NSR Query Results


Output year order : Descending
Format : Normal

NSR database version of April 25, 2024.

Search: Author = E.Epelbaum

Found 150 matches.

    Showing 1 to 100.

   [Next]

Back to query form



2023GA07      Phys.Rev. C 107, 034001 (2023)

A.M.Gasparyan, E.Epelbaum

"Renormalization-group-invariant effective field theory" for few-nucleon systems is cutoff dependent

doi: 10.1103/PhysRevC.107.034001
Citations: PlumX Metrics


2023GA08      Phys.Rev. C 107, 044002 (2023)

A.M.Gasparyan, E.Epelbaum

Renormalization of nuclear chiral effective field theory with nonperturbative leading-order interactions

doi: 10.1103/PhysRevC.107.044002
Citations: PlumX Metrics


2023YI06      Phys.Rev. C 108, 034002 (2023)

P.Yin, X.L.Shang, J.N.Hu, J.Y.Fu, E.Epelbaum, W.Zuo

Pairing properties of semilocal coordinate- and momentum-space regularized chiral interactions

doi: 10.1103/PhysRevC.108.034002
Citations: PlumX Metrics


2022GA08      Phys.Rev. C 105, 024001 (2022)

A.M.Gasparyan, E.Epelbaum

Nucleon-nucleon interaction in chiral effective field theory with a finite cutoff: Explicit perturbative renormalization at next-to-leading order

doi: 10.1103/PhysRevC.105.024001
Citations: PlumX Metrics


2022GO15      Phys.Rev. C 106, 064003 (2022)

J.Golak, V.Urbanevych, R.Skibinski, H.Witala, K.Topolnicki, V.Baru, A.A.Filin, E.Epelbaum, H.Kamada, A.Nogga

Pion absorption from the lowest atomic orbital in 2H, 3H, and 3He

NUCLEAR REACTIONS 2H(π-, 2n), 3He(π-, nd), (π-, 2np), 3H(π-, 3n), E at rest; calculated single and double differential absorption rates, total absorption rates. Calculations using chiral LO single-nucleon and two-nucleon transition operators with consistent initial and final nuclear states obtained with the chiral nucleon-nucleon SMS potential up to N4LO+ augmented by the consistently regularized chiral N2LO three-nucleon potential. Comparison with previous theoretical predictions and experimental data.

doi: 10.1103/PhysRevC.106.064003
Citations: PlumX Metrics


2022MA63      Phys.Rev. C 106, 064002 (2022)

P.Maris, R.Roth, E.Epelbaum, R.J.Furnstahl, J.Golak, K.Hebeler, T.Huther, H.Kamada, H.Krebs, H.Le, Ulf-G.Meissner, J.A.Melendez, A.Nogga, P.Reinert, R.Skibinski, J.P.Vary, H.Witala, T.Wolfgruber

Nuclear properties with semilocal momentum-space regularized chiral interactions beyond N2LO

NUCLEAR STRUCTURE 14,16,18,20,22,24,26O, 40,48Ca; calculated ground-state energies, point-proton radii. 4,6,8He, 6Li, 10Be, 10,12B, 12C; calculated ground state energies. 10,12B, 12C; calculated low-lying levels, J, π. Chiral EFT calculations with semilocal momentum-space regularized NN potentials up to fourth leading order N4LO.

NUCLEAR REACTIONS 2H(n, X), E=70, 135, 200 MeV; calculated σ(E), σ(θ), vector- and tensor analyzing power. Comparison to experimental data.

doi: 10.1103/PhysRevC.106.064002
Citations: PlumX Metrics


2022RE12      Phys.Rev. C 106, 034001 (2022)

X.-L.Ren, E.Epelbaum, J.Gegelia

Nucleon-nucleon scattering up to next-to-next-to-leading order in manifestly Lorentz-invariant chiral effective field theory: Peripheral phases

NUCLEAR REACTIONS 1H(n, n), E<300 MeV; neutron-proton phase shifts and mixing angles for partial D, F, G, H, I waves. Time-ordered perturbation theory in the framework of manifestly Lorentz-invariant chiral effective field theory up to next-to-next-to-leading.

doi: 10.1103/PhysRevC.106.034001
Citations: PlumX Metrics


2022RI03      Phys.Rev. C 106, 025202 (2022)

N.Rijneveen, A.M.Gasparyan, H.Krebs, E.Epelbaum

Pion photoproduction in chiral perturbation theory with explicit treatment of the Δ(1232) resonance

NUCLEAR REACTIONS 1H(γ, π0p), √ sNN=1092-1214 GeV; calculated low-energy constants, s- and p-wave multipoles contributions to the pion photoproduction σ(E). Covariant chiral perturbation theory with explicit Δ(1232) degrees of freedom with errors from the truncation of the small-scale expansion estimated using Bayesian approach. Comparison with experimental data from MAMI-Mainz facility.

doi: 10.1103/PhysRevC.106.025202
Citations: PlumX Metrics


2022TE06      Few-Body Systems 63, 67 (2022)

