NSR Query Results


Output year order : Descending
Format : Normal

NSR database version of April 26, 2024.

Search: Author = J.Engel

Found 108 matches.

    Showing 1 to 100.

   [Next]

Back to query form



2023LU01      Astrophys.J. 944, 144 (2023)

K.A.Lund, J.Engel, G.C.McLaughlin, M.R.Mumpower, E.M.Ney, R.Surman

The Influence of β-decay Rates on r-process Observables

doi: 10.3847/1538-4357/acaf56
Citations: PlumX Metrics


2022CI08      J.Phys.(London) G49, 120502 (2022)

V.Cirigliano, Z.Davoudi, J.Engel, R.J.Furnstahl, G.Hagen, U.Heinz, H.Hergert, M.Horoi, C.W.Johnson, A.Lovato, E.Mereghetti, W.Nazarewicz, A.Nicholson, T.Papenbrock, S.Pastore, M.Plumlee, D.R.Phillips, P.E.Shanahan, S.R.Stroberg, F.Viens, A.Walker-Loud, K.A.Wendt, S.M.Wild

Towards precise and accurate calculations of neutrinoless double-beta decay

RADIOACTIVITY 48Ca(2β-); calculated neutrinoless nuclear matrix elements using chiral-EFT interactions, EDF, IBM, QRPA, SM-pf, SM-sdpf, SM-MBPT, RSM, QMC+SM, IM-GCM, VS-IMSRG, CCSD, CCSD-T1.

doi: 10.1088/1361-6471/aca03e
Citations: PlumX Metrics


2022GI06      Phys.Rev. C 105, 055801 (2022)

S.Giraud, R.G.T.Zegers, B.A.Brown, J.-M.Gabler, J.Lesniak, J.Rebenstock, E.M.Ney, J.Engel, A.Ravlic, N.Paar

Finite-temperature electron-capture rates for neutron-rich nuclei near N=50 and effects on core-collapse supernova simulations

RADIOACTIVITY 86Kr(EC); calculated Gamow-Teller strength distribution, EC-rates for various energies of initial states, average shell occupation. N=44-54(EC); Z=26-36(EC); calculated EC-rates. Finite-temperature proton-neutron relativistic QRPA (FT-PNRQRPA), finite-temperature QRPA (FT-QRPA) and shell-model calculations. Obtained finite-temperature electron-capture rates applied in one-dimensional core-collapse simulations.

doi: 10.1103/PhysRevC.105.055801
Citations: PlumX Metrics


2022HI02      Phys.Rev. C 105, 044314 (2022)

N.Hinohara, J.Engel

Global calculation of two-neutrino double-β decay within the finite amplitude method in nuclear density functional theory

NUCLEAR STRUCTURE 76Ge, 76Se, 130Te, 130Xe, 136Xe, 136Ba, 150Nd, 150Sm; calculated ground state properties, quadrupole deformation, neutron and proton pairing gaps, total energies. 48Ca, 48Ti, 82Se, 82Kr, 96Zr, 96Mo, 100Mo, 100Ru, 116Cd, 116Sn, 128Te, 128Xe, 238U, 238Pu; calculated quadrupole deformation, neutron and proton pairing gaps. Proton-neutron version of the finite amplitude method (pnFAM) with SkM* functional. Comparison to experimental data.

RADIOACTIVITY 46,48Ca, 70Zn, 76Ge, 80,82Se, 86Kr, 94,96Zr, 98,100Mo, 104Ru, 110Pd, 114,116Cd, 122,124Sn, 128,130Te, 134,136Xe, 142Ce, 146,148,150Nd, 154Sm, 160Gd, 170Er, 176Yb, 186W, 192Os, 198Pt, 204Hg, 226Ra, 232Th, 238U, 244Pu, 248Cm(2β-); calculated matrix elements. 76Ge, 76Se, 130Te, 130Xe, 136Xe, 136Ba, 150Nd, 150Sm(2β-); calculated summed Fermi- and Gamow-Teller transitions. Proton-neutron version of the finite amplitude method (pnFAM) within time-dependent DFT. Used functional are fit globally to single-beta-decay half-lives and charge-exchange giant-resonance energies. Comparison to available experimental data.

doi: 10.1103/PhysRevC.105.044314
Citations: PlumX Metrics


2022NE03      Phys.Rev. C 105, 034349 (2022)

E.M.Ney, J.Engel, N.Schunck

Two-body weak currents in heavy nuclei

RADIOACTIVITY 134,136,138,140,142,144,146,148,150,152,154,156,158,160,162,164,166,168,170,172,174Sn(β-);162,164,166,168,170,172,174,176,178,180,182,184,186,188,190,192,194,196,198,200,202,204,206,208,210,212,214,216,218,220Gd(β-); calculated decay rates, Gamow-Teller strength distribution, density of the lowest lying Gamow-Teller transition amplitude. Two-body axial currents studied by charge-changing finite amplitude method with Skyrme functional.

doi: 10.1103/PhysRevC.105.034349
Citations: PlumX Metrics


2022RO10      Phys.Rev. C 105, 064317 (2022)

A.M.Romero, J.Engel, H.L.Tang, S.E.Economou

Solving nuclear structure problems with the adaptive variational quantum algorithm

doi: 10.1103/PhysRevC.105.064317
Citations: PlumX Metrics


2022YA19      Phys.Rev. C 106, 014315 (2022)

J.M.Yao, I.Ginnett, A.Belley, T.Miyagi, R.Wirth, S.Bogner, J.Engel, H.Hergert, J.D.Holt, S.R.Stroberg

Ab initio studies of the double-Gamow-Teller transition and its correlation with neutrinoless double-β decay

RADIOACTIVITY 6,8He, 10Be, 14C, 18,22O, 22Ne, 26,28Mg, 30Si, 34S, 38Ar, 42,44,48,56Ca, 50Cr, 46,52Ti(2β-); A=6-76(2β-); calculated nuclear matrix elements (NMEs) for ground-state-to-ground-state double Gamow-Teller transitions (DGT) and Gamow Teller (GT) 0νββ decay, transition densities of parent nuclei, correlation between the transition densities and NMEs of DGT transitions. Ab initio many body methods by importance-truncated no-core shell model (IT-NCSM) with GXPF1A interaction, valence-space in-medium similarity renormalization group method (VSIMSRG) with EM1.8/2.0 interaction, and in-medium generator coordinate method (IM-GCM). 6He, 10Be, 14C, 18O, 22Ne, 26Mg, 30Si, 34S, 38Ar, 42,44Ca, 46Ti, 50Cr; 2β- decay mode forbidden for these nuclei due to negative Q values, however, on query, authors mentioned that these nuclei were included for NMEs for 0νββ decays as these involved the same decay operators that determine the allowed decay rates, thus helpful to benchmark many-body approaches for the nuclear matrix elements of neutrinoless double beta decay.

doi: 10.1103/PhysRevC.106.014315
Citations: PlumX Metrics


2021GO10      Phys.Rev. C 103, 035803 (2021)

J.Gombas, P.A.DeYoung, A.Spyrou, A.C.Dombos, A.Algora, T.Baumann, B.Crider, J.Engel, T.Ginter, E.Kwan, S.N.Liddick, S.Lyons, F.Naqvi, E.M.Ney, J.Pereira, C.Prokop, W.Ong, S.Quinn, D.P.Scriven, A.Simon, C.Sumithrarachchi

β-decay feeding intensity distributions for 103, 104mNb

RADIOACTIVITY 103,104mNb(β-)[from 9Be(124Sn, X), E not given, followed by separation of fragments using A1900 separator at NSCL-MSU]; measured reaction products and particle identification plot from 9Be(124Sn, X), Eγ, Iγ, total absorption gamma spectra from the decays of 103Nb and 104mNb using Summing NaI(Tl) (SuN) detector at the NSCL-MSU; deduced Iβ feedings to levels in 103Mo and 104Mo, cumulative B(GT) values. Comparison to predictions of quasiparticle random-phase approximation (QRPA) model. Relevance to antineutrino studies of nuclear reactors, and astrophysical r process.

doi: 10.1103/PhysRevC.103.035803
Citations: PlumX Metrics

Data from this article have been entered in the XUNDL database. For more information, click here.


