NSR Query Results


Output year order : Descending
Format : Normal

NSR database version of March 21, 2024.

Search: Author = W.C.Haxton

Found 70 matches.

Back to query form



2023EL07      Phys.Rev. C 108, 035502 (2023)

S.R.Elliott, V.N.Gavrin, W.C.Haxton, T.V.Ibragimova, E.J.Rule

Gallium neutrino absorption cross section and its uncertainty

doi: 10.1103/PhysRevC.108.035502
Citations: PlumX Metrics


2023HA12      Phys.Rev. C 107, 035504 (2023)

W.C.Haxton, E.Rule, K.McElvain, M.J.Ramsey-Musolf

Nuclear-level effective theory of μ → e conversion: Formalism and applications

NUCLEAR REACTIONS 12C, 16O, 19F, 23Na, 27Al, 28Si, 32S, 40Ca, 48Ti, 56Fe, 63,65Cu, 184W, 197Au, 208Pb(μ-, e-), at momentum transfer q=96.54-105.12 MeV; calculated μ to e conversion rates, with derivation of bounds on the coefficients of the charged lepton flavor violation decay (CLFV) operators, and full evaluation of the associated nuclear response functions, and accurate treatment of electron and muon Coulomb effects using advanced shell-model methods. Discussed matching of the nonrelativistic effective theory (NRET) onto higher level effective field theories, and relation of μ to e conversion to μ to e+γ, and μ to 3e. Comparison with results from MEG, MEG II, Mu3e and SINDRUM experiments. Relevance to future μ to e conversion searches at Fermilab (Mu2e) and J-PARC (COMET, DeeMe) experimental facilities to improve and to advance limits to higher orders on charged lepton flavor violation (CLFV) decays of light pseudoscalars via μ to e conversion in Nuclei.

doi: 10.1103/PhysRevC.107.035504
Citations: PlumX Metrics


2022BA17      Phys.Rev.Lett. 128, 232501 (2022)

V.V.Barinov, B.T.Cleveland, S.N.Danshin, H.Ejiri, S.R.Elliott, D.Frekers, V.N.Gavrin, V.V.Gorbachev, D.S.Gorbunov, W.C.Haxton, T.V.Ibragimova, I.Kim, Y.P.Kozlova, L.V.Kravchuk, V.V.Kuzminov, B.K.Lubsandorzhiev, Y.M.Malyshkin, R.Massarczyk, V.A.Matveev, I.N.Mirmov, J.S.Nico, A.L.Petelin, R.G.H.Robertson, D.Sinclair, A.A.Shikhin, V.A.Tarasov, G.V.Trubnikov, E.P.Veretenkin, J.F.Wilkerson, A.I.Zvir

Results from the Baksan Experiment on Sterile Transitions (BEST)

NUCLEAR REACTIONS 71Ga(ν, e-), E<1 MeV; measured reaction products, Eβ, Iβ; deduced the deficit of electron neutrinos observed in gallium-based radiochemical measurements with high-intensity neutrino sources, commonly referred to as the gallium anomaly. The Baksan Experiment on Sterile Transitions (BEST).

doi: 10.1103/PhysRevLett.128.232501
Citations: PlumX Metrics


2022BA21      Phys.Rev. C 105, 065502 (2022)

V.V.Barinov, S.N.Danshin, V.N.Gavrin, V.V.Gorbachev, D.S.Gorbunov, T.V.Ibragimova, Yu.P.Kozlova, L.V.Kravchuk, V.V.Kuzminov, B.K.Lubsandorzhiev, Yu.M.Malyshkin, I.N.Mirmov, A.A.Shikhin, E.P.Veretenkin, B.T.Cleveland, H.Ejiri, S.R.Elliott, I.Kim, R.Massarczyk, D.Frekers, W.C.Haxton, V.A.Matveev, G.V.Trubnikov, J.S.Nico, A.L.Petelin, V.A.Tarasov, A.I.Zvir, R.G.H.Robertson, D.Sinclair, J.F.Wilkerson

Search for electron-neutrino transitions to sterile states in the BEST experiment

NUCLEAR REACTIONS 71Ga(ν, e-), E<1 MeV; measured reaction products, Eb, Iβ; deduced 71Ge yields, deficit of electron neutrinos observed in gallium-based radiochemical measurements with high-intensity neutrino sources, commonly referred as "the gallium anomaly". The Baksan Experiment on Sterile Transitions (BEST). Neutrinos from decay of the 51Cr decay.

RADIOACTIVITY 51Cr(EC); measured Eγ, Iγ, calorimetric heat; deduced T1/2.

doi: 10.1103/PhysRevC.105.065502
Citations: PlumX Metrics

Data from this article have been entered in the XUNDL database. For more information, click here.


