NSR Query Results


Output year order : Descending
Format : Normal

NSR database version of April 26, 2024.

Search: Author = D.R.Phillips

Found 93 matches.

Back to query form



2024PA09      Phys.Rev. C 109, 015802 (2024)

S.N.Paneru, C.R.Brune, D.Connolly, D.Odell, M.Poudel, D.R.Phillips, J.Karpesky, B.Davids, C.Ruiz, A.Lennarz, U.Greife, M.Alcorta, R.Giri, M.Lovely, M.Bowry, M.Delgado, N.E.Esker, A.B.Garnsworthy, C.Seeman, P.Machule, J.Fallis, A.A.Chen, F.Laddaran, A.Firmino, C.Weinerman

Elastic scattering of 3He+4He with the SONIK scattering chamber

doi: 10.1103/PhysRevC.109.015802
Citations: PlumX Metrics


2023CA17      Eur.Phys.J. A 59, 273 (2023)

P.Capel, D.R.Phillips, A.Andis, M.Bagnarol, B.Behzadmoghaddam, F.Bonaiti, R.Bubna, Y.Capitani, P.-Y.Duerinck, V.Durant, N.Dopper, A.El Boustani, R.Farrell, M.Geiger, M.Gennari, N.Goldberg, J.Herko, T.Kirchner, L.-P.Kubushishi, Z.Li, S.S.Li Muli, A.Long, B.Martin, K.Mohseni, I.Moumene, N.Paracone, E.Parnes, B.Romeo, V.Springer, I.Svensson, O.Thim, N.Yapa

Effective field theory analysis of the Coulomb breakup of the one-neutron halo nucleus 19C

NUCLEAR REACTIONS 208Pb(19C, X)18C, E=67 MeV/nucleon; analyzed available data; deduced σ(θ), σ(E) using NLO Halo-EFT 18C-n potentials. A Halo-EFT description of the projectile within the Coulomb Corrected Eikonal approximation (CCE).

doi: 10.1140/epja/s10050-023-01181-7
Citations: PlumX Metrics


2023GO01      Phys.Rev. C 107, 014617 (2023)

M.Gobel, B.Acharya, H.-W.Hammer, D.R.Phillips

Final-state interactions and spin structure in E1 breakup of 11Li in halo effective field theory

NUCLEAR STRUCTURE 11Li; charge radii, mean-square neutron charge radius, calculated E1 strength distribution with inclusion of final state interactions in neutron-neutron and neutron-core channels, cumulative B(E1). Halo effective field theory (Halo EFT) at leading order treating 11Li as three-body system 9Li+n+n. Comparison to experimental data.

doi: 10.1103/PhysRevC.107.014617
Citations: PlumX Metrics


2022CA01      Phys.Lett. B 825, 136847 (2022)

P.Capel, D.R.Phillips, H.-W.Hammer

Simulating core excitation in breakup reactions of halo nuclei using an effective three-body force

NUCLEAR REACTIONS 12C(11Be, X)10Be, E=67 MeV/nucleon; analyzed available data; deduced breakup σ(E), σ(θ), resonances using Halo Effective Field Theory and the Dynamical Eikonal Approximation to include an effective 10Be-n-target force.

doi: 10.1016/j.physletb.2021.136847
Citations: PlumX Metrics


2022CI08      J.Phys.(London) G49, 120502 (2022)

V.Cirigliano, Z.Davoudi, J.Engel, R.J.Furnstahl, G.Hagen, U.Heinz, H.Hergert, M.Horoi, C.W.Johnson, A.Lovato, E.Mereghetti, W.Nazarewicz, A.Nicholson, T.Papenbrock, S.Pastore, M.Plumlee, D.R.Phillips, P.E.Shanahan, S.R.Stroberg, F.Viens, A.Walker-Loud, K.A.Wendt, S.M.Wild

Towards precise and accurate calculations of neutrinoless double-beta decay

RADIOACTIVITY 48Ca(2β-); calculated neutrinoless nuclear matrix elements using chiral-EFT interactions, EDF, IBM, QRPA, SM-pf, SM-sdpf, SM-MBPT, RSM, QMC+SM, IM-GCM, VS-IMSRG, CCSD, CCSD-T1.

doi: 10.1088/1361-6471/aca03e
Citations: PlumX Metrics


2022HO01      J.Phys.(London) G49, 010502 (2022)

C.R.Howell, M.W.Ahmed, A.Afanasev, D.Alesini, J.R.M.Annand, A.Aprahamian, D.L.Balabanski, S.V.Benson, A.Bernstein, C.R.Brune, J.Byrd, B.E.Carlsten, A.E.Champagne, S.Chattopadhyay, D.Davis, E.J.Downie, J.M.Durham, G.Feldman, H.Gao, C.G.R.Geddes, H.W.Griesshammer, R.Hajima, H.Hao, D.Hornidge, J.Isaak, R.V.F.Janssens, D.P.Kendellen, M.Kovash, P.P.Martel, U.-G.Meissner, R.Miskimen, B.Pasquini, D.R.Phillips, N.Pietralla, D.Savran, M.R.Schindler, M.H.Sikora, W.M.Snow, R.P.Springer, C.Sun, C.Tang, B.Tiburzi, A.P.Tonchev, W.Tornow, C.A.Ur, D.Wang, H.R.Weller, V.Werner, Y.K.Wu, J.Yan, Z.Zhao, A.Zilges, F.Z.Zomer

International workshop on next generation gamma-ray source

doi: 10.1088/1361-6471/ac2827
Citations: PlumX Metrics


2022OD01      Phys.Rev. C 105, 014625 (2022)

D.Odell, C.R.Brune, D.R.Phillips

How Bayesian methods can improve R-matrix analyses of data: The example of the dt reaction