I.Tews, Z.Davoudi, A.Ekstrom, J.D.Holt, K.Becker, R.Briceno, D.J.Dean, W.Detmold, C.Drischler, T.Duguet, E.Epelbaum, A.Gasparyan, J.Gegelia, J.R.Green, H.W.Griesshammer, A.D.Hanlon, M.Heinz, H.Hergert, M.Hoferichter, M.Illa, D.Kekejian, A.Kievsky, S.Konig, H.Krebs, K.D.Launey, D.Lee, P.Navratil, A.Nicholson, A.Parreno, D.R.Phillips, M.Ploszajczak, X.-L.Ren, T.R.Richardson, C.Robin, G.H.Sargsyan, M.J.Savage, M.R.Schindler, P.E.Shanahan, R.P.Springer, A.Tichai, U.van Kolck, M.L.Wagman, A.Walker-Loud, C.-J.Yang, X.Zhang

Nuclear Forces for Precision Nuclear Physics: A Collection of Perspectives

doi: 10.1007/s00601-022-01749-x
Citations: PlumX Metrics


2021FI01      Phys.Rev. C 103, 024313 (2021)

A.A.Filin, D.Moller, V.Baru, E.Epelbaum, H.Krebs, P.Reinert

High-accuracy calculation of the deuteron charge and quadrupole form factors in chiral effective field theory

NUCLEAR STRUCTURE 2H; calculated proton and neutron form factors, isoscalar nucleon electric and magnetic form factors, deuteron charge and quadrupole form factors calculated at N4LO, deuteron structure radius squared and deuteron quadrupole moment predicted at N4LO in χEFT using two-nucleon potentials and charge-density operators derived in chiral effective field theory. Comparison with experimental data, and with Particle Data Group evaluations.

doi: 10.1103/PhysRevC.103.024313
Citations: PlumX Metrics


2021LE13      Phys.Rev.Lett. 127, 062501 (2021)

D.Lee, S.Bogner, B.A.Brown, S.Elhatisari, E.Epelbaum, H.Hergert, M.Hjorth-Jensen, H.Krebs, N.Li, B.-N.Lu, U.-G.Meissner

Hidden Spin-Isospin Exchange Symmetry

doi: 10.1103/PhysRevLett.127.062501
Citations: PlumX Metrics


2021MA32      Phys.Rev. C 103, 054001 (2021)

P.Maris, E.Epelbaum, R.J.Furnstahl, J.Golak, K.Hebeler, T.Huther, H.Kamada, H.Krebs, Ulf-G.Meissner, J.A.Melendez, A.Nogga, P.Reinert, R.Roth, R.Skibinski, V.Soloviov, K.Topolnicki, J.P.Vary, Yu.Volkotrub, H.Witala, T.Wolfgruber, for the LENPIC Collaboration

Light nuclei with semilocal momentum-space regularized chiral interactions up to third order

NUCLEAR STRUCTURE 3H, 3,4,6,8He, 6,7,8,9Li, 8,10Be, 10,11,12,13B, 12,13,14C, 14,15N, 16O; calculated energies of ground and excited states, S(2n) for 6He and 6Li, α+d breakup up for 6Li, and 3α breakup for 12C, energies, wave functions and radii for 3H, 3,4He. Semilocal momentum-space (SMS) regularized two- and three-nucleon forces up to third chiral order (N2LO), with the two low-energy constants entering the three-body force determined from the triton binding energy and the differential cross-section minimum in elastic nucleon-deuteron scattering. Comparison with experimental data.

NUCLEAR REACTIONS 1H(polarized d, d), E=70, 140, 200, 270 MeV; 2H(p, d), (polarized p, d), E=65 MeV; calculated analyzing powers Ay(θ) and differential cross sections for elastic scattering using semilocal momentum-space (SMS) regularized two- and three-nucleon forces up to third chiral order (N2LO) three-nucleon force (3NF). Comparison with experimental data.

doi: 10.1103/PhysRevC.103.054001
Citations: PlumX Metrics


2021RE04      Phys.Rev.Lett. 126, 092501 (2021)

P.Reinert, H.Krebs, E.Epelbaum

Precision Determination of Pion-Nucleon Coupling Constants Using Effective Field Theory

doi: 10.1103/PhysRevLett.126.092501
Citations: PlumX Metrics


2021RI05      Phys.Rev. C 103, 045203 (2021)

J.Rijneveen, N.Rijneveen, H.Krebs, A.M.Gasparyan, E.Epelbaum

Radiative pion photoproduction in covariant chiral perturbation theory

NUCLEAR REACTIONS 1H(γ, pπ0γ), (polarized γ, pπ0γ), (γ, nπ+γ), (polarized γ, nπ+γ), E<200 MeV; calculated differential σ(E), convergence of the small-scale expansion and sensitivity to magnetic moment of Δ+, double differential σ(E, θ), polarization asymmetries. Covariant chiral perturbation theory with explicitΔ(1232) degrees of freedom, including contributions up to next-to-next-to-leading order, with errors from the truncation of the small-scale expansion estimated using Bayesian approach. Comparison with experimental data from MAMI-Mainz facility.

doi: 10.1103/PhysRevC.103.045203
Citations: PlumX Metrics


2021TH07      Phys.Rev. C 103, 035201 (2021)

M.Thurmann, E.Epelbaum, A.M.Gasparyan, H.Krebs

Nucleon polarizabilities in covariant baryon chiral perturbation theory with explicit Δ degrees of freedom

NUCLEAR STRUCTURE 1H, 1n; calculated nucleon spin-independent octupole, quadrupole dispersive, and higher dipole dispersive polarizabilities. Chiral perturbation theory, with explicit Δ(1232) degrees of freedom. Comparison with available experimental data, and with other theoretical results.

doi: 10.1103/PhysRevC.103.035201
Citations: PlumX Metrics


2021UR01      Phys.Rev. C 103, 024003 (2021)