2022SC17      J.Phys.(London) G49, 110502 (2022)

H.Schatz, A.D.Becerril Reyes, A.Best, E.F.Brown, K.Chatziioannou, K.A.Chipps, C.M.Deibel, R.Ezzeddine, D.K.Galloway, C.J.Hansen, F.Herwig, A.P.Ji, M.Lugaro, Z.Meisel, D.Norman, J.S.Read, L.F.Roberts, A.Spyrou, I.Tews, F.X.Timmes, C.Travaglio, N.Vassh, C.Abia, P.Adsley, S.Agarwal, M.Aliotta, W.Aoki, A.Arcones, A.Aryan, A.Bandyopadhyay, A.Banu, D.W.Bardayan, J.Barnes, A.Bauswein, T.C.Beers, J.Bishop, T.Boztepe, B.Cote, M.E.Caplan, A.E.Champagne, J.A.Clark, M.Couder, A.Couture, S.E.de Mink, S.Debnath, R.J.deBoer, J.den Hartogh, P.Denissenkov, V.Dexheimer, I.Dillmann, J.E.Escher, M.A.Famiano, R.Farmer, R.Fisher, C.Frohlich, A.Frebel, C.Fryer, G.Fuller, A.K.Ganguly, S.Ghosh, B.K.Gibson, T.Gorda, K.N.Gourgouliatos, V.Graber, M.Gupta, W.C.Haxton, A.Heger, W.R.Hix, W.C.G.Ho, E.M.Holmbeck, A.A.Hood, S.Huth, G.Imbriani, R.G.Izzard, R.Jain, H.Jayatissa, Z.Johnston, T.Kajino, A.Kankainen, G.G.Kiss, A.Kwiatkowski, M.La Cognata, A.M.Laird, L.Lamia, P.Landry, E.Laplace, K.D.Launey, D.Leahy, G.Leckenby, A.Lennarz, B.Longfellow, A.E.Lovell, W.G.Lynch, S.M.Lyons, K.Maeda, E.Masha, C.Matei, J.Merc, B.Messer, F.Montes, A.Mukherjee, M.R.Mumpower, D.Neto, B.Nevins, W.G.Newton, L.Q.Nguyen, K.Nishikawa, N.Nishimura, F.M.Nunes, E.O'Connor, B.W.O'Shea, W.-J.Ong, S.D.Pain, M.A.Pajkos, M.Pignatari, R.G.Pizzone, V.M.Placco, T.Plewa, B.Pritychenko, A.Psaltis, D.Puentes, Y.-Z.Qian, D.Radice, D.Rapagnani, B.M.Rebeiro, R.Reifarth, A.L.Richard, N.Rijal, I.U.Roederer, J.S.Rojo, J.S K, Y.Saito, A.Schwenk, M.L.Sergi, R.S.Sidhu, A.Simon, T.Sivarani, A.Skuladottir, M.S.Smith, A.Spiridon, T.M.Sprouse, S.Starrfield, A.W.Steiner, F.Strieder, I.Sultana, R.Surman, T.Szucs, A.Tawfik, F.Thielemann, L.Trache, R.Trappitsch, M.B.Tsang, A.Tumino, S.Upadhyayula, J.O.Valle Martinez, M.Van der Swaelmen, C.Viscasillas Vazquez, A.Watts, B.Wehmeyer, M.Wiescher, C.Wrede, J.Yoon, R.G.T.Zegers, M.A.Zermane, M.Zingale, the Horizon 2020 Collaborations

Horizons: nuclear astrophysics in the 2020s and beyond

doi: https://dx.doi.org/10.1088/1361-6471/ac8890
Citations: PlumX Metrics


2014AN04      Phys.Rev. C 89, 065501 (2014)

N.Anand, A.L.Fitzpatrick, W.C.Haxton

Weakly interacting massive particle-nucleus elastic scattering response

doi: 10.1103/PhysRevC.89.065501
Citations: PlumX Metrics


2012SA07      Rep.Prog.Phys. 75, 036901 (2012)

D.W.Savin, N.S.Brickhouse, J.J.Cowan, R.P.Drake, S.R.Federman, G.J.Ferland, A.Frank, M.S.Gudipati, W.C.Haxton, E.Herbst, S.Profumo, F.Salama, L.M.Ziurys, E.G.Zweibel

The impact of recent advances in laboratory astrophysics on our understanding of the cosmos

doi: 10.1088/0034-4885/75/3/036901
Citations: PlumX Metrics


2011AD03      Rev.Mod.Phys. 83, 195 (2011)

E.G.Adelberger, A.Garcia, R.G.H.Robertson, K.A.Snover, A.B.Balantekin, K.Heeger, M.J.Ramsey-Musolf, A.B.Balantekin, K.Heeger, M.J.Ramsey-Musolf, D.Bemmerer, A.Junghans, D.Bemmerer, A.Junghans, C.A.Bertulani, K.-W.Chen, H.Costantini, P.Prati, M.Couder, E.Uberseder, M.Wiescher, R.Cyburt, B.Davids, S.J.Freedman, M.Gai, D.Gazit, L.Gialanella, G.Imbriani, U.Greife, M.Hass, W.C.Haxton, T.Itahashi, K.Kubodera, K.Langanke, D.Leitner, M.Leitner, P.Vetter, L.Winslow, L.E.Marcucci, T.Motobayashi, A.Mukhamedzhanov, R.E.Tribble, F.M.Nunes, T.-S.Park, R.Schiavilla, E.C.Simpson, C.Spitaleri, F.Strieder, H.-P.Trautvetter, K.Suemmerer, S.Typel

