanced E1 decays

NUCLEAR REACTIONS 208Pb(18O, 14C), E=85 MeV; measured Eγ, Iγ(θ), γγ-coin using Eurobal array of Ge crystals. 212Po deduced γ yrast transitions angular distribution, T1/2 using Doppler shift, B(E1), α-core.

doi: 10.1088/1742-6596/312/9/092014
Citations: PlumX Metrics


2011BA42      Nucl.Phys. A872, 42 (2011)

E.B.Balbutsev, I.V.Molodtsova, P.Schuck

Spin scissors mode and the fine structure of M1 states in nuclei

NUCLEAR STRUCTURE 164Er; calculated B(M1), B(E2), energies of states, giant quadrupole resonances, quantum numbers of excited states using coupled dynamics; deduced spin-orbit interaction constant ETA for scissors mode and IVGQR.

doi: 10.1016/j.nuclphysa.2011.09.013
Citations: PlumX Metrics


2011BA44      Phys.Atomic Nuclei 74, 1651 (2011)

E.B.Balbutsev, L.A.Malov, P.Schuck

Spatial dependence of pairing in deformed nuclei

NUCLEAR STRUCTURE 134Ba, 174Yb; calculated pairing gaps, coherence lengths. Time-dependent HFB equations.

doi: 10.1134/S1063778811110020
Citations: PlumX Metrics


2011FU08      Int.J.Mod.Phys. E20, 874 (2011)

Y.Funaki, T.Yamada, H.Horiuchi, G.Ropke, P.Schuck, A.Tohsaki

Alpha clustering and condensation in nuclei

NUCLEAR STRUCTURE 16O; calculated energy levels, J, π, rms radii, occupation of the single-α orbitals. OCM and THSR calculations, comparison with experimental data.

doi: 10.1142/S0218301311018873
Citations: PlumX Metrics


2011RO50      Phys.Rev. C 84, 054309 (2011); Erratum Phys.Rev. C 93, 069905 (2016)

X.Roca-Maza, X.Vinas, M.Centelles, P.Ring, P.Schuck

Relativistic mean-field interaction with density-dependent meson-nucleon vertices based on microscopical calculations

NUCLEAR STRUCTURE 16,18,26,28,30Ne, 20,32Mg, 34,36Si, 36S, 38,40Ar, 36,38,40,42,44,46,48,50,52Ca, 40,42,44,48,50,52,54Ti, 46,52Cr, 54,64,66,68Fe, 54,56,58,66,68,70,72Ni, 58,70,72Zn, 82Ge, 84,86Se, 86,88Kr, 86,88,90Sr, 86,88,90,92Zr, 86,88,90,92,94Mo, 94,96Ru, 96,98Pd, 98,100Cd, 100,102,104,106,108,110,112,114,116,118,120,122,124,126,128,130,132,134Sn, 126,128,130,132,134,136Te, 134,136,138Xe, 136,138,140Ba, 138,140,142,144Ce, 140,142,144Nd, 142,144,146Sm, 146Gd, 148Dy, 150Er, 152Yb, 170,172Pt, 172,174,176,204,206Hg, 178,180,182,184,186,188,190,192,194,196,198,200,202,204,206,208,210,212,214Pb, 204,206,208,210,212,214,216Po, 208,210,212,214,216Rn, 210,212,214,216,218Ra, 212,214,216,218,220Th, 224U; analyzed binding energies, and charge radii. 100,132,176Sn; calculated isoscalar, isovector parts of the spin-orbit potential, spin orbit splitting. Relativistic Brueckner theory, high-precision density functional DD-MEδ with density-dependent meson-nucleon couplings. Comparison with experimental data.

doi: 10.1103/PhysRevC.84.054309
Citations: PlumX Metrics


2011SC14      Int.J.Mod.Phys. E20, 889 (2011)

P.Schuck, T.Sogo, G.Ropke

Critical temperature for α-condensation in asymmetric nuclear matter: The astrophysical context

doi: 10.1142/S0218301311018903
Citations: PlumX Metrics


2011VI01      Int.J.Mod.Phys. E20, 399 (2011)

X.Vinas, P.Schuck, M.Farine

Semiclassical description of average pairing properties in nuclei

NUCLEAR STRUCTURE 116Sn; calculated level density, neutron effective mass, pairing gap.