2021NO04      Phys.Rev.Lett. 126, 182502 (2021)

S.Novario, P.Gysbers, J.Engel, G.Hagen, G.R.Jansen, T.D.Morris, P.Navratil, T.Papenbrock, S.Quaglioni

Coupled-Cluster Calculations of Neutrinoless Double-β Decay in 48Ca

RADIOACTIVITY 48Ca(2β-); calculated nuclear matrix element for the neutrinoless ββ-decay using coupled-cluster theory and nuclear interactions from chiral effective field theory.

doi: 10.1103/PhysRevLett.126.182502
Citations: PlumX Metrics


2021PE08      Phys.Rev. C 103, 055808 (2021)

C.F.Persch, P.A.DeYoung, S.Lyons, A.Spyrou, S.N.Liddick, F.Naqvi, B.P.Crider, A.C.Dombos, J.Gombas, D.L.Bleuel, B.A.Brown, A.Couture, L.Crespo Campo, J.Engel, M.Guttormsen, A.C.Larsen, R.Lewis, S.Karampagia, S.Mosby, E.M.Ney, A.Palmisano, G.Perdikakis, C.J.Prokop, T.Renstrom, S.Siem, M.K.Smith, S.J.Quinn

β-decay feeding intensity distributions of 71, 73Ni

RADIOACTIVITY 71,73Ni(β-)[from 9Be(86Kr, X), E=140 MeV/nucleon, followed by separation of fragments using A1900 fragment separator at NSCL-MSU facility]; measured implantation events and β particles using position-sensitive, double-sided, silicon-strip detector (DSSD), and two silicon PIN detectors for TOF and energy loss, Eγ, Iγ, half-lives of decays of 71,73Ni using a total absorption summing NaI(Tl) detector (SuN) surrounding the DSSD; deduced multiplicity spectra, Iβ(E) feedings, B(GT). GEANT4 and DICEBOX analysis of total absorption spectrum (TAS). Comparison with QRPA, and shell-model calculations, the latter using NuShellX@MSU code with JJ44B and JUN45 interaction Hamiltonians. Relevance to improvement in the nuclear input for r-process calculations.

NUCLEAR REACTIONS 9Be(86Kr, X)71Ni/73Ni/71Cu/73Cu/, E=140 MeV/nucleon; measured yields of reaction products using A1900 fragment separator and two silicon PIN detectors for TOF and energy loss at NSCL-MSU facility.

doi: 10.1103/PhysRevC.103.055808
Citations: PlumX Metrics

Data from this article have been entered in the XUNDL database. For more information, click here.


2021RO22      Phys.Rev. C 104, 054317 (2021)

A.M.Romero, J.M.Yao, B.Bally, T.R.Rodriguez, J.Engel

Application of an efficient generator-coordinate subspace-selection algorithm to neutrinoless double-β decay

RADIOACTIVITY 76Ge(2β-); calculated valence-space nuclear matrix elements (NMEs) for 0νββ decay mode with shell model, ab initio methods using the GCN2850 interaction, and the energy-transition-orthogonality procedure (ENTROP).

NUCLEAR STRUCTURE 76Ge, 76Se; calculated valence-space ground-state energies of 76Ge and 76Se in the natural basis, and the energy-transition-orthogonality procedure (ENTROP), positive-parity low-energy levels using three methods: shell-model code BIGSTICK, a gradient descent procedure, and by ENTROP, potential-energy surfaces in (β, γ) plane by ENTROP.

doi: 10.1103/PhysRevC.104.054317
Citations: PlumX Metrics


2020BA33      Phys.Rev. C 102, 014302 (2020)

R.A.M.Basili, J.M.Yao, J.Engel, H.Hergert, M.Lockner, P.Maris, J.P.Vary

Benchmark neutrinoless double-β decay matrix elements in a light nucleus

RADIOACTIVITY 6He(2β-); calculated nuclear radius, ground state binding energy, and neutrinoless double β-decay (0νββ) nuclear matrix elements (NMEs) using the no-core shell model (NCSM), and the multireference in-medium similarity renormalization group (MR-IMSRG).

doi: 10.1103/PhysRevC.102.014302
Citations: PlumX Metrics


2020GA02      Phys.Rev. C 101, 014308 (2020)

B.Gao, R.G.T.Zegers, J.C.Zamora, D.Bazin, B.A.Brown, P.Bender, H.L.Crawford, J.Engel, A.Falduto, A.Gade, P.Gastis, T.Ginter, C.J.Guess, S.Lipschutz, A.O.Macchiavelli, K.Miki, E.M.Ney, B.Longfellow, S.Noji, J.Pereira, J.Schmitt, C.Sullivan, R.Titus, D.Weisshaar

Gamow-Teller transitions to 93Zr via the 93Nb (t, 3He + γ) reaction at 115 MeV/u and its application to the stellar electron-capture rates

NUCLEAR REACTIONS 93Nb(t, 3He), E=115 MeV/nucleon; measured 3He particle spectra, Eγ, double-differential σ(θ) using S800 spectrograph and GRETINA array at NSCL-MSU Coupled Cyclotron Facility. 93Zr; deduced levels, L-transfer, J, π, B(GT), electron capture (EC) rates in the late evolution of core-collapse supernovae, DWBA and multipole decomposition analysis (MDA). Comparison with QRPA and shell-model calculations.

doi: 10.1103/PhysRevC.101.014308
Citations: PlumX Metrics

Data from this article have been entered in the EXFOR database. For more information, access X4 datasetC2439. Data from this article have been entered in the XUNDL database. For more information, click here.


2020GA33      Phys.Rev.Lett. 125, 212501 (2020)

D.Gambacurta, M.Grasso, J.Engel

Gamow-Teller Strength in 48Ca and 78Ni with the Charge-Exchange Subtracted Second Random-Phase Approximation

NUCLEAR STRUCTURE 48Ca, 78Ni; analyzed available data; calculated Gamow-Teller strength distributions using a fully self-consistent subtracted second random-phase approximation for charge-exchange processes with Skyrme energy-density functionals.

doi: 10.1103/PhysRevLett.125.212501
Citations: PlumX Metrics


2020NE08      Phys.Rev. C 102, 034326 (2020)

E.M.Ney, J.Engel, T.Li, N.Schunck

Global description of β- decay with the axially deformed Skyrme finite-amplitude method: Extension to odd-mass and odd-odd nuclei

RADIOACTIVITY Z=20, A=50-61(β-); Z=21, A=50-66(β-); Z=22, A=52-73(β-); Z=23, A=53-74(β-); Z=24, A=56-79(β-); Z=25, A=57-80(β-); Z=26, A=60-83(β-); Z=27, A=62-88(β-); Z=28, A=68-93(β-); Z=29, A=68-96(β-); Z=30, A=74-99(β-); Z=31, A=74-102(β-); Z=32, A=80-103(β-); Z=33, A=80-110(β-); Z=34, A=84-113(β-); Z=35, A=84-116(β-); Z=36, A=88-117(β-); Z=37, A=88-120(β-); Z=38, A=90-121(β-); Z=39, A=90-124(β-); Z=40, A=97-125(β-); Z=41, A=96-128(β-); Z=42, A=102-135(β-); Z=43, A=102-138(β-); Z=44, A=106-143(β-); Z=45, A=106-146(β-); Z=46, A=112-147(β-); Z=47, A=112-150(β-); Z=48, A=118-157(β-); Z=49, A=124-160(β-); Z=50, A=128-163(β-); Z=51, A=128-168(β-); Z=52, A=134-171(β-); Z=53, A=134-176(β-); Z=54, A=138-179(β-); Z=55, A=138-182(β-); Z=56, A=140-183(β-); Z=57, A=141-184(β-); Z=58, A=144-185(β-); Z=59, A=146-186(β-); Z=60, A=152-187(β-); Z=61, A=152-188(β-); Z=62, A=156-189(β-); Z=63, A=156-192(β-); Z=64, A=162-207(β-); Z=65, A=162-210(β-); Z=66, A=166-213(β-); Z=67, A=167-218(β-); Z=68, A=172-221(β-); Z=69, A=172-224(β-); Z=70, A=180-227(β-); Z=71, A=180-228(β-); Z=72, A=184-233(β-); Z=73, A=185-238(β-); Z=74, A=190-241(β-); Z=75, A=191-248(β-); Z=76, A=194-255(β-); Z=77, A=195-256(β-); Z=78, A=202-261(β-); Z=79, A=202-262(β-); Z=80, A=206-265(β-); Z=81, A=210-266(β-); Z=82, A=212-267(β-); Z=83, A=214-268(β-); Z=84, A=220-269(β-); Z=85, A=220-270(β-); Z=86, A=224-271(β-); Z=87, A=225-272(β-); Z=88, A=230-273(β-); Z=89, A=231-274(β-); Z=90, A=236-275(β-); Z=91, A=237-278(β-); Z=92, A=242-281(β-); Z=93, A=242-302(β-); Z=94, A=246-305(β-); Z=95, A=247-308(β-); Z=96, A=252-309(β-); Z=97, A=254-314(β-); Z=98, A=260-315(β-); Z=99, A=260-318(β-); Z=100, A=268-323(β-); Z=101, A=268-326(β-); Z=102, A=274-329(β-); Z=103, A=274-332(β-); Z=104, A=282-335(β-); Z=105, A=282-336(β-); Z=106, A=286-339(β-); Z=107, A=290-340(β-); Z=108, A=292-345(β-); Z=109, A=294-348(β-); Z=110, A=300-369(β-); calculated asymptotic quantum numbers of the blocked proton or neutron quasiparticle, HFB binding energy, β2 deformation parameter, β- decay half-lives of 3983 neutron-rich nuclei, Q(β-), percent first-forbidden rate, QRPA energy and B(GT) Gamow-Teller strength for selected nuclei. Statistical extension of the charge-changing Finite-amplitude method (FAM), with a global Skyrme density functional. Comparison with experimental data, and with other theoretical calculations. Relevance to r process in nucleosynthesis.