V.Urbanevych, R.Skibinski, H.Witala, J.Golak, K.Topolnicki, A.Grassi, E.Epelbaum, H.Krebs

Application of a momentum-space semi-locally regularized chiral potential to selected disintegration processes

NUCLEAR REACTIONS 2H(γ, np), E=30, 100 MeV; 3He(γ, n2p), E=120 MeV; 2H(ν, npν), (ν-bar, npν-bar), (ν-bar, e+2n), E<200 MeV; calculated semi-inclusive and exclusive differential σ(E, θp) and photon and proton analyzing powers in photodisintegration of 2H and 3He, total σ(E) for electron neutrino and anti-neutrino disintegration of 2H using the fifth-order newest semilocal chiral nucleon-nucleon potentials. Comparison with results from Argonne V18 potential and an older chiral force, and with available experimental data.

doi: 10.1103/PhysRevC.103.024003
Citations: PlumX Metrics


2021WI04      Phys.Rev. C 104, 014002 (2021)

H.Witala, J.Golak, R.Skibinski, K.Topolnicki, E.Epelbaum, H.Krebs, P.Reinert

Comprehensive investigation of the symmetric space-star configuration in the nucleon-deuteron breakup

NUCLEAR REACTIONS 2H(n, 2n)1H, E=10.5, 13, 16, 19, 25, 65 MeV; 2H(n, np)1n, E=13, 65 MeV; analyzed available experimental data for double-differential cross sections from Bochum, Erlangen, TUNL, CIAE, Cologne, Fukuoka and PSI facilities for symmetric space star (SST) configurations using three-nucleon (3N) Faddeev equations based on two- and three-nucleon semi-phenomenological and four different chiral NN potentials including the most precise SMS N4LO+; predicted stable SST cross sections with respect to the underlying dynamics for incoming nucleon energies; discussed possible origins of discrepancies between theory and data in low-energy nd and pd SST breakup measurements.

doi: 10.1103/PhysRevC.104.014002
Citations: PlumX Metrics


2020EP01      Eur.Phys.J. A 56, 92 (2020)

E.Epelbaum, J.Golak, K.Hebeler, H.Kamada, H.Krebs, U.-G.Meissner, A.Nogga, P.Reinert, R.Skibinski, K.Topolnicki, Yu.Volkotrub, H.Witala

Towards high-order calculations of three-nucleon scattering in chiral effective field theory

doi: 10.1140/epja/s10050-020-00102-2
Citations: PlumX Metrics


2020EP02      Eur.Phys.J. A 56, 152 (2020)

E.Epelbaum, A.M.Gasparyan, J.Gegelia, Ulf-G.Meissner, X.-L.Ren

How to renormalize integral equations with singular potentials in effective field theory

doi: 10.1140/epja/s10050-020-00162-4
Citations: PlumX Metrics


2020FI03      Phys.Rev.Lett. 124, 082501 (2020)

A.A.Filin, V.Baru, E.Epelbaum, H.Krebs, D.Moller, P.Reinert

Extraction of the Neutron Charge Radius from a Precision Calculation of the Deuteron Structure Radius

NUCLEAR STRUCTURE 2H; calculated deuteron structure radius in chiral effective field theory.

doi: 10.1103/PhysRevLett.124.082501
Citations: PlumX Metrics


2020KR04      Phys.Rev. C 101, 055502 (2020)

H.Krebs, E.Epelbaum, U.-G.Meissner

Box diagram contribution to the axial two-nucleon current

doi: 10.1103/PhysRevC.101.055502
Citations: PlumX Metrics


2020KR10      Eur.Phys.J. A 56, 240 (2020)

H.Krebs, E.Epelbaum, U.-G.Meissner

Subleading contributions to the nuclear scalar isoscalar current

doi: 10.1140/epja/s10050-020-00249-y
Citations: PlumX Metrics


2020LA07      Eur.Phys.J. A 56, 89 (2020)

T.A.Lahde, U.G.Meissner, E.Epelbaum

An update on fine-tunings in the triple-alpha process

doi: 10.1140/epja/s10050-020-00093-0
Citations: PlumX Metrics


2020LU12      Phys.Rev.Lett. 125, 192502 (2020)

B.-N.Lu, N.Li, S.Elhatisari, D.Lee, J.E.Drut, T.A.Lahde, E.Epelbaum, U.G.Meissner

Ab Initio Nuclear Thermodynamics

doi: 10.1103/PhysRevLett.125.192502
Citations: PlumX Metrics


2020RE05      Phys.Rev. C 101, 034001 (2020)

X.-L.Ren, E.Epelbaum, J.Gegelia

Λ-nucleon scattering in baryon chiral perturbation theory

doi: 10.1103/PhysRevC.101.034001
Citations: PlumX Metrics


2019BO17      Phys.Rev. C 100, 064001 (2019)

L.Bovermann, E.Epelbaum, H.Krebs, D.Lee

Scattering phase shifts and mixing angles for an arbitrary number of coupled channels on the lattice

doi: 10.1103/PhysRevC.100.064001
Citations: PlumX Metrics


2019EP01      Phys.Rev. C 99, 024313 (2019)

E.Epelbaum, J.Golak, K.Hebeler, T.Huther, H.Kamada, H.Krebs, P.Maris, Ulf-G.Meissner, A.Nogga, R.Roth, R.Skibinski, K.Topolnicki, J.P.Vary, K.Vobig, H.Witala, for the LENPIC Collaboration

Few- and many-nucleon systems with semilocal coordinate-space regularized chiral two- and three-body forces

NUCLEAR REACTIONS 2H(n, n), E=14.1, 70, 108, 135, 250 MeV; analyzed differential σ(θ); deduced low energy coefficients; calculated differential σ(θ), neutron analyzing powers Ay(θ), and deuteron vector and tensor analyzing powers using chiral effective field theory with semilocal coordinate-space regularized two- and three-nucleon forces. Comparison with experimental data.