NUCLEAR REACTIONS 3H(d, n)4He, E=5-47, 9-70, 12-214, 46-264, 48-70 keV; analyzed five sets of experimental σ(E) data using Bayesian statistics with Markov chain Monte Carlo sampling to evaluate one- and two-level R-matrix-plus-statistical model; deduced common-mode and additional point-to-point uncertainties. Discussed possible paths to reduction of uncertainty in the S-factor.

doi: 10.1103/PhysRevC.105.014625
Citations: PlumX Metrics


2022PO08      J.Phys.(London) G49, 045102 (2022)

M.Poudel, D.R.Phillips

Effective field theory analysis of 3He-α scattering data

NUCLEAR REACTIONS 4He(3He, 3He), E(cm)=0.38-3.12 MeV; analyzed available data from the scattering of nuclei in inverse kinematics (SONIK) gas target at TRIUMF; deduced σ(θ), analyzing power, phase shifts using a likelihood function that incorporates the theoretical uncertainty due to truncation of the effective field theory (EFT) and use Markov chain Monte Carlo sampling to obtain the resulting posterior probability distribution.

doi: 10.1088/1361-6471/ac4da6
Citations: PlumX Metrics


2022SE11      Phys.Rev. C 106, 044002 (2022)

A.C.Semposki, R.J.Furnstahl, D.R.Phillips

Interpolating between small- and large-g expansions using Bayesian model mixing

doi: 10.1103/PhysRevC.106.044002
Citations: PlumX Metrics


2022TE06      Few-Body Systems 63, 67 (2022)

I.Tews, Z.Davoudi, A.Ekstrom, J.D.Holt, K.Becker, R.Briceno, D.J.Dean, W.Detmold, C.Drischler, T.Duguet, E.Epelbaum, A.Gasparyan, J.Gegelia, J.R.Green, H.W.Griesshammer, A.D.Hanlon, M.Heinz, H.Hergert, M.Hoferichter, M.Illa, D.Kekejian, A.Kievsky, S.Konig, H.Krebs, K.D.Launey, D.Lee, P.Navratil, A.Nicholson, A.Parreno, D.R.Phillips, M.Ploszajczak, X.-L.Ren, T.R.Richardson, C.Robin, G.H.Sargsyan, M.J.Savage, M.R.Schindler, P.E.Shanahan, R.P.Springer, A.Tichai, U.van Kolck, M.L.Wagman, A.Walker-Loud, C.-J.Yang, X.Zhang

Nuclear Forces for Precision Nuclear Physics: A Collection of Perspectives

doi: 10.1007/s00601-022-01749-x
Citations: PlumX Metrics


2021AL30      Phys.Rev. C 104, 064311 (2021)

I.K.Alnamlah, E.A.Coello Perez, D.R.Phillips

Effective field theory approach to rotational bands in odd-mass nuclei

NUCLEAR STRUCTURE 99Tc, 159Dy, 167,169Er, 167,169Tm, 183W, 235U, 239Pu; calculated rotational bandhead energies, J, π, energy scales, relative correction to energies in bands at each order, low-energy constants (LECs) at each order for K=1/2 bands, for K=3/2 bands in 167Er and 159Dy, for K=5/2, 7/2 bands in 167Er and 235U. 169Er, 167,169Tm, 239Pu, 159Dy, 99Tc, 183W; calculated energies and energy residuals for ground-state and excited-state rotational bands at LO, NLO, N2LO, N3LO, and N4LO orders as follows: 1/2- g.s. band up to 35/2- for 169Er, 1/2+ g.s. band up to 31/2+ for 167Tm, 1/2+ excited band up to 19/2+ for 169Tm, 1/2+ g.s. band up to 53/2+ for 239Pu, 3/2- g.s. band up to 29/2- for 159Dy; 1/2- excited band up to 31/2- in 99Tc, and 1/2- g.s. band up to 35/2 in 183W. 167Er, 235U; calculated energy residuals for 1/2-, 5/2-, and 7/2+ rotational bands in 167Er, and for the 1/2+, 5/2+, and 7/2- rotational bands in 235U at LO, NLO, N2LO, N3LO, and N4LO orders; extracted breakdown scale in different systems. Extension of effective field theory up to fourth order in the angular velocity to describe rotational bands in even-even nuclei to the odd-mass case, and possibility of application of this EFT to halo nuclei in which low-lying rotational states of the core play a prominent role, such as in 11Be and 31Ne nuclei. Comparison with experimental band structures, data taken from ENSDF database and publications in Nuclear Data Sheets.

doi: 10.1103/PhysRevC.104.064311
Citations: PlumX Metrics


2021GO20      Phys.Rev. C 104, 024001 (2021)

M.Gobel, T.Aumann, C.A.Bertulani, T.Frederico, H.-W.Hammer, D.R.Phillips

Neutron-neutron scattering length from the 6He (p, pα) nn reaction

NUCLEAR REACTIONS 2H(π-, γ), (n, p), (d, 2He)2n, E not given; compiled experimental data for neutron-neutron scattering lengths reported between 1998 and 2008. 1H(6He, pα)2n, E=few MeV/nucleon; calculated ground-state nn relative-energy distributions for different nn scattering lengths using halo effective field theory (EFT), s-wave scattering length using a method based on the final-state interaction (FSI) between the neutrons after the sudden knockout of the α particle. Comparison with model calculations using the computer code FaCE. Proposed a novel method to measure the neutron-neutron scattering length in inverse kinematics. Relevance to precise determination of the nn scattering length using data from the approved experiment at RIKEN using the 1H(6He, pα)nn reaction.

doi: 10.1103/PhysRevC.104.024001
Citations: PlumX Metrics


2021ME07      Eur.Phys.J. A 57, 81 (2021)

J.A.Melendez, R.J.Furnstahl, H.W.Griesshammer, J.A.McGovern, D.R.Phillips, M.T.Pratola