Solar fusion cross sections. II. The pp chain and CNO cycles

NUCLEAR REACTIONS 2H(p, γ), 3He(3He, 2p), (α, γ), (p, e), 7Be, 12C, 14N, 15N, 17O(p, γ), 15N, 16,17,18O(p, α), E<3 MeV; analyzed and evaluated experimental data; deduced recommended values and uncertainties.

doi: 10.1103/RevModPhys.83.195
Citations: PlumX Metrics


2011BA20      Phys.Rev.Lett. 106, 201104 (2011)

P.Banerjee, W.C.Haxton, Y.-Z.Qian

Long, Cold, Early r Process? Neutrino-Induced Nucleosynthesis in He Shells Revisited

NUCLEAR REACTIONS 4He(ν, nν), 3He(n, p), 3H(t, 2n), 4He(ν, νp), E ∼ 30 keV; calculated r-process yields; deduced ν-driven r-process mechanism.

doi: 10.1103/PhysRevLett.106.201104
Citations: PlumX Metrics


2009HA24      Nucl.Phys. A827, 42c (2009)

W.C.Haxton

Fundamental Symmetries and Conservation Laws

doi: 10.1016/j.nuclphysa.2009.05.017
Citations: PlumX Metrics


2008HA06      Phys.Rev. C 77, 034005 (2008)

W.C.Haxton

Form of the effective interaction in harmonic-oscillator-based effective theory

doi: 10.1103/PhysRevC.77.034005
Citations: PlumX Metrics


2007LI54      Phys.Rev. C 76, 035503 (2007)

C.-P.Liu, M.J.Ramsey-Musolf, W.C.Haxton, R.G.E.Timmermans, A.E.L.Dieperink

Atomic electric dipole moments: The Schiff theorem and its corrections

doi: 10.1103/PhysRevC.76.035503
Citations: PlumX Metrics


2006AB11      Phys.Rev. C 73, 045805 (2006)

J.N.Abdurashitov, V.N.Gavrin, S.V.Girin, V.V.Gorbachev, P.P.Gurkina, T.V.Ibragimova, A.V.Kalikhov, N.G.Khairnasov, T.V.Knodel, V.A.Matveev, I.N.Mirmov, A.A.Shikhin, E.P.Veretenkin, V.M.Vermul, V.E.Yants, G.T.Zatsepin, T.J.Bowles, S.R.Elliott, W.A.Teasdale, B.T.Cleveland, W.C.Haxton, J.F.Wilkerson, J.S.Nico, A.Suzuki, K.Lande, Yu.S.Khomyakov, V.M.Poplavsky, V.V.Popov, O.V.Mishin, A.N.Petrov, B.A.Vasiliev, S.A.Voronov, A.I.Karpenko, V.V.Maltsev, N.N.Oshkanov, A.M.Tuchkov, V.I.Barsanov, A.A.Janelidze, A.V.Korenkova, N.A.Kotelnikov, S.Yu.Markov, V.V.Selin, Z.N.Shakirov, A.A.Zamyatina, S.B.Zlokazov

Measurement of the response of a Ga solar neutrino experiment to neutrinos from a 37Ar source

NUCLEAR REACTIONS 71Ga(ν, e), E=spectrum; measured production rate using 37Ar neutrino source. Comparison with model predictions, implications for solar neutrino experiment discussed.

doi: 10.1103/PhysRevC.73.045805
Citations: PlumX Metrics


2006GA38      Phys.Atomic Nuclei 69, 1820 (2006)

V.N.Gavrin, J.N.Abdurashitov, V.I.Barsanov, T.J.Bowles, B.T.Cleveland, S.R.Elliott, S.V.Girin, V.V.Gorbachev, P.P.Gurkina, W.C.Haxton, T.V.Ibragimova, A.A.Janelidze, A.V.Kalikhov, N.A.Kotelnikov, K.Lande, V.V.Maltsev, S.Yu.Markov, V.A.Matveev, I.N.Mirmov, O.V.Mishin, J.S.Nico, N.N.Oshkanov, A.N.Petrov, V.M.Poplavsky, V.V.Popov, V.V.Selin, Z.N.Shakirov, A.A.Shikhin, A.Suzuki, W.A.Teasdale, A.M.Tuchkov, B.A.Vasiliev, E.P.Veretenkin, V.M.Vermul, S.A.Voronov, J.F.Wilkerson, V.E.Yants, A.A.Zamyatina, G.T.Zatsepin, S.B.Zlokazov

Measurement of the Response of a Ga Solar Neutrino Experiment to 37Ar Source

NUCLEAR REACTIONS 71Ga(ν, e), E=spectrum; measured production rate using 37Ar neutrino source. Comparison with model predictions, implications for solar neutrino experiment discussed.

