NSR Query Results


Output year order : Descending
Format : Normal

NSR database version of April 27, 2024.

Search: Author = V.Durant

Found 7 matches.

Back to query form



2023CA17      Eur.Phys.J. A 59, 273 (2023)

P.Capel, D.R.Phillips, A.Andis, M.Bagnarol, B.Behzadmoghaddam, F.Bonaiti, R.Bubna, Y.Capitani, P.-Y.Duerinck, V.Durant, N.Dopper, A.El Boustani, R.Farrell, M.Geiger, M.Gennari, N.Goldberg, J.Herko, T.Kirchner, L.-P.Kubushishi, Z.Li, S.S.Li Muli, A.Long, B.Martin, K.Mohseni, I.Moumene, N.Paracone, E.Parnes, B.Romeo, V.Springer, I.Svensson, O.Thim, N.Yapa

Effective field theory analysis of the Coulomb breakup of the one-neutron halo nucleus 19C

NUCLEAR REACTIONS 208Pb(19C, X)18C, E=67 MeV/nucleon; analyzed available data; deduced σ(θ), σ(E) using NLO Halo-EFT 18C-n potentials. A Halo-EFT description of the projectile within the Coulomb Corrected Eikonal approximation (CCE).

doi: 10.1140/epja/s10050-023-01181-7
Citations: PlumX Metrics


2023HE04      Phys.Rev. C 107, 024310 (2023)

K.Hebeler, V.Durant, J.Hoppe, M.Heinz, A.Schwenk, J.Simonis, A.Tichai

Normal ordering of three-nucleon interactions for ab initio calculations of heavy nuclei

NUCLEAR STRUCTURE 18O, 48Ca, 78Ni, 132Sn, 208Pb; calculated ground-state energies. 132Sn, 208Pb; calculated charge radii. Jacobi normal-ordering (NO) framework to include three-nucleon (3N) interactions in ab initio many-body calculations up to heavy nuclei at the two-body operator level. Comparison to experimental data.

doi: 10.1103/PhysRevC.107.024310
Citations: PlumX Metrics


2022DU02      Phys.Rev. C 105, 014606 (2022)

V.Durant, P.Capel

α-nucleus optical potentials from chiral effective field theory NN interactions

NUCLEAR REACTIONS 4He(α, α), E=198.8, 280 MeV; 12C, 16O, 40,48Ca(α, α), E=104, 240 MeV; 120Sn(α, α), E=386 MeV; calculated elastic σ(E), σ(θ, E), σ(momentum transfer). 4He, 40Ca; calculated proton and charge density profiles. Double-folding method, with the chiral effective field theory nucleon-nucleon interactions at next-to-next-to-leading order combined with state-of-the-art nucleonic densities, and the imaginary part of the optical potential obtained from the real double folding interaction either through a proportionality constant or applying Kramers-Kronig dispersion relations. Comparison with available experimental data.

doi: 10.1103/PhysRevC.105.014606
Citations: PlumX Metrics


2022DU12      Phys.Rev. C 106, 044608 (2022)

V.Durant, P.Capel

10Be-nucleus optical potentials developed from chiral effective field theory NN interactions

NUCLEAR REACTIONS 208Pb(10Be, 10Be), E=127 MeV;64Zn(10Be, 10Be), E=28.3 MeV;12C(10Be, 10Be), E=595 MeV; calculated σ(θ). Calculations based on NN interactions developed within a chiral EFT framework with imaginary part of the optical potential constructed with the Kramers-Kronig relations (dispersion relations). Comparison to experimental data.

doi: 10.1103/PhysRevC.106.044608
Citations: PlumX Metrics


2020DU09      Phys.Rev. C 102, 014622 (2020)

V.Durant, P.Capel, A.Schwenk

Dispersion relations applied to double-folding potentials from chiral effective field theory

NUCLEAR REACTIONS 16O(16O, 16O), E=124, 250, 350, 480, 704 MeV; 12C(12C, 12C), E=159, 240, 300, 360, 1016 MeV; 16O(12C, 12C), E=76.4, 130, 230, 300, 608 MeV; calculated optical potentials, elastic scattering σ(E) as a function of momentum transfer, influence of nucleonic density on elastic scattering σ, and astrophysical S factors using double-folding method based on chiral effective field theory nucleon-nucleon interactions at next-to-next-to-leading (N2LO) order combined with dispersion relation constraints. Comparison with experimental data.

doi: 10.1103/PhysRevC.102.014622
Citations: PlumX Metrics


2018HU12      Phys.Rev. C 98, 044301 (2018)

L.Huth, V.Durant, J.Simonis, A.Schwenk

Shell-model interactions from chiral effective field theory

NUCLEAR STRUCTURE 18,19,20O, 19,21,22F, 21,23,24Ne, 24,26,28Mg, 26,28,29Al, 29,30,31Si, 32,33,35P, 32,33,35S, 34,35,37Cl, 36,37Ar, 38K; calculated levels, J, π for the chiral shell-model interactions at LO, NLO, and NLOvs, and compared to experimental, and USDA/USDB shell-model results.

doi: 10.1103/PhysRevC.98.044301
Citations: PlumX Metrics


2016VI03      Phys.Rev. C 94, 054006 (2016)

I.Vidana, A.Polls, V.Durant

Role of correlations in spin-polarized neutron matter

doi: 10.1103/PhysRevC.94.054006
Citations: PlumX Metrics


Back to query form