NUCLEAR STRUCTURE 4,6,8He, 6,7,8,9Li, 8,9,10Be, 10,11,12B, 12C, 16O; calculated ground state binding energies, and excitation energies using chiral N2LO interactions.

doi: 10.1103/PhysRevC.99.024313
Citations: PlumX Metrics


2019EP02      Eur.Phys.J. A 55, 56 (2019)

E.Epelbaum, A.M.Gasparyan, J.Gegelia, Ulf-G.Meissner

Reply to the Comment by Manuel Pavon Valderrama on "How (not) to renormalize integral equations with singular potentials in effective field theory"

doi: 10.1140/epja/i2019-12751-1
Citations: PlumX Metrics


2019LI31      Phys.Rev. C 99, 064001 (2019)

N.Li, S.Elhatisari, E.Epelbaum, D.Lee, B.Lu, U.-G.Meissner

Galilean invariance restoration on the lattice

NUCLEAR REACTIONS 1H(n, n), at relative momentum of 0-140 MeV/c; calculated dispersion relation, S-, P-, and D-wave neutron-proton scattering phase shifts, mixing angles as a function of relative momenta using chiral effective field theory with and without Galilean invariance restoration operators.

doi: 10.1103/PhysRevC.99.064001
Citations: PlumX Metrics


2018BI08      Phys.Rev. C 98, 014002 (2018)

S.Binder, A.Calci, E.Epelbaum, R.J.Furnstahl, J.Golak, K.Hebeler, T.Huther, H.Kamada, H.Krebs, P.Maris, Ulf-G.Meissner, A.Nogga, R.Roth, R.Skibinski, K.Topolnicki, J.P.Vary, K.Vobig, H.Witala, at the LENPIC Collaboration

Few-nucleon and many-nucleon systems with semilocal coordinate-space regularized chiral nucleon-nucleon forces

NUCLEAR REACTIONS 2H(n, n), E=5, 10, 14.1 MeV; 2H(n, 2np), E=13, 65 MeV; calculated differential σ(θ), Ay analyzing powers, nucleon and deuteron vector analyzing powers, phase shifts, polarization-transfer coefficient, breakup cross sections, and pd analyzing powers.

NUCLEAR STRUCTURE 3H, 3,4He, 6Li; calculated binding energies, ground-state energies of 4He and 6Li, proton rms radii. 3H, 4,6,8He, 6,7,8,9Li, 8,9Be, 10B, 16,24O, 40,48Ca; calculated ground state energies. 3H, 3He, 6,7,8,9Li, 7,9Be, 8,9,10B, 9C; calculated magnetic dipole moments. 16,24O, 40,48Ca; calculated charge radii. Faddeev-Yakubovsky equations, with no-core configuration interaction approach, coupled-cluster (CC) theory, and in-medium similarity renormalization group (IM-SRG)methods with SCS chiral nucleon-nucleon (NN) potentials. Comparison with experimental values, and with other theoretical predictions.

doi: 10.1103/PhysRevC.98.014002
Citations: PlumX Metrics


2018EP01      Eur.Phys.J. A 54, 186 (2018)

E.Epelbaum, A.M.Gasparyan, J.Gegelia, Ulf-G.Meissner

How (not) to renormalize integral equations with singular potentials in effective field theory

doi: 10.1140/epja/i2018-12632-1
Citations: PlumX Metrics


2018KR02      Phys.Rev. C 98, 014003 (2018)

H.Krebs, A.M.Gasparyan, E.Epelbaum

Three-nucleon force in chiral effective field theory with explicit Δ(1232) degrees of freedom: Longest-range contributions at fourth order

doi: 10.1103/PhysRevC.98.014003
Citations: PlumX Metrics


2018LI53      Phys.Rev. C 98, 044002 (2018)

N.Li, S.Elhatisari, E.Epelbaum, D.Lee, B.-N.Lu, U.-G.Meissner

Neutron-proton scattering with lattice chiral effective field theory at next-to-next-to-next-to-leading order

NUCLEAR STRUCTURE 2H; calculated neutron-proton scattering phase shifts and mixing angles versus relative momenta for different lattice spacings, properties of deuteron wave function and the s-wave effective range parameters, low-energy constants using ab initio lattice formulation of the chiral effective field theory for LO, NLO, N2LO and N3LO NN interactions. Comparison with empirical values.

doi: 10.1103/PhysRevC.98.044002
Citations: PlumX Metrics


2018RE10      Eur.Phys.J. A 54, 86 (2018)

P.Reinert, H.Krebs, E.Epelbaum

Semilocal momentum-space regularized chiral two-nucleon potentials up to fifth order

NUCLEAR REACTIONS 1H(p, p), (p, p'), E=144 MeV; calculated σ(θ) using N4Lo and N4Lo+; compared with data and with Nijmegen PWA (Partial Wave analysis); deduced redundance of some NN contact interactions currently used.