doi: 10.1134/S1063778806110032
Citations: PlumX Metrics


2006HA60      Nucl.Phys. A777, 226 (2006)

W.C.Haxton, P.D.Parker, C.E.Rolfs

Solar hydrogen burning and neutrinos

NUCLEAR REACTIONS 3He(3He, 2p), E(cm)=10-1000 keV; 3He(α, γ), E(cm)<950 keV; 3He(d, p), (p, e+ν), E not given; 7Be(p, γ), E(cm)<425 keV; 14N(p, γ), E not given; analyzed astrophysical S-factor data, solar neutrino flux. Impact on pp chain and CN cycle.

doi: 10.1016/j.nuclphysa.2005.02.088
Citations: PlumX Metrics


2005HA72      Phys.Rev. C 72, 065501 (2005)

W.C.Haxton, K.M.Nollett, K.M.Zurek

Piecewise moments method: Generalized Lanczos technique for nuclear response surfaces

NUCLEAR STRUCTURE 28Si; calculated electromagnetic response functions. Generalized Lanczos technique.

doi: 10.1103/PhysRevC.72.065501
Citations: PlumX Metrics


2005HE02      Phys.Lett. B 606, 258 (2005)

A.Heger, E.Kolbe, W.C.Haxton, K.Langanke, G.Martinez-Pinedo, S.E.Woosley

Neutrino nucleosynthesis

doi: 10.1016/j.physletb.2004.12.017
Citations: PlumX Metrics


2004LU15      Phys.Rev. C 70, 014316 (2004)

T.C.Luu, S.Bogner, W.C.Haxton, P.Navratil

Effective interactions for the three-body problem

NUCLEAR STRUCTURE 3H, 3He; calculated binding energies, contributions from three-body effective interactions.

doi: 10.1103/PhysRevC.70.014316
Citations: PlumX Metrics


2002HA21      Phys.Rev. C65, 045502 (2002)

W.C.Haxton, C.-P.Liu, M.J.Ramsey-Musolf

Nuclear Anapole Moments

NUCLEAR STRUCTURE 131In, 131,133Sn, 133Sb, 133Cs, 205,207Tl, 207,209Pb, 209Bi; calculated anapole moments; analyzed data; deduced constraints on parity-nonconserving coupling constants. Meson-exchange approach.

doi: 10.1103/PhysRevC.65.045502
Citations: PlumX Metrics


2002HA40      Phys.Rev.Lett. 89, 182503 (2002)

W.C.Haxton, T.Luu

Perturbative Effective Theory in an Oscillator Basis?

doi: 10.1103/PhysRevLett.89.182503
Citations: PlumX Metrics


2001HA33      Phys.Rev.Lett. 86, 5247 (2001)

W.C.Haxton, C.-P.Liu, M.J.Ramsey-Musolf

Anapole Moment and Other Constraints on the Strangeness Conserving Hadronic Weak Interaction

NUCLEAR STRUCTURE 133Cs, 205Tl; calculated nuclear polarization contributions to anapole moments; deduced constraints on parity-nonconserving meson couplings.

doi: 10.1103/PhysRevLett.86.5247
Citations: PlumX Metrics


2001HA43      Nucl.Phys. A690, 15c (2001)

W.C.Haxton, T.Luu

The Canonical Nuclear Many-Body Problem as an Effective Theory

doi: 10.1016/S0375-9474(01)00927-7
Citations: PlumX Metrics


2001HA64      Ann.Rev.Nucl.Part.Sci. 51, 261 (2001)

W.C.Haxton, C.E.Wieman

Atomic Parity Nonconservation and Nuclear Anapole Moments

doi: 10.1146/annurev.nucl.51.101701.132458
Citations: PlumX Metrics


2000HA29      Phys.Rev.Lett. 84, 5484 (2000)

W.C.Haxton, C.-L.Song

Morphing the Shell Model into an Effective Theory

NUCLEAR STRUCTURE 3He; calculated ground-state wave functions, body effective matrix elements. 2H, 3He; calculated form factors. Bloch-Horowitz equation.

doi: 10.1103/PhysRevLett.84.5484
Citations: PlumX Metrics


1999HA01      Phys.Rev. C59, 515 (1999)

W.C.Haxton, R.G.H.Robertson

Solar Neutrino Interactions with 18O in the SuperKamiokande Water Cerenkov Detector

doi: 10.1103/PhysRevC.59.515
Citations: PlumX Metrics


1999HA47      Nucl.Phys. A654, 315c (1999)

W.C.Haxton

Fundamental Symmetries and Theory

doi: 10.1016/S0375-9474(99)00261-4
Citations: PlumX Metrics


1998AD12      Rev.Mod.Phys. 70, 1265 (1998)