Designing optimal experiments: an application to proton Compton scattering

doi: 10.1140/epja/s10050-021-00382-2
Citations: PlumX Metrics


2021PH05      J.Phys.(London) G48, 072001 (2021)

D.R.Phillips, R.J.Furnstahl, U.Heinz, T.Maiti, W.Nazarewicz, F.M.Nunes, M.Plumlee, M.T.Pratola, S.Pratt, F.G.Viens, S.M.Wild

Get on the BAND Wagon: a Bayesian framework for quantifying model uncertainties in nuclear dynamics

NUCLEAR REACTIONS 208Pb(p, p), E=30 MeV; calculated σ. Comparison with available data.

doi: 10.1088/1361-6471/abf1df
Citations: PlumX Metrics


2021WE14      Phys.Rev. C 104, 064001 (2021)

S.Wesolowski, I.Svensson, A.Ekstrom, C.Forssen, R.J.Furnstahl, J.A.Melendez, D.R.Phillips

Rigorous constraints on three-nucleon forces in chiral effective field theory from fast and accurate calculations of few-body observables

NUCLEAR STRUCTURE 3H, 4He; calculated binding energies, rms point-proton radius of 4He, T1/2 of 3H β decay in the LO, NLO, and NNLO orders using three-nucleon force (3NF) of chiral effective field theory (χEFT), and compared with experimental values; evaluated Bayesian statistical methods for effective field theories of nuclei by using eigenvector continuation (EC) emulator.

doi: 10.1103/PhysRevC.104.064001
Citations: PlumX Metrics


2020DR04      Phys.Rev.Lett. 125, 202702 (2020)

C.Drischler, R.J.Furnstahl, J.A.Melendez, D.R.Phillips

How Well Do We Know the Neutron-Matter Equation of State at the Densities Inside Neutron Stars? A Bayesian Approach with Correlated Uncertainties

doi: 10.1103/PhysRevLett.125.202702
Citations: PlumX Metrics


2020DR05      Phys.Rev. C 102, 054315 (2020)

C.Drischler, J.A.Melendez, R.J.Furnstahl, D.R.Phillips

Quantifying uncertainties and correlations in the nuclear-matter equation of state

doi: 10.1103/PhysRevC.102.054315
Citations: PlumX Metrics


2020GR16      Few-Body Systems 61, 48 (2020)

H.W.Griesshammer, J.A.McGovern, A.Nogga, D.R.Phillips

Scattering Observables from One- and Two-body Densities: Formalism and Application to γ 3He Scattering

doi: 10.1007/s00601-020-01578-w
Citations: PlumX Metrics


2020RY02      Eur.Phys.J. A 56, 7 (2020)

E.Ryberg, C.Forssen, D.R.Phillips, U.van Kolck

Finite-size effects in heavy halo nuclei from effective field theory

doi: 10.1140/epja/s10050-019-00001-1
Citations: PlumX Metrics


2019ME05      Phys.Rev. C 100, 044001 (2019)

J.A.Melendez, R.J.Furnstahl, D.R.Phillips, M.T.Pratola, S.Wesolowski

Quantifying correlated truncation errors in effective field theory

doi: 10.1103/PhysRevC.100.044001
Citations: PlumX Metrics


2019WE07      J.Phys.(London) G46, 045102 (2019)

S.Wesolowski, R.J.Furnstahl, J.A.Melendez, D.R.Phillips

Exploring Bayesian parameter estimation for chiral effective field theory using nucleon-nucleon phase shifts

doi: 10.1088/1361-6471/aaf5fc
Citations: PlumX Metrics


2018CA23      Phys.Rev. C 98, 034610 (2018) Erratum Phys.Rev. C 105, 019901 (2022)

P.Capel, D.R.Phillips, H.-W.Hammer

Dissecting reaction calculations using halo effective field theory and ab initio input

NUCLEAR REACTIONS 208Pb, 12C(11Be, n), E=67, 69 MeV/nucleon; calculated radial wave functions of 11Be g.s. and 1/2- excited state, 11Be projectile partial wave phase shifts, and break-up σ(E) with contributions from the p3/2, s1/2, p1/2, and d partial waves of 11Be. No-core shell model with continuum (NCSMC) for structure calculations of 11Be. Dynamical eikonal approximation with halo effective field theory (EFT) and ab initio input for reaction mechanism. Comparison with experimental values.

doi: 10.1103/PhysRevC.98.034610
Citations: PlumX Metrics


2018GR05      Eur.Phys.J. A 54, 37 (2018)

H.W.Griesshammer, J.A.McGovern, D.R.Phillips

Comprehensive study of observables in Compton scattering on the nucleon

NUCLEAR REACTIONS 1H(γ, γ'), E=0-E(Δ(1232)); calculated, analyzed σ, asymmetry, polarized beams or targets using ChEFT (Chiral Effective Field Theory) (complete at N4LO at photon energies close to pion mass, in the resonance region complete at NLO); deduced asymmetry sensitivity to ill-determined combinations of proton spin polarizabilities.

doi: 10.1140/epja/i2018-12467-8
Citations: PlumX Metrics


2018LE16      Phys.Rev. C 98, 051001 (2018)

J.Lei, L.Hlophe, Ch.Elster, A.Nogga, F.M.Nunes, D.R.Phillips

Few-body universality in the deuteron-α system

NUCLEAR STRUCTURE 6Li; calculated d-α S-wave scattering length and absolute value of the n-p-α three body separation energy using variety of phase-shift equivalent nucleon-nucleon and α-nucleon interactions; interpreted as a deuteron or two-nucleon halo nucleus from dα and 6Li correlation.

doi: 10.1103/PhysRevC.98.051001
Citations: PlumX Metrics


2018MA42      Eur.Phys.J. A 54, 125 (2018)

A.Margaryan, B.Strandberg, H.W.Griesshammer, J.A.McGovern, D.R.Phillips, D.Shukla