doi: 10.1103/PhysRevC.102.034326
Citations: PlumX Metrics


2020YA16      Phys.Rev.Lett. 124, 232501 (2020)

J.M.Yao, B.Bally, J.Engel, R.Wirth, T.R.Rodriguez, H.Hergert

Ab Initio Treatment of Collective Correlations and the Neutrinoless Double Beta Decay of 48Ca

RADIOACTIVITY 48Ca(2β-); calculated particle-number projected potential energy surfaces. 48Ti; deduced nuclear matrix elements correlations with B(E2).

doi: 10.1103/PhysRevLett.124.232501
Citations: PlumX Metrics


2019LY02      Phys.Rev. C 100, 025806 (2019)

S.Lyons, A.Spyrou, S.N.Liddick, F.Naqvi, B.P.Crider, A.C.Dombos, D.L.Bleuel, B.A.Brown, A.Couture, L.Crespo Campo, J.Engel, M.Guttormsen, A.C.Larsen, R.Lewis, P.Moller, S.Mosby, M.R.Mumpower, E.M.Ney, A.Palmisano, G.Perdikakis, C.J.Prokop, T.Renstrom, S.Siem, M.K.Smith, S.J.Quinn

69, 71Co β-decay strength distributions from total absorption spectroscopy

RADIOACTIVITY 69,71Co(β-)[from 9Be(86Kr, X), E=140 MeV/nucleon, followed by in flight separation of fragments by the A1900 fragment separator at NSCL-MSU]; measured Eγ, Iγ, Eβ, βγ-coin, half-lives of decays of 69,71Co decays, total absorption spectra using Summing NaI(Tl) (SuN) detector for γ rays and double-sided silicon strip detector (DSSD) for β; deduced cumulative Iβ distributions and compared to QRPA and Skyrme QRPA calculations, Gamow-Teller (GT) strength distribution. Comparison of decay half-lives with ENSDF values, and theoretical calculations using shell mode, QRPA and Skyrme QRPA. Relevance to r process in nucleosynthesis.

doi: 10.1103/PhysRevC.100.025806
Citations: PlumX Metrics

Data from this article have been entered in the XUNDL database. For more information, click here.


2019TI09      Phys.Rev. C 100, 045805 (2019)

R.Titus, E.M.Ney, R.G.T.Zegers, D.Bazin, J.Belarge, P.C.Bender, B.A.Brown, C.M.Campbell, B.Elman, J.Engel, A.Gade, B.Gao, E.Kwan, S.Lipschutz, B.Longfellow, E.Lunderberg, T.Mijatovic, S.Noji, J.Pereira, J.Schmitt, C.Sullivan, D.Weisshaar, J.C.Zamora

Constraints for stellar electron-capture rates on 86Kr via the 86Kr(t, 3He+γ)86Br reaction and the implications for core-collapse supernovae

NUCLEAR REACTIONS 86Kr, 12C, 14N(t, 3He), E=115 MeV/nucleon, [tritons from 9Be(16O, X), E=150 MeV/nucleon primary reaction, and separated using A1900 fragment separator]; measured 3He spectra, Eγ, Iγ, γγ- and (3He)γ-coin, differential σ(θ) using S800 spectrograph for particles and GRETINA array for γ detection at the NSCL-MSU facility. Data from 12C 14N present as contaminants used for energy calibration. 86Br; deduced levels, L-transfers, Gamow-Teller strength distributions. 86Kr; calculated electron capture rates at T=10 GK using the deduced Gamow-Teller strength distributions. Comparison with shell-model and quasiparticle random-phase approximation (QRPA) calculations. Z=26-41, N=75-93; calculated electron capture rates for 78 nuclides near N=50 and Z=28 (see 2018Ti02) using quasiparticle random-phase approximation (QRPA), with Jπ assignments made for ground states of some nuclides using Gallagher-Moszkowski (GM) rule. Relevance to astrophysical simulations of core-collapse supernovae.

doi: 10.1103/PhysRevC.100.045805
Citations: PlumX Metrics

Data from this article have been entered in the EXFOR database. For more information, access X4 datasetC2411. Data from this article have been entered in the XUNDL database. For more information, click here.


2019ZA07      Phys.Rev. C 100, 032801(R) (2019)

J.C.Zamora, R.G.T.Zegers, SamM.Austin, D.Bazin, B.A.Brown, P.C.Bender, H.L.Crawford, J.Engel, A.Falduto, A.Gade, P.Gastis, B.Gao, T.Ginter, C.J.Guess, S.Lipschutz, B.Longfellow, A.O.Macchiavelli, K.Miki, E.Ney, S.Noji, J.Pereira, J.Schmitt, C.Sullivan, R.Titus, D.Weisshaar

Experimental constraint on stellar electron-capture rates from the 88Sr(t, 3He + γ) 88Rb reaction at 115 MeV/u

NUCLEAR REACTIONS 88Sr(t, 3He)88Rb, E=115 MeV/nucleon, [secondary triton beam from 9Be(16O, X), E=150 MeV/nucleon using Coupled Cyclotron Facility and A1900 fragment separator at NSCL-MSU]; measured 3He ejectiles, angular distributions using S800 spectrograph, and Eγ, Iγ using GRETINA array; deduced double-differential cross sections, L-transfers from fitting of the σ(θ) distributions in the multipole decomposition analysis (MDA), two-dimensional histogram of γ-ray energy versus excitation energy of 88Rb. 88Sr; deduced B(GT) strength distributions, electron capture (EC) rates on 88Sr as a function of stellar density at a temperature of 10 GK. 86,87,88Rb; deduced transitions. 12C(t, 3He)12B, E=115 MeV/nucleon; measured 3He ejectiles, reaction used for calibration and for absolute measurement of the triton beam intensity. Comparison of experimental EC rates on 88Sr with shell model and QRPA calculations. Relevance to the late evolution of core-collapse supernovae.

doi: 10.1103/PhysRevC.100.032801
Citations: PlumX Metrics

Data from this article have been entered in the EXFOR database. For more information, access X4 datasetC2412. Data from this article have been entered in the XUNDL database. For more information, click here.


2018DO14      Phys.Rev.Lett. 121, 232501 (2018)

J.Dobaczewski, J.Engel, M.Kortelainen, P.Becker

Correlating Schiff Moments in the Light Actinides with Octupole Moments

NUCLEAR MOMENTS 220,222,224Ra, 221,223,225Ra, 223Fr, 229Pa; analyzed available data on measured intrinsic octupole moments; deduced constrain the intrinsic Schiff moments.

doi: 10.1103/PhysRevLett.121.232501
Citations: PlumX Metrics


2018WA25      Phys.Rev. C 98, 031301 (2018)

L.-J.Wang, J.Engel, J.M.Yao

Quenching of nuclear matrix elements for 0νββ decay by chiral two-body currents

RADIOACTIVITY 76Ge(2β-); calculated 0νββ-decay matrix element with and without contributions from two- and three-body operators using chiral effective field theory (ΧEFT). Comparison with previous theoretical results.

doi: 10.1103/PhysRevC.98.031301
Citations: PlumX Metrics


2018YA21      Phys.Rev. C 98, 054311 (2018)

J.M.Yao, J.Engel, L.J.Wang, C.F.Jiao, H.Hergert

Generator-coordinate reference states for spectra and 0νββ decay in the in-medium similarity renormalization group

NUCLEAR STRUCTURE 48Ca, 48Ti; calculated ground-state energies, low-lying levels, J, π, collective wave functions using in-medium similarity renormalization group (IMSRG) method with generator-coordinate method (GCM).

RADIOACTIVITY 48Ca(2β-); calculated matrix elements for 0νββ decay mode using the IMSRG+GCM calculations. Comparison with other theoretical calculations.

doi: 10.1103/PhysRevC.98.054311
Citations: PlumX Metrics


2017EN02      Rep.Prog.Phys. 80, 046301 (2017)

J.Engel, J.Menendez

Status and future of nuclear matrix elements for neutrinoless double-beta decay: a review

RADIOACTIVITY 76Ge, 82Se, 48Ca(2β-); calculated nuclear matrix elements. Comparison with available data.

NUCLEAR STRUCTURE 22,23O; calculated energy levels, J, π. Comparison with available data.

doi: 10.1088/1361-6633/aa5bc5
Citations: PlumX Metrics


2017JI09      Phys.Rev. C 96, 054310 (2017)

C.F.Jiao, J.Engel, J.D.Holt

Neutrinoless double-β decay matrix elements in large shell-model spaces with the generator-coordinate method

RADIOACTIVITY 48Ca, 76Ge, 82Se(2β-); calculated matrix elements for 0νββ decay mode using generator-coordinate method (GCM) with realistic shell-model interactions. Comparison with shell-model calculations.