doi: 10.1140/epja/i2018-12516-4
Citations: PlumX Metrics


2017EL05      Phys.Rev.Lett. 119, 222505 (2017)

S.Elhatisari, E.Epelbaum, H.Krebs, T.A.Lahde, D.Lee, N.Li, B.-n.Lu, U.-G.Meissner, G.Rupak

Ab initio Calculations of the Isotopic Dependence of Nuclear Clustering

NUCLEAR STRUCTURE 12,14,16C; calculated proton and neutron densities for the ground states, spin-up proton probability distributions.

doi: 10.1103/PhysRevLett.119.222505
Citations: PlumX Metrics


2017EP01      Eur.Phys.J. A 53, 98 (2017)

E.Epelbaum, J.Gegelia, U.-G.Meissner, D.-L.Yao

Renormalization of the three-boson system with short-range interactions revisited

doi: 10.1140/epja/i2017-12288-3
Citations: PlumX Metrics


2017HU11      Phys.Rev. C 96, 034307 (2017)

J.Hu, Y.Zhang, E.Epelbaum, U.-G.Meissner, J.Meng

Nuclear matter properties with nucleon-nucleon forces up to fifth order in the chiral expansion

doi: 10.1103/PhysRevC.96.034307
Citations: PlumX Metrics


2017RO12      Phys.Rev.Lett. 118, 232502 (2017)

A.Rokash, E.Epelbaum, H.Krebs, D.Lee

Effective Forces Between Quantum Bound States

doi: 10.1103/PhysRevLett.118.232502
Citations: PlumX Metrics


2017SI25      Phys.Rev. C 96, 055205 (2017)

D.Siemens, V.Bernard, E.Epelbaum, A.M.Gasparyan, H.Krebs, Ulf-G.Meissner

Elastic and inelastic pion-nucleon scattering to fourth order in chiral perturbation theory

NUCLEAR REACTIONS 1H(π-, π0π0), (π-, π+π-), (π-, π0π-), (π+, π+π+), (π-, π+π0), Tπ<0.4 GeV; calculated pion-nucleon total cross sections, σ(θ, E), low-energy constants (LECs); deduced contributions of the Δ(1232) resonance. Chiral perturbation theory using heavy-baryon approach and covariant formulation, with extended on-mass-shell (EOMS) scheme. Comparison with experimental data.

doi: 10.1103/PhysRevC.96.055205
Citations: PlumX Metrics


2016BA27      Eur.Phys.J. A 52, 146 (2016)

V.Baru, E.Epelbaum, A.A.Filin, C.Hanhart, H.Krebs, F.Myhrer

Threshold pion production in proton-proton collisions at NNLO in chiral EFT

doi: 10.1140/epja/i2016-16146-6
Citations: PlumX Metrics


2016BA35      Phys.Rev. C 94, 014001 (2016)

V.Baru, E.Epelbaum, A.A.Filin

Low-energy theorems for nucleon-nucleon scattering at Mπ = 450 MeV

NUCLEAR REACTIONS 1H(n, n) at Mp=450 MeV; analyzed recent lattice QCD results for NN system obtained by the NPLQCD Collaboration; calculated neutron-proton phase shifts and the effective-range function for spin-triplet and spin-singlet channels, correlations between the inverse scattering length, effective range and the binding energy. Low-energy theorems (LET) for NN scattering along with the lattice-QCD results for the deuteron and dineutron binding energies from NPLQCD Collaboration.

doi: 10.1103/PhysRevC.94.014001
Citations: PlumX Metrics


2016BE30      Eur.Phys.J. A 52, 296 (2016)

J.Behrendt, E.Epelbaum, J.Gegelia, Ulf-G.Meissner, A.Nogga

Two-nucleon scattering in a modified Weinberg approach with a symmetry-preserving regularization

doi: 10.1140/epja/i2016-16296-5
Citations: PlumX Metrics


2016BI01      Eur.Phys.J. A 52, 26 (2016)

M.C.Birse, E.Epelbaum, J.Gegelia

New fixed points of the renormalisation group for two-body scattering

doi: 10.1140/epja/i2016-16026-1
Citations: PlumX Metrics


2016BI06      Phys.Rev. C 93, 044002 (2016)

S.Binder, A.Calci, E.Epelbaum, R.J.Furnstahl, J.Golak, K.Hebeler, H.Kamada, H.Krebs, J.Langhammer, S.Liebig, P.Maris, Ulf-G.Meissner, D.Minossi, A.Nogga, H.Potter, R.Roth, R.Skibinski, K.Topolnicki, J.P.Vary, H.Witala, for the LENPIC Collaboration

Few-nucleon systems with state-of-the-art chiral nucleon-nucleon forces

NUCLEAR STRUCTURE 3H, 4He, 6Li; calculated energies of ground-state and lowest two states, point-proton radius using improved NN chiral potentials LO, NLO, N2LO, N3LO and N4LO. Comparison with experimental data.