doi: 10.1142/S0218301311017788
Citations: PlumX Metrics


2010AS01      Phys.Rev.Lett. 104, 042701 (2010)

A.Astier, P.Petkov, M.-G.Porquet, D.S.Delion, P.Schuck

Novel Manifestation of α-Clustering Structures: New "α+ 208Pb" States in 212Po Revealed by Their Enhanced E1 Decays

NUCLEAR REACTIONS 208Pb(18O, 14C), E=85 MeV; measured Eγ, Iγ; deduced 212Po level scheme, yrast state, lifetimes, B(E1). Doppler-shift attenuation method.

doi: 10.1103/PhysRevLett.104.042701
Citations: PlumX Metrics

Data from this article have been entered in the XUNDL database. For more information, click here.


2010AS03      Eur.Phys.J. A 46, 165 (2010)

A.Astier, P.Petkov, M.-G.Porquet, D.S.Delion, P.Schuck

Coexistence of "a + 208Pb" cluster structures and single-particle excitations in 21284Po128

NUCLEAR REACTIONS 208Pb(18O, 14C), E=85 MeV; measured reaction products, Eγ, Iγ, γ-γ-coin. 212Po; deduced level scheme, transition energies, γ-ray intensities, J, π, angular-distribution coefficients, internal conversion coefficients, yrast states, lifetimes, B(E1), B(E2), B(E3). EUROBALL project, DSAM method, comparison with low-lying cluster structure models.

RADIOACTIVITY 212Po(α); measured decay products, Eγ, Iγ, alpha spectrum; deduced branching ratios, partial T1/2 for yrast states.

doi: 10.1140/epja/i2010-11053-6
Citations: PlumX Metrics

Data from this article have been entered in the XUNDL database. For more information, click here.


2010BH05      Phys.Rev. C 81, 044321 (2010)

A.Bhagwat, X.Vinas, M.Centelles, P.Schuck, R.Wyss

Microscopic-macroscopic approach for binding energies with the Wigner-Kirkwood method

NUCLEAR STRUCTURE 40Ca, 132Sn, 208Pb; calculated coulomb potential, Wigner-Kirkwood energies and ground state energies as function of quadrupole deformation. 136,138,140,142,144,146,148,150,152,154,156Gd, 138,140,142,144,146,148,150,152,154,156,158Dy, 178,180,182,184,186,188,190,192,194,196,198,200,202,204,206,208,210,212,214Pb; calculated Strutinsky shell corrections. 38,40,42,44,46,48,50,52Ca, 40,42,44,46,48,50,52Sc, 40,42,44,46,48,50,52,54Ti, 100,102,104,106,108,110,112,114,116,118,120,122,124,126,128,130,132,134Sn, 178,180,182,184,186,188,190,192,194,196,198,200,202,204,206,208,210,212,214Pb; calculated binding energies, one-neutron and two-neutron separation energies. A=40-152, A=18-220; calculated binding energies for a set of 367 spherical nuclei. Classical Wigner-Kirkwood expansion method for spherical and deformed nuclei. Comparison with experimental data.

doi: 10.1103/PhysRevC.81.044321
Citations: PlumX Metrics


2010BH06      Int.J.Mod.Phys. E19, 747 (2010)

A.Bhagwat, X.Vinas, R.Wyss, P.Schuck

Wigner-Kirkwood method for microscopic-macroscopic calculation of binding energies

NUCLEAR STRUCTURE 188,190,192,194,196,198,200,202,204,206,208,210,212,214Pb, 134,136,138,140,142,144,146,148,150,152,154,156,158Dy; calculated Coulomb potential, deformation parameters, shell corrections, binding energies.

doi: 10.1142/S0218301310015187
Citations: PlumX Metrics


2010FU06      Phys.Rev. C 82, 024312 (2010)

Y.Funaki, T.Yamada, A.Tohsaki, H.Horiuchi, G.Ropke, P.Schuck

Microscopic study of 4α-particle condensation with inclusion of resonances

NUCLEAR STRUCTURE 16O; calculated binding energies, energy spectra, rms radii, monopole M(E0) matrix elements, α-decay widths, nucleon density distributions, occupation probabilities, and momentum distributions of four 0+ states in 4α-particle condensate using Tohsaki-Horiuchi- Schuck-Ropke (THSR) wave function. Comparison with experimental data.

doi: 10.1103/PhysRevC.82.024312
Citations: PlumX Metrics


2010HA10      J.Phys.(London) G37, 064040 (2010)

K.Hagino, H.Sagawa, P.Schuck

Cooper pair sizes in 11Li and in superfluid nuclei: a puzzle?