E.G.Adelberger, S.M.Austin, J.B.Bahcall, A.B.Balantekin, G.Bogaert, L.S.Brown, L.Buchmann, F.E.Cecil, A.E.Champagne, L.de Braeckeleer, C.A.Duba, S.R.Elliott, S.J.Freedom, M.Gai, G.Goldring, C.R.Gould, A.Gruzinov, W.C.Haxton, K.M.Heeger, E.Henley, C.W.Johnson, M.Kamionkowski, R.W.Kavanagh, S.E.Koonin, K.Kubodera, K.Langanke, T.Motobayashi, V.Pandharipande, P.Parker, R.G.H.Robertson, C.Rolfs, R.F.Sawyer, N.Shaviv, T.D.Shoppa, K.A.Snover, E.Swanson, R.E.Tribble, S.Turck-Chieze, J.F.Wilkerson

Solar Fusion Cross Sections

NUCLEAR REACTIONS 7Be, 12,13C, 15N, 16,17,18O(p, γ), 14,15N, 17,18O(p, α), 7Li(d, p), 3He(p, e+), (α, γ), (3He, 2p), 1H(p, e+), E=low; compiled, analyzed S-factor data, calculations; deduced implications for solar neutrino flux calculations.

doi: 10.1103/RevModPhys.70.1265
Citations: PlumX Metrics


1998HA35      Phys.Lett. 431B, 110 (1998)

W.C.Haxton

Cross Section Uncertainties in the Gallium Neutrino Source Experiments

NUCLEAR REACTIONS 71Ga(ν, e), E not given; calculated Ge excited state contribution to σ; deduced implications for solar neutrino detector calibration. Neutrinos from 51Cr source. Large-basis shell model calculations.

doi: 10.1016/S0370-2693(98)00581-4
Citations: PlumX Metrics


1997HA16      Phys.Rev.Lett. 78, 2694 (1997)

W.C.Haxton, K.Langanke, Y.-Z.Qian, P.Vogel

Neutrino-Induced Nucleosynthesis and the Site of the r Process

NUCLEAR STRUCTURE A=124-126; A=183-187; analyzed postprocessed abundance distributions. A ≈ 195; analyzed postprocessing neutron emission probabilities; deduced consistency with neutrino induced nucleosynthesis, strong argument for a supernova r-process site.

doi: 10.1103/PhysRevLett.78.2694
Citations: PlumX Metrics


1997QI01      Phys.Rev. C55, 1532 (1997)

Y.-Z.Qian, W.C.Haxton, K.Langanke, P.Vogel

Neutrino-Induced Neutron Spallation and Supernova r-Process Nucleosynthesis

NUCLEAR STRUCTURE A=76-195; calculated r-process associated ν(e) capture rates, average neutron number, multiple neutron probabilities.

doi: 10.1103/PhysRevC.55.1532
Citations: PlumX Metrics


1996CU06      Phys.Rev.Lett. 77, 4286 (1996)

A.Cumming, W.C.Haxton

3He Transport in the Sun and the Solar Neutrino Problem

doi: 10.1103/PhysRevLett.77.4286
Citations: PlumX Metrics


1996HA41      Nucl.Phys. B(Proc.Suppl.) S48, 317 (1996)

W.C.Haxton

Nuclear and Atomic Physics of the Solar Neutrino Problem

doi: 10.1016/0920-5632(96)00269-1
Citations: PlumX Metrics


1996HA55      Phys.Rev.Lett. 76, 1562 (1996)

W.C.Haxton

Salty Water Cerenkov Detectors for Solar Neutrinos

doi: 10.1103/PhysRevLett.76.1562
Citations: PlumX Metrics


1995ZH32      Phys.Rev. C52, 2488 (1995)

D.C.Zheng, B.R.Barrett, J.P.Vary, W.C.Haxton, C.-L.Song

Large-Basis Shell Model Studies of Light Nuclei with a Multivalued G-Matrix Effective Interaction

NUCLEAR STRUCTURE 5,4He; calculated levels. 7,6Li; calculated levels, binding energy, μ, quadrupole moment, proton rms radii. Large basis shell model.

doi: 10.1103/PhysRevC.52.2488
Citations: PlumX Metrics


1994HA08      Nucl.Phys. A570, 125c (1994)

W.C.Haxton

Solar Neutrino Oscillations

doi: 10.1016/0375-9474(94)90276-3
Citations: PlumX Metrics


1993AD09      Phys.Lett. 314B, 185 (1993)

E.G.Adelberger, L.De Braeckeleer, W.C.Haxton, K.A.Snover

Accelerator Calibration of Solar Neutrino Detectors

NUCLEAR REACTIONS 12C(p, n), E not given; calculated neutrino flux from 12N source.

doi: 10.1016/0370-2693(93)90447-P
Citations: PlumX Metrics


1993HA48      Nucl.Phys. A553, 397c (1993)

W.C.Haxton

Nuclear Astrophysics

doi: 10.1016/0375-9474(93)90638-E
Citations: PlumX Metrics


1992EN06      Phys.Rev. C46, R2153 (1992)

J.Engel, W.C.Haxton, P.Vogel

Effective Summation Over Intermediate States in Double-Beta Decay

RADIOACTIVITY 48Ca(β-); 48Ti(β+); calculated β-decay Gamow-Teller transition strength. 48Ca(2β-); calculated 2ν-accompained 2β-decay T1/2, Gamow-Teller matrix element.