Elastic Compton scattering from 3He and the role of the Delta

NUCLEAR REACTIONS 3He(γ, γ), E=50-120 MeV; calculated elastic Compton scattering σ, σ(θ), beam asymmetry, double asymmetry resulting from circularly polarized photons and longitudinally or transversely polarized target using Chiral Effective Field Theory with explicit Δ(1232) degree of freedom; deduced corrections to N2LO results (without explicit Δ). Compared observables for p, n and d targets.

doi: 10.1140/epja/i2018-12554-x
Citations: PlumX Metrics


2018ZH40      Phys.Rev. C 98, 034616 (2018)

X.Zhang, K.M.Nollett, D.R.Phillips

Models, measurements, and effective field theory: Proton capture on 7Be at next-to-leading order

NUCLEAR REACTIONS 7Be(p, γ)8B, E(cm)=100-500 keV; analyzed asymptotic normalization coefficients (ANCs), S factor at astrophysically relevant energies, and reaction amplitudes using halo effective field theory (EFT) at leading-order (LO), and next-to-leading-order (NLO) for capture reactions. Comparison with experimental values. Discussed higher order effects from N2LO and N3LO.

doi: 10.1103/PhysRevC.98.034616
Citations: PlumX Metrics


2017HA22      J.Phys.(London) G44, 103002 (2017)

H.-W.Hammer, C.Ji, D.R.Phillips

Effective field theory description of halo nuclei

NUCLEAR STRUCTURE 2H, 4,5,6He, 8,11Li, 11,14Be, 15,19,22C; calculated halo, Efimov states, matter radii, one- and two-neutron separation energies. Effective field theory (EFT).

doi: 10.1088/1361-6471/aa83db
Citations: PlumX Metrics


2017TH08      Eur.Phys.J. A 53, 206 (2017)

A.Thapaliya, D.R.Phillips

The reactions ππ → ππ and γγ → ππ in x PT with an isosinglet scalar resonance

doi: 10.1140/epja/i2017-12401-8
Citations: PlumX Metrics


2016GR05      Eur.Phys.J. A 52, 139 (2016)

H.W.Griesshammer, J.A.McGovern, D.R.Phillips

Nucleon polarisabilities at and beyond physical pion masses

NUCLEAR STRUCTURE 1n, 1H; calculated nucleon polarizability vs pion mass using chiral effective field theory.

doi: 10.1140/epja/i2016-16139-5
Citations: PlumX Metrics


2016SA33      Phys.Rev. C 94, 024001 (2016)

D.Samart, C.Schat, M.R.Schindler, D.R.Phillips

Time-reversal-invariance-violating nucleon-nucleon potential in the 1/Nc expansion

doi: 10.1103/PhysRevC.94.024001
Citations: PlumX Metrics


2015FU10      Phys.Rev. C 92, 024005 (2015)

R.J.Furnstahl, N.Klco, D.R.Phillips, S.Wesolowski

Quantifying truncation errors in effective field theory

doi: 10.1103/PhysRevC.92.024005
Citations: PlumX Metrics


2015PA12      Phys.Rev.Lett. 114, 082502 (2015)

M.Pavon Valderrama, D.R.Phillips

Power Counting of Contact-Range Currents in Effective Field Theory

doi: 10.1103/PhysRevLett.114.082502
Citations: PlumX Metrics


2015PH01      Phys.Rev.Lett. 114, 062301 (2015)

D.R.Phillips, D.Samart, C.Schat

Parity-Violating Nucleon-Nucleon Force in the 1/Nc Expansion

doi: 10.1103/PhysRevLett.114.062301
Citations: PlumX Metrics


2014JI12      Phys.Rev. C 90, 044004 (2014)

C.Ji, Ch.Elster, D.R.Phillips

6He nucleus in halo effective field theory

NUCLEAR STRUCTURE 6He; calculated S(2n), two-body amplitudes, properties of the ground state of Borromean halo nucleus 6He described as nnα three-body system in the framework of Halo effective field theory (EFT) built on cluster degrees of freedom. Faddeev formulation. Comparison with experimental data.

doi: 10.1103/PhysRevC.90.044004
Citations: PlumX Metrics


2014MY06      Phys.Rev.Lett. 113, 262506 (2014)

L.S.Myers, J.R.M.Annand, J.Brudvik, G.Feldman, K.G.Fissum, H.W.Griesshammer, K.Hansen, S.S.Henshaw, L.Isaksson, R.Jebali, M.A.Kovash, M.Lundin, J.A.McGovern, D.G.Middleton, A.M.Nathan, D.R.Phillips, B.Schroder, S.C.Stave, for the COMPTON @ MAX-lab Collaboration

Measurement of Compton Scattering from the Deuteron and an Improved Extraction of the Neutron Electromagnetic Polarizabilities

NUCLEAR REACTIONS 2H(γ, γ), (γ, E), E=65-115 MeV; measured reaction products, Eγ, Iγ; deduced the isoscalar polarizabilities and reduced the statistical uncertainty on these quantities. Comparison with available data.

doi: 10.1103/PhysRevLett.113.262506
Citations: PlumX Metrics

Data from this article have been entered in the EXFOR database. For more information, access X4 datasetG0045.