NUCLEAR REACTIONS 3H, 4He, 6Li(d, X), (polarized d, d), E=10, 70, 135, 200 MeV; total σ(E), differential cross section and tensor analyzing powers for elastic scattering based on NN chiral potentials LO, NLO, N2LO, N3LO and N4LO. Comparison with experimental data.

doi: 10.1103/PhysRevC.93.044002
Citations: PlumX Metrics


2016EL03      Phys.Rev.Lett. 117, 132501 (2016)

S.Elhatisari, N.Li, A.Rokash, J.M.Alarcon, D.Du, N.Klein, B.-n.Lu, U.-G.Meissner, E.Epelbaum, H.Krebs, Ti.A.Lahde, De.Lee, G.Rupak

Nuclear Binding Near a Quantum Phase Transition

NUCLEAR STRUCTURE 3H, 3,4He, 8Be, 12C, 16O, 20Ne; calculated ground state energies; deduced a first-order transition at zero temperature from a Bose-condensed gas of alpha particles to a nuclear liquid. Leading order (LO) nuclear interactions.

doi: 10.1103/PhysRevLett.117.132501
Citations: PlumX Metrics


2016SI17      Phys.Rev. C 94, 014620 (2016)

D.Siemens, V.Bernard, E.Epelbaum, A.Gasparyan, H.Krebs, Ulf-G.Meissner

Elastic pion-nucleon scattering in chiral perturbation theory: A fresh look

NUCLEAR REACTIONS 1H(π+, π+), E=50-150 MeV; analyzed σ(θ) data from GWU-SAID database using chiral perturbation theory up to fourth order within the heavy-baryon (HB) expansion and a covariant approach based on an extended on-mass-shell (EOMS) renormalization scheme; deduced phase shifts and compared with predictions from Roy-Steiner-equation analysis.

doi: 10.1103/PhysRevC.94.014620
Citations: PlumX Metrics


2016SK02      Phys.Rev. C 93, 064002 (2016)

R.Skibinski, J.Golak, K.Topolnicki, H.Witala, E.Epelbaum, H.Krebs, H.Kamada, Ulf-G.Meissner, A.Nogga

Testing semilocal chiral two-nucleon interaction in selected electroweak processes

NUCLEAR REACTIONS 2H(γ, np), E<80 MeV; calculated total σ(E). 2H(γ, np), E<150 MeV; calculated deuteron analyzing powers. 2H(γ, np), E=30, 100 MeV; calculated differential σ(qp) for LO, NLO, N2LO, N3LO, and N4LO chiral interactions. 2H(γ, np), E=2-4 MeV; calculated photon asymmetry as function of proton center-of-mass scattering angle. 2H(γ, np), E=19.8, 60.8 MeV; calculated photon asymmetry as function of neutron center-of-mass scattering angle. 2H(n, 3H), E=9.0 MeV; 2H(p, 3He), E=17.5, 29, 95 MEV; calculated differential σ(θ), deuteron analyzing power Ay(d). 3He(γ, p), E=40, 120 MeV; calculated differential σ(Ep, θ), three-body 3He photodisintegration rates. 2H(μ-, 2nν); 3He(μ-,3Hν); 3He(μ-, ndν); 3He(μ-, 2npν); calculated differential capture rates for two- and three-nucleon breakup channels, doublet and total capture rates. Single nucleon current (SNC+Siegert), and SNC+meson exchange currents (MEC) models using 3N Lippmann-Schwinger and Faddeev equations, Argonne V18 potential and improved chiral NN forces. Comparison with experimental data.

doi: 10.1103/PhysRevC.93.064002
Citations: PlumX Metrics


2016WI09      Few-Body Systems 57, 1213 (2016)

H.Witala, J.Golak, R.Skibinski, K.Topolnicki, E.Epelbaum, K.Hebeler, H.Kamada, H.Krebs, U.-G.Meissner, A.Nogga

Role of the Total Isospin 3/2 Component in Three-Nucleon Reactions

NUCLEAR REACTIONS 2H(n, n), E=13, 250 MeV; calculated σ(θ), σ(θ, E). Comparison with available data.

doi: 10.1007/s00601-016-1156-3
Citations: PlumX Metrics


2015BA28      Phys.Rev. C 92, 014001 (2015)

V.Baru, E.Epelbaum, A.A.Filin, J.Gegelia

Low-energy theorems for nucleon-nucleon scattering at unphysical pion masses

doi: 10.1103/PhysRevC.92.014001
Citations: PlumX Metrics


2015DJ03      Eur.Phys.J. A 51, 101 (2015)

D.Djukanovic, E.Epelbaum, J.Gegelia, H.Krebs, U.-G.Meissner

Complex-mass renormalization in hadronic EFT: Applicability at two-loop order

doi: 10.1140/epja/i2015-15101-5
Citations: PlumX Metrics


2015EL07      Nature(London) 528, 111 (2015)

S.Elhatisari, D.Lee, G.Rupak, E.Epelbaum, H.Krebs, T.A.Lahde, T.Luu, Ulf-G.Meissner

Ab initio alpha-alpha scattering

NUCLEAR REACTIONS 4He(α, α), (α, X), E<12 MeV; calculated phase shifts, wave functions. Comparison with experimental data, lattice Monte Carlo simulations.

doi: 10.1038/nature16067
Citations: PlumX Metrics


2015EP01      Eur.Phys.J. A 51, 26 (2015)

E.Epelbaum, A.M.Gasparyan, H.Krebs, C.Schat

Three-nucleon force at large distances: Insights from chiral effective field theory and the large-Nc expansion

doi: 10.1140/epja/i2015-15026-y
Citations: PlumX Metrics


2015EP02      Eur.Phys.J. A 51, 53 (2015)

E.Epelbaum, H.Krebs, U.-G.Meissner

Improved chiral nucleon-nucleon potential up to next-to-next-to-next-to-leading order

NUCLEAR STRUCTURE 2H; calculated D-to-S ratio, radius, quadrupole moment, D-state probability using various N3LO potentials and improved chiral potentials. Compared with other calculations and with data.