doi: 10.1103/PhysRevC.46.R2153
Citations: PlumX Metrics


1992YI01      Phys.Rev. C45, 1982 (1992)

S.Ying, W.C.Haxton, E.M.Henley

Charged- and Neutral-Current Solar-Neutrino Cross Sections for Heavy-Water Cherenkov Detectors

NUCLEAR REACTIONS 2H(ν, X), E=3.25-160 MeV; calculated charged, neutral current σ. Bonn, Paris, Hamada-Johnson potentials.

doi: 10.1103/PhysRevC.45.1982
Citations: PlumX Metrics


1991HA24      Phys.Rev.Lett. 67, 2431 (1991)

W.C.Haxton

Double-Beta-Decay Mass Constraints of 17-keV Neutrinos

RADIOACTIVITY 76Ge, 128,130Te(2β); analyzed 2ν-, 0ν-decay T1/2 data; deduced 17 keV neutrinos mass constraints.

doi: 10.1103/PhysRevLett.67.2431
Citations: PlumX Metrics


1990HA07      Nucl.Phys. A507, 179c (1990)

W.C.Haxton

Neutrino Nucleosynthesis in Supernovae: Shell model predictions

NUCLEAR STRUCTURE 4He, 8Be, 12C, 14N, 16O, 20Ne, 24Mg, 28Si, 32S, 32S, 36Ar, 40Ca, 44Ti, 48Cr, 56,52Fe, 56Ni, 60Zn, 80Zr; calculated inclusive responses to supernova neutrinos.

doi: 10.1016/0375-9474(90)90577-9
Citations: PlumX Metrics


1990HA35      Phys.Rev.Lett. 65, 1325 (1990)

W.C.Haxton

Weak-Interaction Rates in 16O

NUCLEAR STRUCTURE 16O; calculated levels, B(λ), Gamow-Teller transition strength, weak interaction rates. Shell model.

doi: 10.1103/PhysRevLett.65.1325
Citations: PlumX Metrics


1989BA95      Phys.Rev. D40, 931 (1989)

J.N.Bahcall, W.C.Haxton

Matter-Enchanced Neutrino Oscillations in the Standard Solar Model

doi: 10.1103/PhysRevD.40.931
Citations: PlumX Metrics


1989HA11      Phys.Rev. C39, 2081 (1989)

W.C.Haxton

Reply to ' Comment on ' 37Ar as a Calibration Source for Solar Neutrino Detectors ' '

RADIOACTIVITY 37Ar(EC); analyzed internal bremsstrahlung yield implications.

doi: 10.1103/PhysRevC.39.2081
Citations: PlumX Metrics


1989HA22      Phys.Rev.Lett. 63, 949 (1989)

W.C.Haxton, E.M.Henley, M.J.Musolf

Nucleon and Nuclear Anapole Moments

NUCLEAR STRUCTURE 19F, 133Cs; calculated one-body, polarization, exchange-current contribution to the anapole matrix element. Shell model.

doi: 10.1103/PhysRevLett.63.949
Citations: PlumX Metrics


1988AV02      Phys.Rev. D37, 618 (1988)

F.T.Avignone III, C.Baktash, W.C.Barker, F.P.Calaprice, R.W.Dunford, W.C.Haxton, D.Kahana, R.T.Kouzes, H.S.Miley, D.M.Moltz

Search for Axions from the 1115-keV Transition of 65Cu

RADIOACTIVITY 65Zn(EC), (β+); measured γγ-coin; deduced axion search constraints.

doi: 10.1103/PhysRevD.37.618
Citations: PlumX Metrics


1988HA05      Phys.Rev.Lett. 60, 768 (1988)

W.C.Haxton

Radiochemical Neutrino Detection via 127I(ν(e), e-)127Xe

NUCLEAR REACTIONS 127I(ν, e-), E ≈ 664 keV; calculated 127Xe production rate; deduced neutrino detector sensitivity.

doi: 10.1103/PhysRevLett.60.768
Citations: PlumX Metrics


1988HA22      Phys.Rev. C37, 2660 (1988)

W.C.Haxton

Neutrino Reactions on Oxygen and a Proposed Measurement of the Weinberg Angle

NUCLEAR REACTIONS 16,17,18O(ν, e-), E=muon decay spectrum; calculated σ(θ); deduced θ(Weinberg) estimate feasibility.

doi: 10.1103/PhysRevC.37.2660
Citations: PlumX Metrics


1988HA31      Can.J.Phys. 66, 503 (1988)

W.C.Haxton

Parity Nonconservation in the Nucleon-Nucleon System: Nuclear structure issues

NUCLEAR STRUCTURE 14N, 18,19F, 21Ne; compiled, analyzed parity mixing features.

doi: 10.1139/p88-082
Citations: PlumX Metrics


1988HA34      Phys.Rev. C38, 2474 (1988)