2014PH01      Few-Body Systems 55, 931 (2014)

D.R.Phillips

One- and Two-Neutron Halos in Effective Field Theory

doi: 10.1007/s00601-013-0769-z
Citations: PlumX Metrics


2014ZH07      Phys.Rev. C 89, 024613 (2014)

X.Zhang, K.M.Nollett, D.R.Phillips

Combining ab initio calculations and low-energy effective field theory for halo nuclear systems: The case of 7Li + n → 8Li + γ

NUCLEAR REACTIONS 7Li(n, γ), E<0.05 keV; calculated total and partial σ(E) in the radiative capture process in the framework of low-energy effective field theory (halo-EFT). The couplings in EFT fixed by calculating asymptotic normalization coefficients (ANCs)of the ground and first excited state in 8Li by ab initio variational Monte Carlo method. Comparison with experimental data.

doi: 10.1103/PhysRevC.89.024613
Citations: PlumX Metrics


2014ZH17      Phys.Rev. C 89, 051602 (2014)

X.Zhang, K.M.Nollett, D.R.Phillips

Combining ab initio calculations and low-energy effective field theory for halo nuclear systems: The case of7Be + p → 8B + γ

NUCLEAR REACTIONS 7Be(p, γ)8B, E<0.5 MeV; calculated S(E), zero-energy S factor using Halo leading-order (LO) effective field theory (EFT) to radiative proton capture by treating 8B as shallow proton+7Be core and proton+7Be* (core excitation) p-wave bound state; discussed role of proton-7Be scattering parameters.

doi: 10.1103/PhysRevC.89.051602
Citations: PlumX Metrics


2013AC02      Phys.Lett. B 723, 196 (2013)

B.Acharya, C.Ji, D.R.Phillips

Implications of a matter-radius measurement for the structure of Carbon-22

NUCLEAR STRUCTURE 20,21,22C; calculated binding energies, excited Efimov states, rms matter radius of s-wave Borromean halo nuclei. Comparison with available data.

doi: 10.1016/j.physletb.2013.04.055
Citations: PlumX Metrics


2013AC03      Nucl.Phys. A913, 103 (2013)

B.Acharya, D.R.Phillips

19C in halo EFT: Effective-range parameters from Coulomb dissociation experiments

NUCLEAR REACTIONS 181Ta(19C, n18C), E=88 MeV/nucleon; calculated halo nucleus Coulomb dissociation σ(θ), σ(E), 1n separation energy, n-18C scattering length, longitudinal momentum distribution using EFT (effective field theory); deduced EFT parameters. Compared with available data.

doi: 10.1016/j.nuclphysa.2013.05.021
Citations: PlumX Metrics


2013MC02      Eur.Phys.J. A 49, 12 (2013)

J.A.McGovern, D.R.Phillips, H.W.Griesshammer

Compton scattering from the proton in an effective field theory with explicit Delta degrees of freedom

doi: 10.1140/epja/i2013-13012-1
Citations: PlumX Metrics


2013PH02      Phys.Rev. C 88, 034002 (2013)

D.R.Phillips, C.Schat

Three-nucleon forces in the 1/Nc expansion

doi: 10.1103/PhysRevC.88.034002
Citations: PlumX Metrics


2013YA22      Eur.Phys.J. A 49, 122 (2013)

C.-J.Yang, D.R.Phillips

The longitudinal response function of the deuteron in chiral effective field theory

NUCLEAR STRUCTURE 2H; calculated wave function, longitudinal response function vs θ, phase shifts vs energy using chiral effective field theory.

doi: 10.1140/epja/i2013-13122-8
Citations: PlumX Metrics


2012BA24      Eur.Phys.J. A 48, 69 (2012)

V.Baru, E.Epelbaum, C.Hanhart, M.Hoferichter and A.E.Kudryavtsev, D.R.Phillips

The multiple-scattering series in pion-deuteron scattering and the nucleon-nucleon potential: perspectives from effective field theory

doi: 10.1140/epja/i2012-12069-6
Citations: PlumX Metrics


2012KO35      Phys.Rev. C 86, 047001 (2012)

S.Kolling, E.Epelbaum, D.R.Phillips

Magnetic form factor of the deuteron in chiral effective field theory

doi: 10.1103/PhysRevC.86.047001
Citations: PlumX Metrics


2012LE14      Phys.Rev. C 86, 048201 (2012)

V.Lensky, J.A.McGovern, D.R.Phillips, V.Pascalutsa

Proton Compton scattering cross section in different variants of chiral effective field theory

doi: 10.1103/PhysRevC.86.048201
Citations: PlumX Metrics


2011BA43      Nucl.Phys. A872, 69 (2011)

V.Baru, C.Hanhart, M.Hoferichter, B.Kubis, A.Nogga, D.R.Phillips

Precision calculation of threshold π-d scattering, πN scattering lengths, and the GMO sum rule

NUCLEAR REACTIONS 2H(π-, π-), (π-, π-'), E≈threshold; calculated matrix elements, πN scattering lengths using chiral perturbation theory including isospin-violating corrections; deduced charged-pion-nucleon coupling constant from discussion of validity of Goldberger-Miyazawa-Oehme sum rule in the presence of isospin violation.

doi: 10.1016/j.nuclphysa.2011.09.015
Citations: PlumX Metrics


2011HA41      Nucl.Phys. A865, 17 (2011)

H.-W.Hammer, D.R.Phillips

Electric properties of the Beryllium-11 system in Halo EFT

NUCLEAR REACTIONS 11Be(γ, n), (γ, γ'), E=0.5-6.5 MeV; calculated formfactors, electric radius, neutron radius, B(E1), Coulomb excitation; deduced interaction parameters. Effective field theory with local, nonlocal interactions.

doi: 10.1016/j.nuclphysa.2011.06.028
Citations: PlumX Metrics


2011KI30      Phys.Rev. C 84, 054004 (2011)

J.Kirscher, D.R.Phillips

Constraining the neutron-neutron scattering length using the effective field theory without explicit pions

NUCLEAR STRUCTURE 3H, 3He; calculated splitting in binding energies between 3H and 3He, model-independent correlation between the difference of neutron-neutron and proton-proton scattering lengths; deduced neutron-neutron scattering length using experimental values for binding energies and proton-proton scattering length. Effective field theory without explicit pions.

doi: 10.1103/PhysRevC.84.054004
Citations: PlumX Metrics


2009PH02      Nucl.Phys. A822, 1 (2009)