NUCLEAR REACTIONS 1H(n, n), E=50, 96, 143, 200 MeV; calculated total σ, σ(θ), polarization transfer coefficient, analyzing power, spin correlation parameter using LO, NLO, N2LO, N3LO with different cut-off. Compared to data.

doi: 10.1140/epja/i2015-15053-8
Citations: PlumX Metrics


2015EP03      Eur.Phys.J. A 51, 71 (2015)

E.Epelbaum, A.M.Gasparyan, J.Gegelia, H.Krebs

1S0 nucleon-nucleon scattering in the modified Weinberg approach

doi: 10.1140/epja/i2015-15071-6
Citations: PlumX Metrics


2015EP04      Phys.Rev.Lett. 115, 122301 (2015)

E.Epelbaum, H.Krebs, U.-G.Meissner

Precision Nucleon-Nucleon Potential at Fifth Order in the Chiral Expansion

doi: 10.1103/PhysRevLett.115.122301
Citations: PlumX Metrics


2015HE11      Phys.Rev. C 91, 044001 (2015)

K.Hebeler, H.Krebs, E.Epelbaum, J.Golak, R.Skibinski

Efficient calculation of chiral three-nucleon forces up to N3LO for ab initio studies

NUCLEAR STRUCTURE 3H; calculated matrix elements of chiral three-nucleon forces at next-to-next-to-leading-order and next-to-next-to-next-to-leading-order in large basis spaces, partial-wave contributions to the energy per particle to neutron matter, and contributions of the individual topologies to the triton energy for three different NN interactions. Relevance to ab initio studies of few-nucleon scattering processes, nuclei, and nuclear matter based on higher-order chiral three-nucleon forces.

doi: 10.1103/PhysRevC.91.044001
Citations: PlumX Metrics


2015LA16      Eur.Phys.J. A 51, 92 (2015)

T.A.Lahde, T.Luu, D.Lee, U.-G.Meissner, E.Epelbaum, H.Krebs, G.Rupak

Nuclear lattice simulations using symmetry-sign extrapolation

NUCLEAR STRUCTURE 6He, 6Be, 12C; calculated two-nucleon, three-nucleon forces shift for low energy levels using PMC (Projection Monte Carlo) with LO, NLO, EMIB and 3NF.

doi: 10.1140/epja/i2015-15092-1
Citations: PlumX Metrics


2015RO24      Phys.Rev. C 92, 054612 (2015)

A.Rokash, M.Pine, S.Elhatisari, D.Lee, E.Epelbaum, H.Krebs

Scattering cluster wave functions on the lattice using the adiabatic projection method

doi: 10.1103/PhysRevC.92.054612
Citations: PlumX Metrics


2014BA37      Few-Body Systems 55, 683 (2014)

B.L.G.Bakker, J.Carbonell, C.Elster, E.Epelbaum, N.Kalantar-Nayestanaki, J.-M.Richard

Panel Session on the Future of Few-Body Physics

doi: 10.1007/s00601-014-0821-7
Citations: PlumX Metrics


2014CI06      Few-Body Systems 55, 639 (2014)

I.Ciepal, B.Klos, St.Kistryn, E.Stephan, A.Biegun, K.Bodek, A.Deltuva, E.Epelbaum, M.Eslami-Kalantari, A.C.Fonseca, J.Golak, V.Jha, N.Kalantar-Nayestanaki, H.Kamada, G.Khatri, Da.Kirillov, Di.Kirillov, St.Kliczewski, A.Kozela, M.Kravcikova, H.Machner, A.Magiera, G.Martinska, J.Messchendorp, A.Nogga, W.Parol, A.Ramazani-Moghaddam-Arani, B.J.Roy, H.Sakai, K.Sekiguchi, I.Sitnik, R.Siudak, R.Skibinski, R.Sworst, J.Urban, H.Witala, J.Zejma

Investigation of the Three-Nucleon System Dynamics in the Deuteron-Proton Breakup Reaction

NUCLEAR REACTIONS 1H(d, 2p), E=100, 130 MeV; measured reaction products, Ep, Ip; deduced σ, σ(θ). Comparison with available data.

doi: 10.1007/s00601-014-0841-3
Citations: PlumX Metrics


2014EP01      Phys.Rev.Lett. 112, 102501 (2014)

E.Epelbaum, H.Krebs, T.A.Lahde, D.Lee, Ulf-G.Meissner, G.Rupak

Ab Initio Calculation of the Spectrum and Structure of 16O

NUCLEAR STRUCTURE 16O; calculated lowest energy even-parity states, J, π, charge radius, quadrupole moments, B(E2), M(E0). Comparison with experimental data.

doi: 10.1103/PhysRevLett.112.102501
Citations: PlumX Metrics


2014EP02      Eur.Phys.J. A 50, 51 (2014)

E.Epelbaum, A.M.Gasparyan, J.Gegelia, M.R.Schindler

Deuteron electromagnetic form factors in a renormalizable formulation of chiral effective field theory

NUCLEAR STRUCTURE 2H; calculated Coulomb, magnetic and quadrupole form factors using renormalizable chiral effective field theory.

doi: 10.1140/epja/i2014-14051-8
Citations: PlumX Metrics


2014EP04      Few-Body Systems 55, 967 (2014)

E.Epelbaum, A.M.Gasparyan, J.Gegelia, M.R.Schindler

Renormalizable Chiral EFT for NN Scattering

doi: 10.1007/s00601-013-0763-5
Citations: PlumX Metrics


2014GE06      Phys.Rev. C 90, 054323 (2014)