NUCLEAR STRUCTURE 11Li, 18O; calculated neutron Cooper pairs, two-particle densities and wavefunctions, radii.

doi: 10.1088/0954-3899/37/6/064040
Citations: PlumX Metrics


2010JI10      Phys.Rev. C 82, 024911 (2010)

M.Jin, M.Urban, P.Schuck

BEC-BCS crossover and the liquid-gas phase transition in hot and dense nuclear matter

doi: 10.1103/PhysRevC.82.024911
Citations: PlumX Metrics


2010PI02      Phys.Rev. C 81, 034307 (2010)

N.Pillet, N.Sandulescu, P.Schuck, J.-F.Berger

Two-particle spatial correlations in superfluid nuclei

NUCLEAR STRUCTURE 102Sr, 152Sm, 238U; calculated local and nonlocal parts of the pairing tensor, and coherence lengths. 60Ni, 120,136Sn, 212Pb; calculated pairing correlation energies and average pairing fields, and coherence lengths. Effect of pairing on two-neutron spatial correlations in deformed nuclei. Hartree-Fock Bogoliubov calculations with D1S Gogny force.

doi: 10.1103/PhysRevC.81.034307
Citations: PlumX Metrics


2010RO08      Phys.Rev. C 81, 034315 (2010)

L.M.Robledo, M.Baldo, P.Schuck, X.Vinas

Octupole deformation properties of the Barcelona-Catania-Paris energy density functionals

NUCLEAR STRUCTURE 216,218,220,222,224,226,228,230,232Ra, 140,142,144,146,148,150Ba; calculated HFB mean-field energies and octupole collective inertial parameters as function of octupole moment, particle-particle correlation energies, B(E1) and B(E3) probabilities, and dipole moments. 144Ba, 224Ra; calculated single-particle neutron and proton energies with energy density functional and the Gogny D1S force as function of quadrupole and octupole moments. 240Pu; calculated mean-field energy, octupole and hexadecapole moments as function of axial quadrupole moment. Hartree-Fock-Bogoliubov approximation calculations for octupole deformation properties of the Barcelona-Catania-Paris (BCP) energy density functionals.

doi: 10.1103/PhysRevC.81.034315
Citations: PlumX Metrics


2010SO11      Phys.Rev. C 81, 064310 (2010)

T.Sogo, G.Ropke, P.Schuck

Many-body approach for quartet condensation in strong coupling

doi: 10.1103/PhysRevC.81.064310
Citations: PlumX Metrics


2010SO17      Phys.Rev. C 82, 034322 (2010)

T.Sogo, G.Ropke, P.Schuck

Critical temperature for α-particle condensation in asymmetric nuclear matter

doi: 10.1103/PhysRevC.82.034322
Citations: PlumX Metrics


2010TO15      Eur.Phys.J. A 45, 257 (2010)

M.Tohyama, P.Schuck

Density-matrix formalism with three-body ground-state correlations

doi: 10.1140/epja/i2010-11002-5
Citations: PlumX Metrics


2010VI05      Phys.Rev. C 82, 034314 (2010)

X.Vinas, P.Schuck, and N.Pillet

Cooper pair sizes in superfluid nuclei in a simplified model

NUCLEAR STRUCTURE A=1-320; calculated pairing gap at the Fermi energy using the Gogny D1S force. A=12, 28, 120, 8000 120Sn; calculated coherence lengths as a function of the radial distance, and density matrices; evaluated Cooper pair sizes in a simple harmonic oscillator model.

doi: 10.1103/PhysRevC.82.034314
Citations: PlumX Metrics


2009CA34      Chin.Phys.C 33, Supplement 1, 33 (2009)