D.R.Phillips, M.R.Schindler, R.P.Springer

An effective-field-theory analysis of low-energy parity-violation in nucleon-nucleon scattering

NUCLEAR REACTIONS 1H(polarized p, p), E=13.6, 45 MeV; 1n, 1H(polarized n, n), E not given; calculated longitudinal analyzing power using pionless effective field theory. Comparison with data.

doi: 10.1016/j.nuclphysa.2009.02.011
Citations: PlumX Metrics


2009PH03      J.Phys.(London) G36, 104004 (2009)

D.R.Phillips

The chiral structure of the neutron as revealed in electron and photon scattering

doi: 10.1088/0954-3899/36/10/104004
Citations: PlumX Metrics


2009SH09      Nucl.Phys. A819, 98 (2009)

D.Shukla, A.Nogga, D.R.Phillips

Analyzing the effects of neutron polarizabilities in elastic Compton scattering off 3He

NUCLEAR REACTIONS 3He(γ, γ), (polarized γ, γ), E(cm)=60, 80, 100, 120 MeV; calculated σ(θ), double-polarization observables; deduced sensitivity to neutron spin polarizabilities. Heavy-baryon chiral perturbation theory. Polarized target.

doi: 10.1016/j.nuclphysa.2009.01.003
Citations: PlumX Metrics


2009YA14      Phys.Rev. C 80, 034002 (2009)

C.-J.Yang, Ch.Elster, D.R.Phillips

Subtractive renormalization of the chiral potentials up to next-to-next-to-leading order in higher NN partial waves

doi: 10.1103/PhysRevC.80.034002
Citations: PlumX Metrics


2009YA16      Phys.Rev. C 80, 044002 (2009)

C.-J.Yang, Ch.Elster, D.R.Phillips

Subtractive renormalization of the NN interaction in chiral effective theory up to next-to-next-to-leading order: S waves

doi: 10.1103/PhysRevC.80.044002
Citations: PlumX Metrics


2008PA19      Eur.Phys.J. A 36, 315 (2008)

M.Pavon Valderrama, A.Nogga, E.Ruiz Arriola, D.R.Phillips

Deuteron form factors in chiral effective theory: Regulator-independent results and the role of two-pion exchange

NUCLEAR STRUCTURE 2H; calculated wave function, quadrupole moment, form factors, radius using effective field theory with one-pion and chiral two-pion exchange potentials.

doi: 10.1140/epja/i2007-10581-4
Citations: PlumX Metrics


2008SH19      J.Phys.(London) G35, 115009 (2008)

D.Shukla, D.R.Phillips, E.Mortenson

Chiral potentials, perturbation theory and the 1S0 channel of NN scattering

doi: 10.1088/0954-3899/35/11/115009
Citations: PlumX Metrics


2008YA02      Phys.Rev. C 77, 014002 (2008)

C.-J.Yang, Ch.Elster, D.R.Phillips

Subtractive renormalization of the NN scattering amplitude at leading order in chiral effective theory

NUCLEAR REACTIONS p(p, X), E=0-80 keV; calculated phase shifts, wave functions.

doi: 10.1103/PhysRevC.77.014002
Citations: PlumX Metrics


2007HA42      Eur.Phys.J. A 32, 335 (2007)

H.-W.Hammer, D.R.Phillips, L.Platter

Pion-mass dependence of three-nucleon observables

NUCLEAR STRUCTURE 3H; calculated ground and excited state binding energies using effective field theory.

doi: 10.1140/epja/i2007-10380-y
Citations: PlumX Metrics


2007PH01      J.Phys.(London) G34, 365 (2007)

D.R.Phillips

Chiral effective theory predictions for deuteron form factor ratios at low Q2

NUCLEAR STRUCTURE 2H; calculated quadrupole moment, form factor ratios, related features. Chiral effective theory.

doi: 10.1088/0954-3899/34/2/015
Citations: PlumX Metrics


2006GA01      Phys.Rev. C 73, 014002 (2006)

A.Gardestig, D.R.Phillips

Using chiral perturbation theory to extract the neutron-neutron scattering length from π-d → nnγ

NUCLEAR REACTIONS 2H(π-, nγ), E at rest; calculated neutron spectra, dependence on neutron-neutron scattering length. Chiral perturbation theory, theoretical uncertainties discussed.

doi: 10.1103/PhysRevC.73.014002
Citations: PlumX Metrics


2006GA08      Phys.Rev. C 73, 024002 (2006)

A.Gardestig, D.R.Phillips, Ch.Elster

Near-threshold NN → dπ reaction in chiral perturbation theory

NUCLEAR REACTIONS 1H(n, π0), E ≈ threshold; calculated σ. Chiral perturbation theory.

doi: 10.1103/PhysRevC.73.024002
Citations: PlumX Metrics


2006GA20      Phys.Rev.Lett. 96, 232301 (2006)

A.Gardestig, D.R.Phillips

How Low-Energy Weak Reactions Can Constrain Three-Nucleon Forces and the Neutron-Neutron Scattering Length

NUCLEAR REACTIONS 2H(π-, 2n), E not given; calculated Gamow-Teller matrix elements, neutron spectra; deduced neutron-neutron scattering length.

doi: 10.1103/PhysRevLett.96.232301
Citations: PlumX Metrics


2006PL10      Phys.Lett. B 641, 164 (2006)

L.Platter, D.R.Phillips

Deuteron matrix elements in chiral effective theory at leading order

doi: 10.1016/j.physletb.2006.08.053
Citations: PlumX Metrics


2005BE08      Nucl.Phys. A747, 311 (2005)

S.R.Beane, M.Malheiro, J.A.McGovern, D.R.Phillips, U.van Kolck

Compton scattering on the proton, neutron, and deuteron in chiral perturbation theory to O(Q4)

NUCLEAR REACTIONS 1n, 1,2H(γ, γ'), E ≈ 40-200 MeV; calculated σ(θ). Chiral perturbation theory, comparison with data.