NUCLEAR STRUCTURE 48Ca, 76Ge, 82Se; calculated projected potential-energy surfaces in (β2, γ) plane, low-lying 0+ and 2+ levels, occupancies of valence neutron and proton orbits using generator-coordinate method (GCM) with realistic shell-model interactions. Comparison with experimental data.

doi: 10.1103/PhysRevC.96.054310
Citations: PlumX Metrics


2017VA30      Phys.Rev. C 96, 064305 (2017)

P.Van Isacker, J.Engel, K.Nomura

Neutron-proton pairing and double-β decay in the interacting boson model

NUCLEAR STRUCTURE 44,46,48Ca, 44Sc, 44,46,48,50Ti, 48,50Cr; calculated levels, J, π using IBM, p-IBM and shell-model with KB3G interaction. Isospin-invariant version of the nucleon-pair shell model applied to shell-model calculations, and interacting-boson-model (IBM) calculations with and without the isoscalar boson.

RADIOACTIVITY 42,44,46,48Ca, 46,48,50Ti, 50Cr(2β-); calculated 0νββ matrix elements for g.s. to g.s. and Gamow-Teller transitions using shell-model, IBM and p-IBM; deduced that isoscalar boson is not important for energy spectra but improves the results for the double-β matrix elements.

doi: 10.1103/PhysRevC.96.064305
Citations: PlumX Metrics


2016ME02      Phys.Rev. C 93, 014305 (2016)

J.Menendez, No.Hinohara, J.Engel, G.Martinez-Pinedo, T.R.Rodriguez

Testing the importance of collective correlations in neutrinoless ββ decay

RADIOACTIVITY 42,44,46,48,50,52,54,56,58,60Ca, 44,46,48,50,52,54,56,58Ti, 46,48,50,52,54,56,58,60Cr(2β-); calculated Gamow-Teller part of the 0νββ decay matrix elements, percentage of ground state in daughter nuclei belonging to SU(4) irreducible representations using shell model with KB3G interaction, full collective interaction Hcoll, Hcoll with the quadrupole-quadrupole term removed, Hcoll with the isoscalar pairing term removed, and Hcoll with both the isoscalar-pairing and spin-isospin removed. 48Ca, 76Ge, 82Se, 124Sn, 130Te, 136Xe(2β-); calculated Gamow-Teller matrix elements for 0νββ decay and estimated effect of isoscalar pairing. Role of collective correlations in 0νββ decay. Comparison of GCM calculations for fp shell nuclei with full shell-model calculations.

NUCLEAR STRUCTURE 46,48,50,52,54,56,58,60Cr; calculated B(E2) for first 2+ states using shell model with KB3G interaction, full collective interaction Hcoll, and by Hcoll without the quadrupole-quadrupole part. Comparison with experimental values.

doi: 10.1103/PhysRevC.93.014305
Citations: PlumX Metrics


2016MU02      Phys.Rev. C 93, 014304 (2016)

M.T.Mustonen, J.Engel

Global description of β- decay in even-even nuclei with the axially-deformed Skyrme finite-amplitude method

RADIOACTIVITY Z=20-110, N=30-110, A=50-372(β-); 104,106Sr, 112,114,116,118Mo, 112Zr, 120,122,124Ru, 126,128Pd, 134Cd, 138Sn(β-); calculated half-lives, Q values, axial deformation β2, percentage of allowed contribution to the total decay rate, one-sigma uncertainty of log(T1/2) from the error model fit for 1387 even-even neutron-rich nuclei. Axially-deformed Skyrme QRPA finite-amplitude method with Skyrme energy density functional for a global description of β--decay rates for even-even nuclei. Comparison with available experimental data.

doi: 10.1103/PhysRevC.93.014304
Citations: PlumX Metrics


2016SH39      Phys.Rev. C 94, 055802 (2016)

T.Shafer, J.Engel, C.Frohlich, G.C.McLaughlin, M.Mumpower, R.Surman

β decay of deformed r-process nuclei near A=80 and A=160, including odd-A and odd-odd nuclei, with the Skyrme finite-amplitude method

RADIOACTIVITY 68,69,70,71,72Cr, 71,72,73,74,75Mn, 72,73,74,75,76Fe, 76,77Co, 80,81Cu, 84,85,86Zn, 86,87Ga, 86,87,88,89,90,91,92Ge, 89,90,91,92,93,94,95As, 92,93,94,95,96,97,98Se, 157,159,161,163,165,167Cs, 163,165,167,169,171,173,175La, 146,148,150,152,160,164,166,168,170,172,174,176Ce, 152,154,156,164,166,172,174,176,178Nd(β-); calculated half-lives using proton-neutron finite-amplitude method (pn-FAM) with Skyrme energy-density functionals (EDFs) in the quasiparticle random-phase approximation (QRPA), after optimizing the nuclear interaction to best fit the measured half-lives in A=80 and A=160 regions. Deduced r-process abundances. Comparison with other theoretical calculations and experimental values.

doi: 10.1103/PhysRevC.94.055802
Citations: PlumX Metrics


2016YA08      Phys.Rev. C 94, 014306 (2016)

J.M.Yao, J.Engel

Octupole correlations in low-lying states of 150Nd and 150Sm and their impact on neutrinoless double-β decay

NUCLEAR STRUCTURE 150Nd, 150Sm; calculated low-lying levels, J, π, parity-doublet states, mean-field energy surface contours in (β2, β3) plane. Generator-coordinate calculation, based on a relativistic energy-density functional. Comparison with experimental data taken from databases at NNDC.

RADIOACTIVITY 150Nd(2β-); calculated normalized nuclear matrix elements (NMEs) for 0νββ decay mode.

doi: 10.1103/PhysRevC.94.014306
Citations: PlumX Metrics


2015EN02      J.Phys.(London) G42, 034017 (2015)

J.Engel

Uncertainties in nuclear matrix elements for neutrinoless double-beta decay

RADIOACTIVITY 76Ge, 82Se, 96Zr, 100Mo, 130Te, 136Xe, 150Nd(2β-); calculated nuclear matrix elements and their uncertainties. QRPA predictions, comparison with available data.

doi: 10.1088/0954-3899/42/3/034017
Citations: PlumX Metrics


2015GA28      Phys.Rev. C 92, 034303 (2015)

D.Gambacurta, M.Grasso, J.Engel

Subtraction method in the second random-phase approximation: First applications with a Skyrme energy functional

NUCLEAR STRUCTURE 16O; calculated energies, isoscalar monopole B(E0) and quadrupole B(E2) response for 10-30 MeV excitation, ratios of moments, EWSR, effects of two particle-two hole configurations (2p2h) on the excitation spectra of medium-mass and heavy nuclei. Subtraction procedure in the second random-phase-approximation (SRPA) with Skyrme energy density-functional theory. Comparison with experimental data.

doi: 10.1103/PhysRevC.92.034303
Citations: PlumX Metrics


2014EN02      Phys.Rev. C 89, 064308 (2014)

J.Engel, F.Simkovic, P.Vogel

Chiral two-body currents and neutrinoless double-β decay in the quasiparticle random-phase approximation

RADIOACTIVITY 48Ca, 76Ge, 82Se, 96Zr, 100Mo, 110Pd, 116Cd, 124Sn, 130Te, 136Xe(2β-); calculated matrix elements for 0νββ decay mode with one- and two-body nucleon current operators and the Argonne V18 G-matrix based QRPA, and CD-Bonn interaction with several sets of values for chiral EFT parameters. Discussed quenching of spin operators in nuclei.

doi: 10.1103/PhysRevC.89.064308
Citations: PlumX Metrics


2014HI06      Phys.Rev. C 90, 031301 (2014)

N.Hinohara, J.Engel

Proton-neutron pairing amplitude as a generator coordinate for double-β decay

RADIOACTIVITY 76Ge(2β-); calculated matrix elements for neutrinoless double β decay (0νββ), and square of the collective wave functions using generator coordinate method (GCM) and larger single-particle spaces than the shell model.

doi: 10.1103/PhysRevC.90.031301
Citations: PlumX Metrics


2014JA14      Phys.Rev.Lett. 113, 142502 (2014)

G.R.Jansen, J.Engel, G.Hagen, P.Navratil, A.Signoracci

Ab Initio Coupled-Cluster Effective Interactions for the Shell Model: Application to Neutron-Rich Oxygen and Carbon Isotopes

NUCLEAR STRUCTURE 19,20,21,22,23,24O, 17,18,19,20,21,22C; calculated energy levels, J, π. Comparison with available data.

doi: 10.1103/PhysRevLett.113.142502
Citations: PlumX Metrics


2014KW04      Phys.Rev. C 89, 045502 (2014)

A.A.Kwiatkowski, T.Brunner, J.D.Holt, A.Chaudhuri, U.Chowdhury, M.Eibach, J.Engel, A.T.Gallant, A.Grossheim, M.Horoi, A.Lennarz, T.D.Macdonald, M.R.Pearson, B.E.Schultz, M.C.Simon, R.A.Senkov, V.V.Simon, K.Zuber, J.Dilling

New determination of double-β-decay properties on 48Ca High-precision Qββ-value measurement and improved nuclear matrix element calculations

ATOMIC MASSES 48Ca, 48Ti; measured cyclotron-frequencies, resonances using TITAN system consisting of radio frequency quadrupole (RFQ) beam cooler and buncher, an electron beam ion trap (EBIT), and a Penning trap (MPET) at ISAC-TRIUMF facility; deduced Q value for double β decay of 48Ti. Comparison with previous measurements and atomic mass evaluations (AME-2003 and AME-2012).