L.-G.Cao, U.Lombardo, P.Schuck

Superfluid nuclear matter in BCS theory and beyond

doi: 10.1088/1674-1137/33/S1/011
Citations: PlumX Metrics


2009FU14      Int.J.Mod.Phys. E18, 2083 (2009)

Y.Funaki, T.Yamada, H.Horiuchi, G.Ropke, P.Schuck, A.Tohsaki

α-particle condensed state in 16O

NUCLEAR STRUCTURE 16O; calculated energy spectra, J, π, rms radii, monopole transition matrix elements, single-α orbits.

doi: 10.1142/S0218301309014330
Citations: PlumX Metrics


2009FU16      Phys.Rev. C 80, 064326 (2009)

Y.Funaki, H.Horiuchi, W.von Oertzen, G.Ropke, P.Schuck, A.Tohsaki, T.Yamada

Concepts of nuclear α-particle condensation

NUCLEAR STRUCTURE 12C, 16O; calculated occupation of single-α orbitals, binding energies, and momentum distribution of Hoyle states in 12C and 16O using antisymmetrized α-particle product state wave functions or THSR (Tohsaki-Horiuchi-Schuck-Roepke) α-cluster wave functions. Discussed α-cluster phenomenon in connection with experimental αγ-coin spectra for 24Mg(28Si, 3α)40Ca and 24Mg(28Si, 12C)40Ca reactions.

doi: 10.1103/PhysRevC.80.064326
Citations: PlumX Metrics


2009HA37      Int.J.Mod.Phys. E18, 2045 (2009)

K.Hagino, H.Sagawa, P.Schuck

Di-neutron correlation in light neutron-rich nuclei

NUCLEAR STRUCTURE 11Li, 8He; analyzed root mean square distance between the two valence neutrons in 11Li, di-neutron structure in 8He.

doi: 10.1142/S0218301309014263
Citations: PlumX Metrics


2009KA17      Phys.Rev. C 79, 054305 (2009)

Y.Kanada-Enyo, N.Hinohara, T.Suhara, P.Schuck

Dineutron correlations in quasi-two-dimensional systems in a simplified model, and possible relation to neutron-rich nuclei

doi: 10.1103/PhysRevC.79.054305
Citations: PlumX Metrics


2009SO06      Phys.Rev. C 79, 051301 (2009)

T.Sogo, R.Lazauskas, G.Ropke, P.Schuck

Critical temperature for α-particle condensation within a momentum-projected mean-field approach

doi: 10.1103/PhysRevC.79.051301
Citations: PlumX Metrics


2009VI04      Int.J.Mod.Phys. E18, 935 (2009)

X.Vinas, L.M.Robledo, M.Baldo, P.Schuck

Deformed nuclei using the Barcelona-Catania-Paris energy density functional

doi: 10.1142/S0218301309013075
Citations: PlumX Metrics


2009YA05      Phys.Rev. C 79, 054314 (2009)

T.Yamada, Y.Funaki, H.Horiuchi, G.Ropke, P.Schuck, A.Tohsaki

Internal one-particle density matrix for Bose-Einstein condensates with finite number of particles in a harmonic potential

doi: 10.1103/PhysRevC.79.054314
Citations: PlumX Metrics


2008FU06      Phys.Rev. C 77, 064312 (2008)

Y.Funaki, H.Horiuchi, G.Ropke, P.Schuck, A.Tohsaki, T.Yamada

Density-induced suppression of the α-particle condensate in nuclear matter and the structure of α-cluster states in nuclei

NUCLEAR STRUCTURE 12C, 16O; calculated condensation fraction for alpha-matter and its dependence on baryon density. Jastrow-Feenberg approach.

doi: 10.1103/PhysRevC.77.064312
Citations: PlumX Metrics


2008FU11      Phys.Rev.Lett. 101, 082502 (2008)

Y.Funaki, T.Yamada, H.Horiuchi, G.Ropke, P.Schuck, A.Tohsaki

α-Particle Condensation in 16O Studied with a Full Four-Body Orthogonality Condition Model Calculation

NUCLEAR STRUCTURE 16O; calculated energy and rms radii of ground and excited 0+ states and monopole transition matrix elements, M(E0) to ground state; comparison with experiments; semi-microscopic cluster model.