doi: 10.1016/j.nuclphysa.2004.09.068
Citations: PlumX Metrics


2005CH31      Phys.Rev. C 71, 044002 (2005)

D.Choudhury, D.R.Phillips

Predictions for polarized-beam and/or vector-polarized-target observables in elastic Compton scattering on the deuteron

NUCLEAR REACTIONS 2H(polarized γ, γ), E=50-135 MeV; calculated polarization observables; deduced sensitivity to neutron polarizabilities. Heavy-baryon chiral perturbation theory.

doi: 10.1103/PhysRevC.71.044002
Citations: PlumX Metrics


2005HI02      Nucl.Phys. A748, 573 (2005)

R.P.Hildebrandt, H.W.Griesshammer, T.R.Hemmert, D.R.Phillips

Explicit Δ(1232) degrees of freedom in Compton scattering off the deuteron

NUCLEAR REACTIONS 2H(γ, γ), E=49, 69, 94.2 MeV; calculated Compton scattering σ(θ), resonance contribution. Comparison with data.

doi: 10.1016/j.nuclphysa.2004.11.017
Citations: PlumX Metrics


2005PA34      Phys.Rev. C 71, 064002 (2005)

V.R.Pandharipande, D.R.Phillips, U.van Kolck

Δ effects in pion-nucleon scattering and the strength of the two-pion-exchange three-nucleon interaction

doi: 10.1103/PhysRevC.71.064002
Citations: PlumX Metrics


2005PH01      Phys.Rev. C 72, 014006 (2005)

D.R.Phillips, S.J.Wallace, N.K.Devine

Electron-deuteron scattering in the equal-time formalism: Beyond the impulse approximation

NUCLEAR REACTIONS 2H(e, e'X), E=high; calculated form factors, structure functions, polarization observables. Three-dimensional formalism, comparison with data.

doi: 10.1103/PhysRevC.72.014006
Citations: PlumX Metrics


2005PH02      J.Phys.(London) G31, S1263 (2005)

D.R.Phillips

Chiral perturbation theory for electroweak reactions on deuterium

NUCLEAR REACTIONS 2H(e, e), E not given; calculated charge and quadrupole form factors. 2H(γ, γ'), E ≈ 50-100 MeV; calculated σ(θ). Chiral perturbation theory, comparison with data.

doi: 10.1088/0954-3899/31/8/004
Citations: PlumX Metrics


2004AF01      Phys.Rev. C 69, 034010 (2004)

I.R.Afnan, D.R.Phillips

Three-body problem with short-range forces: Renormalized equations and regulator-independent results

NUCLEAR REACTIONS 2H(n, n), E=low; calculated phase shifts. Effective field theory, comparison with data.

doi: 10.1103/PhysRevC.69.034010
Citations: PlumX Metrics


2004PH03      Nucl.Phys. A737, 52 (2004)

D.R.Phillips

M.Poincare visits Jefferson Lab: Relativistic Models of Few-Nucleon Systems

NUCLEAR REACTIONS 2H(e, e'X), E=high; calculated form factors, tensor analyzing power. Relativistic models.

doi: 10.1016/j.nuclphysa.2004.03.043
Citations: PlumX Metrics


2003BE35      Nucl.Phys. A720, 399 (2003)

S.R.Beane, V.Bernard, E.Epelbaum, Ulf-G.Meissner, D.R.Phillips

The S-wave pion-nucleon scattering lengths from pionic atoms using effective field theory

ATOMIC PHYSICS, Mesic-atoms 1,2H(π-, X), E at rest; analyzed pionic atoms decay data; deduced pion-nucleon scattering lengths.

doi: 10.1016/S0375-9474(03)01008-X
Citations: PlumX Metrics


2003BE40      Phys.Lett. B 567, 200 (2003); Erratum Phy.Lett. B 607, 320 (2005)

S.R.Beane, M.Malheiro, J.A.McGovern, D.R.Phillips, U.van Kolck

Nucleon polarizabilities from low-energy Compton scattering

NUCLEAR REACTIONS 1,2H(γ, γ), E ≈ 40-200 MeV; analyzed σ(θ). 1n, 1H deduced polarizabilities.

doi: 10.1016/j.physletb.2003.06.040
Citations: PlumX Metrics


2003PA18      Phys.Rev. C 67, 055202 (2003)

V.Pascalutsa, D.R.Phillips

Effective theory of the Δ(1232) resonance in Compton scattering off the nucleon

NUCLEAR REACTIONS 1H(γ, γ'), E ≈ 60-450 MeV; calculated σ(θ), spin-independent polarizabilities. Chiral effective-field theory, comparison with data.

doi: 10.1103/PhysRevC.67.055202
Citations: PlumX Metrics


2003PA49      Phys.Rev. C 68, 055205 (2003)

V.Pascalutsa, D.R.Phillips

Model-independent effects of Δ excitation in nucleon polarizabilities

NUCLEAR STRUCTURE 1n, 1H; calculated polarizabilities, Δ resonance contributions.

doi: 10.1103/PhysRevC.68.055205
Citations: PlumX Metrics


2003PH01      Phys.Lett. B 567, 12 (2003)

D.R.Phillips

Higher-order calculations of electron-deuteron scattering in nuclear effective theory

NUCLEAR STRUCTURE 2H; calculated electromagnetic form factors, radius, μ, quadrupole moment. Chiral perturbation theory.