W.C.Haxton

37Ar as a Calibration Source for Solar Neutrino Detectors

NUCLEAR REACTIONS 36Ar(n, γ), E=thermal; analyzed capture σ data; deduced high intensity 37Ar neutrino source production possibility.

doi: 10.1103/PhysRevC.38.2474
Citations: PlumX Metrics


1987AD05      Phys.Rev. C36, 879 (1987)

E.G.Adelberger, W.C.Haxton

37Cl Solar Neutrino Capture Cross Section

RADIOACTIVITY 37Ca(β+p); calculated β-delayed p-emission effects; deduced 37Cl solar neutrino detector consequences. 37K levels deduced β-delayed proton branching ratios, Gamow-Teller transition strength.

doi: 10.1103/PhysRevC.36.879
Citations: PlumX Metrics


1985FR08      Phys.Rev. C31, 2027 (1985)

J.L.Friar, W.C.Haxton

Current Conservation and the Transverse Electric Multipole Field

NUCLEAR REACTIONS 12C(e, e'), E not given; calculated longitudinal, transverse form factors.

doi: 10.1103/PhysRevC.31.2027
Citations: PlumX Metrics


1984HA60      Prog.Part.Nucl.Phys. 12, 409 (1984)

W.C.Haxton, G.J.Stephenson, Jr.

Double beta decay

doi: 10.1016/0146-6410(84)90006-1
Citations: PlumX Metrics


1983AD03      Phys.Rev. C27, 2833 (1983)

E.G.Adelberger, M.M.Hindi, C.D.Hoyle, H.E.Swanson, R.D.Von Lintig, W.C.Haxton

Beta Decays of 18Ne and 19Ne and Their Relation to Parity Mixing in 18F and 19F

NUCLEAR STRUCTURE 18,19F, 19,21Ne, 21Na; calculated B(λ). 18,19Ne, 21Na; calculated Gamow-Teller transition strengths. Shell model.

RADIOACTIVITY 18Ne(β+) [from O(3He, xn), E=12 MeV]; 19Ne(β+) [from 19F(p, n), E=6.4 MeV]; measured Eγ, Iγ; deduced ft. 18,19F levels deduced β-branching ratios, relative Iγ, parity mixing effects. Shell model. Natural O2, SF6 gas targets.

doi: 10.1103/PhysRevC.27.2833
Citations: PlumX Metrics


1983GA09      Phys.Rev. C28, 294 (1983)

M.M.Gazzaly, N.M.Hintz, M.A.Franey, J.Dubach, W.C.Haxton

Neutron and Proton Transition Matrix Elements for 90Zr from a Microscopic Analysis of 0.8 GeV Proton Inelastic Scattering

NUCLEAR REACTIONS 90Zr(p, p'), E=0.8 GeV; measured absolute σ(θ). 90Zr levels deduced core to total deformation parameter ratio, enhancement factors, neutron, proton matrix element ratios. DWIA, shell model transition densities.

doi: 10.1103/PhysRevC.28.294
Citations: PlumX Metrics

Data from this article have been entered in the EXFOR database. For more information, access X4 datasetC1294.


1983HA13      Phys.Rev. C28, 458 (1983)

W.C.Haxton, G.J.Stephenson, Jr.

Comment on ' Nilsson-Pairing Model for Double Beta Decay '

RADIOACTIVITY 76Ge(β-β-); calculated double β-decay Gamow-Teller matrix element. Nilsson pairing model.

doi: 10.1103/PhysRevC.28.458
Citations: PlumX Metrics


1983HA14      Phys.Rev. C28, 467 (1983)

W.C.Haxton, G.A.Cowan, M.Goldhaber

Radiochemical Tests of Double Beta Decay

RADIOACTIVITY 238U, 232Th(β-β-); calculated double β-decay Gamow-Teller matrix element, T1/2 esimates. Nilsson pairing model.

doi: 10.1103/PhysRevC.28.467
Citations: PlumX Metrics


1981HA06      Phys.Rev.Lett. 46, 698 (1981)

W.C.Haxton

Parity Nonconservation in 18F and Meson-Exchange Contributions to the Axial Charge Operator

RADIOACTIVITY 18Ne; calculated β+-decay rate. 18F deduced strength of parity-nonconserving effects. Meson exchange contributions to axial charge operator.

doi: 10.1103/PhysRevLett.46.698
Citations: PlumX Metrics


1981HA21      Phys.Rev.Lett. 47, 153 (1981)

W.C.Haxton, G.J.Stephenson, Jr., D.Strottman

Double Beta Decay and the Majorana Mass of the Electron Neutrino

RADIOACTIVITY 76Ge, 82Se; calculated double β-decay T1/2; deduced ν(e) Majorana mass constraint. Two-neutrino, neutrinoless decay mechanisms.

doi: 10.1103/PhysRevLett.47.153
Citations: PlumX Metrics


1981HA35      Nucl.Phys. A367, 517 (1981)

W.C.Haxton

The Solar Neutrino Capture Cross Section for 81Br

NUCLEAR REACTIONS 81Br(ν, e), E at rest; calculated σ; deduced Gamow-Teller transition dominance. Solar neutrino, weak interaction models.