RADIOACTIVITY 48Ca(2β-); measured precise Q-value using TITAN system at ISAC-TRIUMF facility; calculated ββ nuclear matrix element by including effects of levels outside the valence space in a shell-model; discussed case for a new experiment on double-beta decay of 48Ca.

doi: 10.1103/PhysRevC.89.045502
Citations: PlumX Metrics


2014MU09      Phys.Rev. C 90, 024308 (2014)

M.T.Mustonen, T.Shafer, Z.Zenginerler, J.Engel

Finite-amplitude method for charge-changing transitions in axially deformed nuclei

RADIOACTIVITY 128,130Cd, 132Sn, 142,144,146,148,150Ba, 148,150,152Ce, 154,156Nd, 160,162Sm, 166Gd(β-); calculated half-lives, β-decay rates. 128Cd, 146,146Ba, 166Gd, 208Pb; calculated GT strength functions. Finite amplitude method.

doi: 10.1103/PhysRevC.90.024308
Citations: PlumX Metrics


2013BO19      Comput.Phys.Commun. 184, 085101 (2013)

S.Bogner, A.Bulgac, J.Carlson, J.Engel, G.Fann, R.J.Furnstahl, S.Gandolfi, G.Hagen, M.Horoi, C.Johnson, M.Kortelainen, E.Lusk, P.Maris, H.Nam, P.Navratil, W.Nazarewicz, E.Ng, G.P.A.Nobre, E.Ormand, T.Papenbrock, J.Pei, S.C.Pieper, S.Quaglioni, K.J.Roche, J.Sarich, N.Schunck, M.Sosonkina, J.Terasaki, I.Thompson, J.P.Vary, S.M.Wild

Computational nuclear quantum many-body problem: The UNEDF project

NUCLEAR REACTIONS 3He(d, p), 7Be(p, γ), E<1MeV; 172Yb, 188Os, 238U(γ, X), E<24 MeV; calculated σ. Comparison with experimental data.

NUCLEAR STRUCTURE 100Zr; calculated quadrupole deformation parameter, radii, neutron separation energy.

doi: 10.1016/j.cpc.2013.05.020
Citations: PlumX Metrics


2013EN01      Prog.Part.Nucl.Phys. 71, 21 (2013)

J.Engel, M.J.Ramsey-Musolf, U.van Kolck

Electric dipole moments of nucleons, nuclei, and atoms: The Standard Model and beyond

doi: 10.1016/j.ppnp.2013.03.003
Citations: PlumX Metrics


2013HO12      Phys.Rev. C 87, 064315 (2013)

J.D.Holt, J.Engel

Effective double-β-decay operator for 76Ge and 82Se

RADIOACTIVITY 76Ge, 82Se(2β-); calculated shell model two-body 0νββ and 2νββ decay nuclear matrix elements. Diagrammatic many-body perturbation theory (MBPT) in combination with chiral effective field theory (EFT).

doi: 10.1103/PhysRevC.87.064315
Citations: PlumX Metrics


2013LI01      Phys.Rev.Lett. 110, 012501 (2013)

D.L.Lincoln, J.D.Holt, G.Bollen, M.Brodeur, S.Bustabad, J.Engel, S.J.Novario, M.Redshaw, R.Ringle, S.Schwarz

First Direct Double-β Decay Q-Value Measurement of 82Se in Support of Understanding the Nature of the Neutrino

ATOMIC MASSES 82Kr, 82Se; measured time-of-flight cyclotron resonance , cyclotron resonance frequency; deduced Q-value. Penning trap measurement.

doi: 10.1103/PhysRevLett.110.012501
Citations: PlumX Metrics


2013MU06      Phys.Rev. C 87, 064302 (2013)

M.T.Mustonen, J.Engel

Large-scale calculations of the double-β decay of 76Ge, 130Te, 136Xe, and 150Nd in the deformed self-consistent Skyrme quasiparticle random-phase approximation

RADIOACTIVITY 76Ge, 130Te, 136Xe, 150Nd(2β-); calculated neutrinoless double beta decay transition matrix elements. Large scale calculation using self-consistent axially symmetric Skyrme-HFB-QRPA method together with SkM* and SkM* modified energy-density functional. Comparison of calculated matrices with several previous theoretical calculations using different models.

doi: 10.1103/PhysRevC.87.064302
Citations: PlumX Metrics


2012EN06      J.Phys.(London) G39, 124001 (2012)

J.Engel

Renormalizing the double-beta operator for the shell model

RADIOACTIVITY 7,8,10He(2β-); calculated neutrinoless nuclear matrix elements. Comparison with available data.

doi: 10.1088/0954-3899/39/12/124001
Citations: PlumX Metrics


2012PA23      Phys.Rev. C 86, 024612 (2012)

K.Patton, J.Engel, G.C.McLaughlin, N.Schunck

Neutrino-nucleus coherent scattering as a probe of neutron density distributions

NUCLEAR REACTIONS 40Ar, 74Ge, 132Xe(ν, ν), E at 0-100 MeV/c; calculated event rates in 40Ar as a function of recoil energy and neutron radius, neutron form factors, neutron rms radii, effective moments using density functional theory and Monte Carlo techniques for argon, germanium, and xenon detectors of neutrinos.

doi: 10.1103/PhysRevC.86.024612
Citations: PlumX Metrics


2011EN03      Phys.Rev. C 83, 034317 (2011)

J.Engel, J.Carlson, R.B.Wiringa

Jastrow functions in double-β decay

RADIOACTIVITY 82Se(2β-); analyzed applicability of Jastrow functions with two-body cluster approximation in calculating matrix elements for neutrinoless double β decay; comparison with unitary correlation operator method (UCOM) and Brueckner methods. Short-range correlation effects in double β decay.

doi: 10.1103/PhysRevC.83.034317
Citations: PlumX Metrics


2011NO17      Phys.Rev. C 84, 064609 (2011)

G.P.A.Nobre, F.S.Dietrich, J.E.Escher, I.J.Thompson, M.Dupuis, J.Terasaki, J.Engel

Toward a microscopic reaction description based on energy-density-functional structure models

NUCLEAR REACTIONS 90Zr(n, X), E=10, 20, 30 MeV; 58Ni(n, X), E=20, 30 MeV; 58Ni(p, X), E=10-70 MeV; 48Ca(p, X), E=10-50 MeV; 40,48Ca, 58Ni, 144Sm(n, X), (p, X), E=30 MeV; 90Zr(p, X), E=20-70 MeV; calculated reaction cross section. 90Zr(p, p), E=40, 65 MeV; calculated σ(θ). Random-phase, Hartree-Fock-Bogoliubov (HFB) framework and Skyrme density functional with coupling to all RPA and QRPA inelastic channels including deuteron formation. Assessed effects of couplings between inelastic resonances from higher-order channels. Comparison with experimental data.

doi: 10.1103/PhysRevC.84.064609
Citations: PlumX Metrics


2011SH31      Phys.Rev. C 84, 044316 (2011)

D.Shukla, J.Engel, P.Navratil

Nonperturbative renormalization of the neutrinoless double-β operator in p-shell nuclei

RADIOACTIVITY 6,7,8,10He(2β-); calculated internucleon matrix-element distribution for neutrinoless double-β decay. Lee-Suzuki mappings, comparison with large no-core shell-model calculations.

doi: 10.1103/PhysRevC.84.044316
Citations: PlumX Metrics


2011SH46      J.Phys.:Conf.Ser. 312, 092057 (2011)

D.Shukla, J.Engel, P.Navratil

Constructing an Effective Neutrinoless Double-Beta Decay Operator in the Shell Model

doi: 10.1088/1742-6596/312/9/092057
Citations: PlumX Metrics


2011TE04      Phys.Rev. C 84, 014332 (2011)

J.Terasaki, J.Engel

Testing Skyrme energy-density functionals with the quasiparticle random-phase approximation in low-lying vibrational states of rare-earth nuclei