NUCLEAR REACTIONS 2H(e, e'X), E not given; calculated electromagnetic form factors. Chiral perturbation theory.

doi: 10.1016/S0370-2693(03)00867-0
Citations: PlumX Metrics


2001HA06      Phys.Lett. 499B, 9 (2001)

C.Hanhart, D.R.Phillips, S.Reddy

Neutrino and Axion Emissivities of Neutron Stars from Nucleon-Nucleon Scattering Data

doi: 10.1016/S0370-2693(00)01382-4
Citations: PlumX Metrics


2001PH01      Nucl.Phys. A680, 294c (2001)

D.R.Phillips

Probing the Effectiveness: Chiral perturbation theory calculations of low-energy reactions on the deuteron

doi: 10.1016/S0375-9474(00)00431-0
Citations: PlumX Metrics


2000CO18      Phys.Rev. C61, 064005 (2000)

J.R.Cooke, G.A.Miller, D.R.Phillips

Restoration of Rotational Invariance of Bound States on the Light Front

doi: 10.1103/PhysRevC.61.064005
Citations: PlumX Metrics


2000PH01      Phys.Lett. 473B, 209 (2000)

D.R.Phillips, G.Rupak, M.J.Savage

Improving the Convergence of NN Effective Field Theory

NUCLEAR STRUCTURE 2H; calculated radius, quadrupole moment. Low-energy effective field theory.

doi: 10.1016/S0370-2693(99)01496-3
Citations: PlumX Metrics


2000PH02      Nucl.Phys. A668, 45 (2000)

D.R.Phillips, T.D.Cohen

Deuteron Electromagnetic Properties and the Viability of Effective Field Theory Methods in the Two-Nucleon System

NUCLEAR REACTIONS 2H(e, e), E not given; analyzed T20(Q). 2H calculated electromagnetic form factors; deduced insensitivity to short-range potential. Effective field theory.

doi: 10.1016/S0375-9474(99)00422-4
Citations: PlumX Metrics


2000PH03      Phys.Rev. C61, 044002 (2000)

D.R.Phillips, I.R.Afnan, A.G.Henry-Edwards

Numerical Renormalization using Dimensional Regularization: A simple test case in the Lippmann-Schwinger equation

doi: 10.1103/PhysRevC.61.044002
Citations: PlumX Metrics


1999BE42      Nucl.Phys. A656, 367 (1999)

S.R.Beane, M.Malheiro, D.R.Phillips, U.van Kolck

Compton Scattering on the Deuteron in Baryon Chiral Perturbation Theory

NUCLEAR REACTIONS 2H(γ, γ'), E=49, 69, 95 MeV; calculated Compton scattering σ(θ). Baryon chiral perturbation theory, comparisons with data.

doi: 10.1016/S0375-9474(99)00312-7
Citations: PlumX Metrics


1998BE17      Nucl.Phys. A632, 445 (1998)

S.R.Beane, T.D.Cohen, D.R.Phillips

The Potential of Effective Field Theory in NN Scattering

doi: 10.1016/S0375-9474(98)00007-4
Citations: PlumX Metrics


1998PH01      Nucl.Phys. A631, 447c (1998)

D.R.Phillips, S.R.Beane, T.D.Cohen

Regularization and Renormalization in Effective Theories of the Nucleon-Nucleon Interaction

doi: 10.1016/S0375-9474(98)00045-1
Citations: PlumX Metrics


1998PH02      Phys.Rev. C58, 2261 (1998)

D.R.Phillips, S.J.Wallace, N.K.Devine

Electron-Deuteron Scattering in a Current-Conserving Description of Relativistic Bound States: Formalism and impulse approximation calculations

NUCLEAR REACTIONS 2H(e, e), E not given; calculated deuteron form factor, tensor polarization. Equal-time formalism, conserved current.

NUCLEAR STRUCTURE 2H; calculated form factor. Equal-time formalism, conserved current.

doi: 10.1103/PhysRevC.58.2261
Citations: PlumX Metrics


1997PH01      Phys.Lett. 390B, 7 (1997)

D.R.Phillips, T.D.Cohen

How Short is Too Short ( Question ) Constraining Zero-Range Interactions in Nucleon-Nucleon Scattering

doi: 10.1016/S0370-2693(96)01411-6
Citations: PlumX Metrics


1997PH02      Phys.Rev. C55, 1937 (1997)

D.R.Phillips, M.C.Birse, S.J.Wallace

Low-Energy Interaction of Composite Spin-Half Systems with Scalar and Vector Fields

doi: 10.1103/PhysRevC.55.1937
Citations: PlumX Metrics


1997SC16      Phys.Rev. C56, 679 (1997)

K.A.Scaldeferri, D.R.Phillips, C.-W.Kao, T.D.Cohen

Short-Range Interactions in an Effective Field Theory Approach for Nucleon-Nucleon Scattering

doi: 10.1103/PhysRevC.56.679
Citations: PlumX Metrics


1996PH01      Phys.Rev. C54, 507 (1996)

D.R.Phillips, S.J.Wallace

Relativistic Bound-State Equations in Three-Dimensions

doi: 10.1103/PhysRevC.54.507
Citations: PlumX Metrics


1996PH02      Phys.Rev. C54, 1542 (1996); Erratum Phys.Rev. C55, 3178 (1997)

D.R.Phillips, I.R.Afnan

Solving the Four-Dimensional NN-πNN Equations for Scalars below the Meson-Production Threshold

doi: 10.1103/PhysRevC.54.1542
Citations: PlumX Metrics


1996PH04      Ann.Phys.(New York) 247, 19 (1996)

D.R.Phillips, I.R.Afnan

Covariant Four-Dimensional Scattering Equations for the NN → πNN System

doi: 10.1006/aphy.1996.0037
Citations: PlumX Metrics


1995JA20      J.Radioanal.Nucl.Chem. 195, 263 (1995)

D.J.Jamriska, Sr., W.A.Taylor, M.A.Ott, R.C.Heaton, D.R.Phillips, M.M.Fowler

Activation Rates and Chemical Recovery of 67Cu Produced with Low Energy Proton Irradiation of Enriched 70Zn Targets

NUCLEAR REACTIONS 70Zn(p, α), E=18.1, 18.8 MeV; measured residual production rate.


Back to query form