doi: 10.1103/PhysRevLett.101.082502
Citations: PlumX Metrics


2008FU14      Int.J.Mod.Phys. E17, 2087 (2008)

Y.Funaki, T.Yamada, H.Horiuchi, G.Ropke, P.Schuck, A.Tohsaki

Present status of alpha-particle condensate states in self-conjugate 4n nuclei

NUCLEAR STRUCTURE 12C, 16O; calculated low density states near the 3α and 4α breakup threshold, energy levels, J, π. OCM and THSR approaches.

doi: 10.1142/S0218301308011148
Citations: PlumX Metrics


2008MA20      Phys.Rev. C 77, 064306 (2008)

J.Margueron, J.Navarro, Nguyen Van Giai, P.Schuck

Continued fraction approximation for the nuclear matter response function

doi: 10.1103/PhysRevC.77.064306
Citations: PlumX Metrics


2008RO11      Phys.Rev. C 77, 051301 (2008)

L.M.Robledo, M.Baldo, P.Schuck, X.Vinas

Deformation properties of the Barcelona-Catania-Paris (BCP) energy density functional

NUCLEAR STRUCTURE 26,32,38Mg, 144,154,160,164Dy, 218,228,236Ra, 240Pu; calculated potential energy surfaces, neutron separation energies, deformation energies; deduced levels, configurations. Barcelona-Catania-Paris (BCP) energy density functions. 240Pu; calculated fission barrier. Comparison with experimental data.

doi: 10.1103/PhysRevC.77.051301
Citations: PlumX Metrics


2008SC21      Int.J.Mod.Phys. E17, 2136 (2008)

P.Schuck

Formulation of alpha-particle condensation in the macroscopic limit

doi: 10.1142/S0218301308011227
Citations: PlumX Metrics


2008TO09      Eur.Phys.J. A 36, 349 (2008)

M.Tohyama, P.Schuck

Extended random-phase approximation with three-body ground-state correlations

doi: 10.1140/epja/i2008-10596-3
Citations: PlumX Metrics


2007BA03      Ann.Phys.(New York) 322, 489 (2007)

E.B.Balbutsev, P.Schuck

The nuclear scissors mode from various aspects

doi: 10.1016/j.aop.2006.04.014
Citations: PlumX Metrics


2007CE01      Ann.Phys.(New York) 322, 363 (2007)

M.Centelles, P.Schuck, X.Vinas

Thomas-Fermi theory for atomic nuclei revisited

NUCLEAR STRUCTURE A=8-200; calculated binding energies, shell correction energies. Semiclassical approach, Thomas-Fermi theory, Wigner-Kirkwood expansion.

doi: 10.1002/andp.2006.07.009
Citations: PlumX Metrics


2007HA21      Phys.Rev.Lett. 99, 022506 (2007)

K.Hagino, H.Sagawa, J.Carbonell, P.Schuck

Coexistence of BCS- and BEC-Like Pair Structures in Halo Nuclei

doi: 10.1103/PhysRevLett.99.022506
Citations: PlumX Metrics


2007PI11      Phys.Rev. C 76, 024310 (2007)

N.Pillet, N.Sandulescu, P.Schuck

Generic strong coupling behavior of Cooper pairs on the surface of superfluid nuclei

doi: 10.1103/PhysRevC.76.024310
Citations: PlumX Metrics


2007SC21      Prog.Part.Nucl.Phys. 59, 285 (2007)

P.Schuck, Y.Funaki, H.Horiuchi, G.Ropke, A.Tohsaki, T.Yamada

Quartetting in fermionic matter and α-particle condensation in nuclear systems

doi: 10.1016/j.ppnp.2006.12.003
Citations: PlumX Metrics


2007SC38      Nucl.Phys. A788, 293c (2007)

P.Schuck, Y.Funaki, H.Horiuchi, G.Ropke, A.Tohsaki, T.Yamada

α-Particle Condensation in Nuclear Systems

NUCLEAR STRUCTURE 12C; calculated binding energy, radii, monopole matrix elements and inelastic form factor. 16O; calculated 0+ state energies. Hoyle state discussed.

doi: 10.1016/j.nuclphysa.2007.01.015
Citations: PlumX Metrics


Back to query form    [Next]