NUCLEAR STRUCTURE 172,174Hf, 166,168,170,172,174,176Yb, 162,164,166,168,170,172Er, 158,160,162,164,166Dy, 156,158,160,162Gd, 154,156Sm, 152,154Nd; calculated energies of gamma- and beta-vibrational states, B(E2). QRPA, Skyrme energy density functionals SkM* and SLy4.

doi: 10.1103/PhysRevC.84.014332
Citations: PlumX Metrics


2010BA23      Phys.Rev. C 82, 015501 (2010)

S.Ban, J.Dobaczewski, J.Engel, A.Shukla

Fully self-consistent calculations of nuclear Schiff moments

NUCLEAR STRUCTURE 199Hg, 211Rn; calculated Schiff moments using self-consistent odd-nucleus mean-field theory by modified Hartree-Fock-Bogoliubov (HFB) code and SLy4, SkM*, SV, and SIII Skyrme interactions.

doi: 10.1103/PhysRevC.82.015501
Citations: PlumX Metrics


2010NO06      Phys.Rev.Lett. 105, 202502 (2010)

G.P.A.Nobre, F.S.Dietrich, J.E.Escher, I.J.Thompson, M.Dupuis, J.Terasaki, J.Engel

Coupled-Channel Calculation of Nonelastic Cross Sections Using a Density-Functional Structure Model

NUCLEAR REACTIONS 40,48Ca, 58Ni, 90Zr, 144Sm(p, X), (n, X), E<40 MeV; calculated total reaction σ. Complete microscopic calculation, comparison with experimental data.

doi: 10.1103/PhysRevLett.105.202502
Citations: PlumX Metrics


2010TE03      Phys.Rev. C 82, 034326 (2010)

J.Terasaki, J.Engel

Self-consistent Skyrme quasiparticle random-phase approximation for use in axially symmetric nuclei of arbitrary mass

NUCLEAR STRUCTURE 16,22O, 24,26Mg, 172Yb; calculated E1 and E2 isoscalar (IS) and isovector (IV) transition strengths for different K quantum numbers using quasiparticle random-phase approximation (QRPA). Comparison with experimental data.

doi: 10.1103/PhysRevC.82.034326
Citations: PlumX Metrics


2009EN01      Phys.Rev. C 79, 064317 (2009)

J.Engel, G.Hagen

Corrections to the neutrinoless double-β-decay operator in the shell model

RADIOACTIVITY 82Se(2β-); calculated matrix elements for neutrinoless double beta decay using shell-model and Bonn-C nucleon-nucleon interaction.

doi: 10.1103/PhysRevC.79.064317
Citations: PlumX Metrics


2008AV01      Rev.Mod.Phys. 80, 481 (2008)

F.T.Avignone III, S.R.Elliott, J.Engel

Double beta decay, Majorana neutrinos, and neutrino mass

doi: 10.1103/RevModPhys.80.481
Citations: PlumX Metrics


2008SI14      Phys.Rev. C 77, 045503 (2008)

F.Simkovic, A.Faessler, V.Rodin, P.Vogel, J.Engel

Anatomy of the 0νββ nuclear matrix elements

RADIOACTIVITY 76Ge, 82Se, 96Zr, 100Mo, 116Cd, 128,130Te, 136Xe (2β-); calculated angular momenta, half-lives, neutrinoless double β decay matrix elements. Quasiparticle random phase approximation.

doi: 10.1103/PhysRevC.77.045503
Citations: PlumX Metrics


2008TE08      Phys.Rev. C 78, 044311 (2008)

J.Terasaki, J.Engel, G.F.Bertsch

Systematics of the first 2+ excitation in spherical nuclei with the Skryme quasiparticle random-phase approximation

NUCLEAR STRUCTURE Z=10-90; calculated levels, J, π, B(E1) for lowest 2+ states in even-even nuclei. Skyrme quasiparticle random phase approximation.

doi: 10.1103/PhysRevC.78.044311
Citations: PlumX Metrics


2007EN01      Phys.Rev. C 75, 014306 (2007)

J.Engel

Intrinsic-density functionals

doi: 10.1103/PhysRevC.75.014306
Citations: PlumX Metrics


2007LI48      Phys.Rev. C 76, 028501 (2007)

C.-P.Liu, J.Engel

Schiff screening of relativistic nucleon electric-dipole moments by electrons

doi: 10.1103/PhysRevC.76.028501
Citations: PlumX Metrics


2007TE10      Phys.Rev. C 76, 044320 (2007)

J.Terasaki, J.Engel

Excited-state density distributions in neutron-rich nuclei

NUCLEAR STRUCTURE 50Ca; excitation energies and excited state densities. 50,54,56,58,62,64,66,70,76Ca, 60,66,72,78,80,84,90,96,98Ni, 132,134,136,138,140,142,144,146,148,150,152,164,166,168,172,176Sn; calculated strength function peaks. QRPA with Skyrme.

doi: 10.1103/PhysRevC.76.044320
Citations: PlumX Metrics


2006TE06      Phys.Rev. C 74, 044301 (2006)

J.Terasaki, J.Engel

Self-consistent description of multipole strength: Systematic calculations

NUCLEAR STRUCTURE 36,38,40,42,44,46,48,50,52,54,56,58,60,62,64,66,68,70,72,74,76Ca, 50,52,54,56,58,60,62,64,66,68,70,72,74,76,78,80,82,84,86,88,90,92,94,96,98Ni, 100,102,104,106,108,110,112,114,116,118,120,122,124,126,128,130,132,134,136,138,140,142,144,146,148,150,152,154,156,158,160,162,164,166,168,170,172,174,176Sn; calculated isoscalar and isovector 0+, 1-, 2+ strength functions, transition densities, partial energy-weighted sums. Quasiparticle RPA, Skyrme density functionals.

doi: 10.1103/PhysRevC.74.044301
Citations: PlumX Metrics


2005DE51      Phys.Rev. C 72, 045503 (2005)

J.H.de Jesus, J.Engel

Time-reversal-violating Schiff moment of 199Hg

NUCLEAR MOMENTS 199Hg; calculated Schiff moment. Diagrammatic perturbation theory.

doi: 10.1103/PhysRevC.72.045503
Citations: PlumX Metrics


2005DO11      Phys.Rev.Lett. 94, 232502 (2005)

J.Dobaczewski, J.Engel

Nuclear Time-Reversal Violation and the Schiff Moment of 225Ra

NUCLEAR MOMENTS 225Ra; calculated Schiff moment, atomic electric dipole moment. Symmetry-breaking mean-field approach.

NUCLEAR STRUCTURE 225Ra; calculated Schiff moment, atomic electric dipole moment. Symmetry-breaking mean-field approach.

doi: 10.1103/PhysRevLett.94.232502
Citations: PlumX Metrics


2005EN06      Eur.Phys.J. A 25, Supplement 1, 691 (2005)

J.Engel

Time-reversal violation in heavy octupole-deformed nuclei

NUCLEAR STRUCTURE 214,216,218,220,222,224,226,228,230,232Ra; calculated density distributions, octupole deformation. 199Hg, 225Ra; calculated Schiff moments.

doi: 10.1140/epjad/i2005-06-017-1
Citations: PlumX Metrics


2005NO02      Nucl.Phys. B(Proc.Supp.) S138, 221 (2005)

M.Nomachi, P.Doe, H.Ejiri, S.R.Elliott, J.Engel, M.Finger, J.A.Formaggio, K.Fushimi, V.Gehman, A.Gorin, M.Greenfield, R.Hazama, K.Ichihara, Y.Ikegami, H.Ishii, T.Itahashi, P.Kavitov, V.Kekelidze, K.Kuroda, V.Kutsalo, I.Manouilov, K.Matsuoka, H.Nakamura, T.Ogama, A.Para, K.Rielage, A.Rjazantsev, R.G.H.Robertson, Y.Shichijo, T.Shima, Y.Shimada, G.Shirkov, A.Sissakian, Y.Sugaya, A.Titov, V.Vatulin, O.E.Vilches, V.Voronov, J.F.Wilkerson, D.I.Will, S.Yoshida

MOON (Mo Observatory Of Neutrinos) for double beta decay

doi: 10.1016/j.nuclphysbps.2004.11.053
Citations: PlumX Metrics


2005TE01      Phys.Rev. C 71, 034310 (2005)

J.Terasaki, J.Engel, M.Bender, J.Dobaczewski, W.Nazarewicz, M.Stoitsov

Self-consistent description of multipole strength in exotic nuclei: Method

NUCLEAR STRUCTURE 100,120,174,176Sn; calculated isoscalar and isovector monopole, dipole, and quadrupole strength functions. Self-consistent quasiparticle RPA.

doi: 10.1103/PhysRevC.71.034310
Citations: PlumX Metrics


2005TE06      Eur.Phys.J. A 25, Supplement 1, 539 (2005)