doi: 10.1016/0375-9474(81)90663-1
Citations: PlumX Metrics


1981SE05      Phys.Rev. C23, 1293 (1981)

R.M.Sealock, H.S.Caplan, G.J.Lolos, W.C.Haxton

Low Energy Angular Distributions for the 12C(e, π+e') Reaction

NUCLEAR REACTIONS 12C(e, π+e'), E=200 MeV; measured σ(E(π), θ). DWBA calculations.

doi: 10.1103/PhysRevC.23.1293
Citations: PlumX Metrics


1980HA18      Phys.Lett. 92B, 37 (1980)

W.C.Haxton

Pion Production and the Optical Potential

NUCLEAR REACTIONS 12C(γ, π+), E not given; 12C(π+, π+), E=38.9, 50 MeV; 12C(e, e'), E not given; calculated σ(θ). Optical model analysis.

doi: 10.1016/0370-2693(80)90298-1
Citations: PlumX Metrics


1980HA41      Phys.Rev.Lett. 45, 1677 (1980)

W.C.Haxton, B.F.Gibson, E.M.Henley

Parity Nonconservation in 18F, 19F, and 21Ne

NUCLEAR STRUCTURE 18,19F, 21Ne; calculated γ-circular polarization, γ-asymmetry; deduced parity nonconserving interaction matrix elements. Weinberg-Salam model.

doi: 10.1103/PhysRevLett.45.1677
Citations: PlumX Metrics


1979DO16      At.Data Nucl.Data Tables 23, 103 (1979)

T.W.Donnelly, W.C.Haxton

Multipole Operators in Semileptonic Weak and Electromagnetic Interactions with Nuclei: Harmonic Oscillator Single-Particle Matrix Elements

NUCLEAR REACTIONS 27Al(e, e), E not given; calculated M1, M3, M5 contributions to transverse form factor; derived multipole operators for semileptonic weak, electromagnetic interactions with nuclei. Harmonic oscillator basis.

doi: 10.1016/0092-640X(79)90003-2
Citations: PlumX Metrics


1979FL08      Phys.Rev.Lett. 43, 1922 (1979)

J.B.Flanz, R.S.Hicks, R.A.Lindgren, G.A.Peterson, J.Dubach, W.C.Haxton

Electron Scattering, Isospin Mixing, and the Structure of the 12.71- and 15.11-MeV Levels in 12C

NUCLEAR REACTIONS 12C(e, e'), E not given; measured form factors at θ=180°; deduced charge-dependent isospin-mixing matrix element. 12C levels deduced isospin mixing, structure.

doi: 10.1103/PhysRevLett.43.1922
Citations: PlumX Metrics


1978DU12      Phys.Rev.Lett. 41, 1453 (1978)

J.Dubach, W.C.Haxton

Nuclear Structure and (e, e') Reactions: The Significance of High-Momentum-Transfer Data and Meson-Exchange Currents

NUCLEAR STRUCTURE 12C; calculated inelastic electron scattering form factor.

doi: 10.1103/PhysRevLett.41.1453
Citations: PlumX Metrics


1978HA34      Phys.Lett. 76B, 165 (1978)

W.C.Haxton

Threshold Pion Photoproduction in 12C and the 15.11 MeV M1 Form Factor

NUCLEAR REACTIONS 12C(γ, π-); calculated σ.

doi: 10.1016/0370-2693(78)90266-6
Citations: PlumX Metrics


1978HA36      Nucl.Phys. A306, 429 (1978)

W.C.Haxton

Threshold Pion Electroproduction and the Nuclear Response Surface

NUCLEAR REACTIONS 12C, 16O(e, π), E=280 MeV; calculated σ.

doi: 10.1016/0375-9474(78)90473-6
Citations: PlumX Metrics


1977DO12      Nucl.Phys. A287, 506 (1977)

T.W.Donnelly, W.C.Haxton

Neutrino Reactions in the Mass-37 System

NUCLEAR REACTIONS 37Cl(ν, e); calculated total σ for solar neutrino capture. 37Cl, 37Ar, 37K, 37Ca; calculated levels.

doi: 10.1016/0375-9474(77)90060-4
Citations: PlumX Metrics


1975DO10      Nucl.Phys. A251, 353 (1975)

T.W.Donnelly, J.Dubach, W.C.Haxton

Semi-Leptonic Weak and Electromagnetic Interactions in the Goldhaber-Teller Model

NUCLEAR STRUCTURE 12C, 16O; T=1 giant resonances calculated β+, β- decay rates.

NUCLEAR REACTIONS 16O(e, e); calculated form factors. 16O(ν, e), (ν-bar, e+), E=250 MeV; 40Ca(ν, e), (ν-bar, e+), E=500 MeV; calculated σ. 12C, 16O, 28Si, 40Ca(μ-, X); calculated muon capture rates.

doi: 10.1016/0375-9474(75)90535-7
Citations: PlumX Metrics


Back to query form