J.Terasaki, J.Engel, M.Bender, J.Dobaczewski, W.Nazarewicz, M.Stoitsov

Skyrme-QRPA calculations of multipole strength in exotic nuclei

NUCLEAR STRUCTURE 120,174Sn; calculated isoscalar 0+ and 1- channels strength distributions. Quasiparticle RPA with Skyrme and delta-pairing interactions.

doi: 10.1140/epjad/i2005-06-082-4
Citations: PlumX Metrics


2004EL07      J.Phys.(London) G30, R183 (2004)

S.R.Elliott, J.Engel

Double-beta decay

doi: 10.1088/0954-3899/30/9/R01
Citations: PlumX Metrics


2004EN02      Phys.Rev. C 69, 034304 (2004)

J.Engel, P.Vogel

Effective operators for double-β decay

NUCLEAR STRUCTURE 76Ge; calculated 2β-decay matrix elements, effective operators.

doi: 10.1103/PhysRevC.69.034304
Citations: PlumX Metrics


2003DO13      Nucl.Phys. A721, 517c (2003)

P.Doe, H.Ejiri, S.R.Elliott, J.Engel, M.Finger, K.Fushimi, V.Gehman, A.Gorine, M.Greenfield, R.Hazama, K.Ichihara, T.Itahashi, P.Kavitov, V.Kekelidze, K.Kuroda, V.Kutsalo, K.Matsuoka, I.Manouilov, M.Nomachi, A.Para, A.Rjazantsev, R.G.H.Robertson, Y.Shichijo, L.C.Stonehill, T.Shima, G.Shirkov, A.Sissakian, Y.Sugaya, A.Titov, V.Vatulin, V.Voronov, O.E.Vilches, J.F.Wilkerson, D.I.Will, S.Yoshida

Neutrino Studies in 100Mo and MOON - Mo Observatory of Neutrinos -

doi: 10.1016/S0375-9474(03)01113-8
Citations: PlumX Metrics


2003EN06      Phys.Rev. C 68, 025501 (2003)

J.Engel, M.Bender, J.Dobaczewski, J.H.de Jesus, P.Olbratowski

Time-reversal violating Schiff moment of 225Ra

NUCLEAR STRUCTURE 225Ra; calculated single-particle levels, time-reversal violating Schiff moment, core polarization effect. Self-consistent Skyrme-Hartree-Fock method.

doi: 10.1103/PhysRevC.68.025501
Citations: PlumX Metrics


2002BE31      Phys.Rev. C65, 054322 (2002)

M.Bender, J.Dobaczewski, J.Engel, W.Nazarewicz

Gamow-Teller Strength and the Spin-Isospin Coupling Constants of the Skyrme Energy Functional

NUCLEAR STRUCTURE 90Zr, 112,124Sn, 208Pb; calculated Gamow-Teller strength distributions, resonance energies. 152Dy; calculated superdeformed band moment of inertia. Generalized Skyrme interaction, effects of time-odd spin-isospin coupling discussed.

doi: 10.1103/PhysRevC.65.054322
Citations: PlumX Metrics


2002EJ02      Phys.Lett. 530B, 27 (2002)

H.Ejiri, J.Engel, N.Kudomi

Supernova-Neutrino Studies with 100Mo

NUCLEAR REACTIONS 100Mo(ν, e), E=0-100 MeV; calculated σ, electron energy spectrum for ν originating in a supernova event. Effects of spin-isospin resonances discussed, possible detector design for supernova neutrinos proposed.

doi: 10.1016/S0370-2693(02)01349-7
Citations: PlumX Metrics


2002EJ05      Nucl.Phys. B(Proc.Supp.) S110, 375 (2002)

H.Ejiri, J.Engel, K.Fushimi, K.Hayashi, R.Hazama, T.Kishimoto, P.Krastev, N.Kudomi, K.Kume, H.Kuramoto, K.Matsuoka, R.G.H.Robertson, K.Takahisa, S.Yoshida

Double Beta Decays of 100Mo and Molybdenum Observatory of Neutrinos

RADIOACTIVITY 100Mo(2β-); measured β-spectra, 2ν-accompanied 2β-decay T1/2, 0ν-accompanied 2β-decay T1/2 lower limit.

doi: 10.1016/S0920-5632(02)01514-1
Citations: PlumX Metrics


2002MO15      Phys.Rev. C65, 044322 (2002)

O.Monnoye, S.Pittel, J.Engel, J.R.Bennett, P.Van Isacker

Odd-Mass Nickel Isotopes in a Generalized-Seniority Approach

NUCLEAR STRUCTURE 57,59,61,63,65,67,69Ni; calculated levels, J, π, μ. 66Co, 69Cu; calculated levels, J, π. Comparisons with data. Generalized seniority approximation.

doi: 10.1103/PhysRevC.65.044322
Citations: PlumX Metrics


2002TE10      Phys.Rev. C 66, 054313 (2002)

J.Terasaki, J.Engel, W.Nazarewicz, M.Stoitsov

Anomalous behavior of 2+ excitations around 132Sn

NUCLEAR STRUCTURE 114,116,118,120,122,124,126,128,130,132,134Sn, 132,134,136Te, 134,136,138Xe, 136,138,140Ba, 138,140,142Ce; calculated 2+ state level energies, B(E2), g factors; deduced neutron pairing contribution to anomalous behavior. Quasiparticle RPA.

doi: 10.1103/PhysRevC.66.054313
Citations: PlumX Metrics


2001SU15      Phys.Rev. C64, 035801 (2001)

R.Surman, J.Engel

Changes in r-Process Abundances at Late Times

doi: 10.1103/PhysRevC.64.035801
Citations: PlumX Metrics


2000EJ01      Phys.Rev.Lett. 85, 2917 (2000)

H.Ejiri, J.Engel, R.Hazama, P.Krastev, N.Kudomi, R.G.H.Robertson

Spectroscopy of Double-Beta and Inverse-Beta Decays from 100Mo for Neutrinos

RADIOACTIVITY 100Mo(2β-); calculated 0ν-, 2ν-accompanied 2β decay spectra, correlation features. Detector design, solar neutrino detection discussed.

doi: 10.1103/PhysRevLett.85.2917
Citations: PlumX Metrics


2000EN04      Phys.Rev. C61, 035502 (2000)

J.Engel, J.L.Friar, A.C.Hayes

Nuclear Octupole Correlations and the Enhancement of Atomic Time-Reversal Violation

doi: 10.1103/PhysRevC.61.035502
Citations: PlumX Metrics


1999EN03      Phys.Rev. C60, 014302 (1999)

J.Engel, M.Bender, J.Dobaczewski, W.Nazarewicz, R.Surman

β Decay Rates of r-Process Waiting-Point Nuclei in a Self-Consistent Approach

RADIOACTIVITY 76,78,80Zn, 82Ge, 124,126,128,130Cd, 68,70,72,74,76,78Ni, 82Ge, 80Zn, 78Ni, 76Fe, 74Cr, 72Ti(β-); calculated β-decay T1/2 vs pairing strength. Self-consistent approach. Implications for nucleosynthesis discussed.

doi: 10.1103/PhysRevC.60.014302
Citations: PlumX Metrics


1998EN02      Phys.Rev. C57, 2004 (1998)

J.Engel

Approximate Treatment of Lepton Distortion in Charged-Current Neutrino Scattering from Nuclei

NUCLEAR REACTIONS 12C, 208Pb(ν, e), (ν, μ-), E=0-120 MeV; calculated σ(E). Effective-momentum approximation.

doi: 10.1103/PhysRevC.57.2004
Citations: PlumX Metrics


1998EN06      Phys.Lett. 429B, 215 (1998)

J.Engel, K.Langanke, P.Vogel

Isovector Pairing in Odd-A Proton-Rich Nuclei

NUCLEAR STRUCTURE Cr, Mn; calculated pairing energy contributions. 49Cr; calculated pairing energy contributions vs excitation energy. Algebraic model.

doi: 10.1016/S0370-2693(98)00477-8
Citations: PlumX Metrics


1998SU25      Phys.Rev. C58, 2526 (1998)

R.Surman, J.Engel

Neutrino Capture by r-Process Waiting-Point Nuclei

NUCLEAR REACTIONS 78Ni, 124Mo, 190Gd(ν, X), E < 25 MeV; calculated spectrum-averaged capture σ; deduced role of low-lying Gamow-Teller and first forbidden strengths.

doi: 10.1103/PhysRevC.58.2526
Citations: PlumX Metrics


1997EN02      Phys.Rev. C55, 1781 (1997)

J.Engel, S.Pittel, M.Stoitsov, P.Vogel, J.Dukelsky

Neutron-Proton Correlations in an Exactly Solvable Model

doi: 10.1103/PhysRevC.55.1781
Citations: PlumX Metrics


1997HE06      Phys.Rev. C55, 2802 (1997)

R.L.Helmer, M.A.Punyasena, R.Abegg, W.P.Alford, A.Celler, S.El-Kateb, J.Engel, D.Frekers, R.S.Henderson, K.P.Jackson, S.Long, C.A.Miller, W.C.Olsen, B.M.Spicer, A.Trudel, M.C.Vetterli

Gamow-Teller Strength from the 76Se(n, p)76As Reaction: Implications for the double β decay of 76Ge

NUCLEAR REACTIONS 76Se(n, p), E=198 MeV; measured σ(θ). 76As deduced Gamow-Teller strength distribution. 76Ge deduced 2ν-accompanied 2β-decay T1/2. Quasi-particle RPA comparison, other data analyzed.

doi: 10.1103/PhysRevC.55.2802
Citations: PlumX Metrics

Data from this article have been entered in the EXFOR database. For more information, access X4 dataset13975.


1997SU19      Phys.Rev.Lett. 79, 1809 (1997)

R.Surman, J.Engel, J.R.Bennett, B.S.Meyer

Source of the Rare-Earth Element Peak in r-Process Nucleosynthesis

NUCLEAR STRUCTURE A=150-175; analyzed r-process abundance distribution; deduced rare-earth element peak associated features in nucleosynthesis.

doi: 10.1103/PhysRevLett.79.1809
Citations: PlumX Metrics


1996BE11      Phys.Lett. 368B, 7 (1996)

J.R.Bennett, J.Engel, S.Pittel

Structure of Pairs in Heavy Weakly-Bound Nuclei

doi: 10.1016/0370-2693(95)01481-0
Citations: PlumX Metrics


1996EN06      Phys.Rev. C54, 2740 (1996)

J.Engel, E.Kolbe, K.Langanke, P.Vogel

Neutrino Induced Transitions between the Ground States of the A = 12 Triad

NUCLEAR REACTIONS 12C(ν, e-), (ν, μ-)(ν, μ+), E ≤ 300 MeV; calculated σ(E); deduced incident spectrum normalization, detector efficiency related features.

doi: 10.1103/PhysRevC.54.2740
Citations: PlumX Metrics


1996EN07      Phys.Lett. 389B, 211 (1996)

J.Engel, K.Langanke, P.Vogel

Pairing and Isospin Symmetry in Proton-Rich Nuclei

doi: 10.1016/S0370-2693(96)01294-4
Citations: PlumX Metrics


1996RE07      Phys.Rev. C53, 2546 (1996)

M.T.Ressell, J.Engel, P.Vogel

Limit on T-Violating P-Conserving ρNN Interaction from the γ Decay of 57Fe

NUCLEAR STRUCTURE 57Fe; calculated levels, B(λ) wave functions; analyzed M1, E2 multipoles related dated; deduced limits on T-violating P-conserving ρNN interaction.

doi: 10.1103/PhysRevC.53.2546
Citations: PlumX Metrics


1995EN03      Phys.Rev. C51, 2837 (1995)

J.Engel, P.I.Krastev, K.Lande

What Can be Learned with an Iodine Solar-Neutrino Detector ( Question )

NUCLEAR REACTIONS 127I(ν, e-), E=solar; calculated Iso-SNU contours for Iodine detector, event rates; deduced Δm2-Sin22θ parameter space allowed region distinguishing possibility.

doi: 10.1103/PhysRevC.51.2837
Citations: PlumX Metrics


1995EN04      Phys.Rev. C52, 2216 (1995)

J.Engel, M.T.Ressell, I.S.Towner, W.E.Ormand

Response of Mica to Weakly Interacting Massive Particles

doi: 10.1103/PhysRevC.52.2216
Citations: PlumX Metrics


1994EN03      Phys.Rev. C50, 1702 (1994)

J.Engel, S.Pittel, P.Vogel

Capture of Solar and Higher-Energy Neutrinos by 127I

NUCLEAR STRUCTURE 127I, 127Xe; calculated levels, Gamow-Teller strength distribution for 127I decay. Quasiparticle TDA.

NUCLEAR REACTIONS 127I(ν, X), E=solar; calculated capture σ; deduced calibration related features, present limitations.

doi: 10.1103/PhysRevC.50.1702
Citations: PlumX Metrics


1994EN06      Phys.Rev.Lett. 73, 3508 (1994)

J.Engel, C.R.Gould, V.Hnizdo

Microscopic T-Violating Optical Potential: Implications for neutron-transmission experiments

NUCLEAR REACTIONS 165Ho(polarized n, X), E not given; calculated T-violating ρ-nucleon coupling limits, transmission experiments. Microscopic T-violating optical potential.

doi: 10.1103/PhysRevLett.73.3508
Citations: PlumX Metrics


1994VO20      Nucl.Phys. A577, 425c (1994)

P.Vogel, J.Engel, S.Pittel

Neutrino Interaction with Complex Nuclei: The case of 127I

NUCLEAR STRUCTURE 127Xe; calculated levels. 127I; calculated ground state wave function, quenched Gamow-Teller decay to 127Xe strength function. Quasiparticle TDA.

doi: 10.1016/0375-9474(94)90892-3
Citations: PlumX Metrics


1992EN06      Phys.Rev. C46, R2153 (1992)

J.Engel, W.C.Haxton, P.Vogel

Effective Summation Over Intermediate States in Double-Beta Decay

RADIOACTIVITY 48Ca(β-); 48Ti(β+); calculated β-decay Gamow-Teller transition strength. 48Ca(2β-); calculated 2ν-accompained 2β-decay T1/2, Gamow-Teller matrix element.

doi: 10.1103/PhysRevC.46.R2153
Citations: PlumX Metrics


1992VE01      Phys.Rev. C45, 997 (1992)

M.C.Vetterli, K.P.Jackson, A.Celler, J.Engel, D.Frekers, O.Hausser, R.Helmer, R.Henderson, K.H.Hicks, R.G.Jeppesen, B.Larson, B.Pointon, A.Trudel, S.Yen

70,72Ge(n, p)70,72Ga Reactions: Suppression of Gamow-Teller strength near N = 40

NUCLEAR REACTIONS 70,72Ge(n, p), E=200 MeV; measured σ(θ, E). 70,72Ga deduced Gamow-Teller transition strength quenching.

doi: 10.1103/PhysRevC.45.997
Citations: PlumX Metrics

Data from this article have been entered in the EXFOR database. For more information, access X4 dataset13976.


1991VO09      J.Phys.(London) G17, S119 (1991)

P.Vogel, J.Engel, S.Pittel

Double Beta Decay and Theory of Nuclear Structure

RADIOACTIVITY 76Ge, 82Se, 128,130Te(2β); compiled 2β-decay; calculated matrix elements. Quasiparticle RPA, other models comparison.

doi: 10.1088/0954-3899/17/S/012
Citations: PlumX Metrics


1990AL19      Nucl.Phys. A514, 49 (1990)

W.P.Alford, R.L.Helmer, R.Abegg, A.Celler, D.Frekers, P.Green, O.Hausser, R.Henderson, K.Hicks, K.P.Jackson, R.Jeppesen, C.A.Miller, A.Trudel, M.Vetterli, S.Yen, R.Pourang, J.Watson, B.A.Brown, J.Engel

Gamow-Teller Strength Observed in the 48Ti(n, p)48Sc Reaction: Implications for the double beta decay of 48Ca

NUCLEAR REACTIONS 48Ti(n, p), E=198 MeV; measured σ(θ). 48Sc deduced Gamow-Teller strength distribution. Shell model comparison.

doi: 10.1016/0375-9474(90)90331-F
Citations: PlumX Metrics

Data from this article have been entered in the EXFOR database. For more information, access X4 dataset14007.


1990PI03      Nucl.Phys. A507, 239c (1990)

S.Pittel, J.Engel, P.Vogel, X.Ji

Double Beta Decay in the Generalized Seniority Scheme

RADIOACTIVITY 76Ge, 82Se, 128,130Te(2β); calculated 2ν-mode β-decay matrix elements. Generalized seniority truncation scheme.

doi: 10.1016/0375-9474(90)90581-6
Citations: PlumX Metrics


1990PI13      Phys.Lett. 247B, 185 (1990)

S.Pittel, J.Engel, J.Dukelsky, P.Ring

The Nucleus as a Condensate of Collective Quark Triplets

NUCLEAR STRUCTURE 16O; calculated quark occupation numbers.

doi: 10.1016/0370-2693(90)90878-A
Citations: PlumX Metrics


1989EN02      Phys.Lett. 225B, 5 (1989)

J.Engel, P.Vogel, X.Ji, S.Pittel

Double Beta Decay in the Generalized-Seniroity Scheme

RADIOACTIVITY 76Ge, 82Se, 128,130Te(2β); calculated 2β-decay rate, matrix elements. Generalized seniroty based truncation scheme.

doi: 10.1016/0370-2693(89)90999-4
Citations: PlumX Metrics


Back to query form    [Next]