A.Gezerlis, I.Tews, E.Epelbaum, M.Freunek, S.Gandolfi, K.Hebeler, A.Nogga, A.Schwenk

Local chiral effective field theory interactions and quantum Monte Carlo applications

NUCLEAR STRUCTURE 2H; calculated binding energy, quadrupole moment, magnetic moment, asymptotic D/S ratio, rms radius, asymptotic s-wave factor, and the d-state probability using the local chiral potentials. Calculated ground-state energy for a 66-neutron matter system. Local chiral effective field theory interactions to next-to-next-to-leading order and Monte Carlo calculations for neutron matter.

doi: 10.1103/PhysRevC.90.054323
Citations: PlumX Metrics


2014GO30      Eur.Phys.J. A 50, 177 (2014)

J.Golak, R.Skibinski, K.Topolnicki, H.Witala, E.Epelbaum, H.Krebs, H.Kamada, Ulf-G.Meissner, V.Bernard, P.Maris, J.Vary, S.Binder, A.Calci, K.Hebeler, J.Langhammer, R.Roth, A.Nogga, S.Liebig, D.Minossi

Low-energy neutron-deuteron reactions with N3LO chiral forces

NUCLEAR REACTIONS 2H(n, n), E=6.5, 10 MeV; calculated analyzing power. 2H(n, x), E=13.0 MeV; calculated σ(θ). Three-nucleon Faddeev equations with different N3LO chiral forces. Compared to data.

doi: 10.1140/epja/i2014-14177-7
Citations: PlumX Metrics


2014LY02      Phys.Rev.Lett. 113, 192501 (2014)

J.E.Lynn, J.Carlson, E.Epelbaum, S.Gandolfi, A.Gezerlis, A.Schwenk

Quantum Monte Carlo Calculations of Light Nuclei Using Chiral Potentials

NUCLEAR STRUCTURE 3,4He, 2,3H; calculated one- and two-body proton distributions, nuclear radii, binding energies; deduced the necessity of a three-body force.

doi: 10.1103/PhysRevLett.113.192501
Citations: PlumX Metrics


2014RO01      J.Phys.(London) G41, 015105 (2014)

A.Rokash, E.Epelbaum, H.Krebs, D.Lee, U.-G.Meissner

Finite volume effects in low-energy neutron-deuteron scattering

doi: 10.1088/0954-3899/41/1/015105
Citations: PlumX Metrics


2014SI13      Phys.Rev. C 89, 065211 (2014)

D.Siemens, V.Bernard, E.Epelbaum, H.Krebs, Ulf-G.Meissner

The reaction πN → ππN in chiral effective field theory with explicit Δ(1232) degrees of freedom

doi: 10.1103/PhysRevC.89.065211
Citations: PlumX Metrics


2013DE36      Eur.Phys.J. A 49, 149 (2013)

J.de Vries, U.-G.Meissner, E.Epelbaum, N.Kaiser

Parity violation in proton-proton scattering from chiral effective field theory

NUCLEAR REACTIONS 1H(p, p), (p, p'), E≈0-300 MeV; calculated parity-violating longitudinal analyzing power using effective field theory; deduced constants of parity-odd nucleon-nucleon interaction potential. Suggestion for experiment.

doi: 10.1140/epja/i2013-13149-9
Citations: PlumX Metrics


2013EP01      Phys.Rev.Lett. 110, 112502 (2013)

E.Epelbaum, H.Krebs, T.A.Lahde, D.Lee, U.-G.Meissner

Viability of Carbon-Based Life as a Function of the Light Quark Mass

NUCLEAR REACTIONS 8Be(α, X)12C, E not given; calculated triple-alpha process parameters; deduced correlations, limits. ab initio lattice calculations.

doi: 10.1103/PhysRevLett.110.112502
Citations: PlumX Metrics


2013EP02      Eur.Phys.J. A 49, 82 (2013)

E.Epelbaum, H.Krebs, T.A.Lahde, D.Lee, U.-G.Meissner

Dependence of the triple-alpha process on the fundamental constants of nature

NUCLEAR STRUCTURE 4He, 8Be, 12C; calculated ground state energies, mass excess and 12C Hoyle state energy using ab-initio lattice chiral EFT (effective field theory).

doi: 10.1140/epja/i2013-13082-y
Citations: PlumX Metrics


2013FI10      Phys.Rev. C 88, 064003 (2013)

A.A.Filin, V.Baru, E.Epelbaum, H.Krebs, C.Hanhart, F.Myhrer

Pion production in nucleon-nucleon collisions in chiral effective field theory with Δ(1232) degrees of freedom

doi: 10.1103/PhysRevC.88.064003
Citations: PlumX Metrics


2013GA39      Eur.Phys.J. A 49, 115 (2013)

A.M.Gasparyan, M.F.M.Lutz, E.Epelbaum

Two-nucleon scattering: Merging chiral effective field theory with dispersion relations

doi: 10.1140/epja/i2013-13115-7
Citations: PlumX Metrics


2013GE03      Phys.Rev.Lett. 111, 032501 (2013)

A.Gezerlis, I.Tews, E.Epelbaum, S.Gandolfi, K.Hebeler, A.Nogga, A.Schwenk

Quantum Monte Carlo Calculations with Chiral Effective Field Theory Interactions

doi: 10.1103/PhysRevLett.111.032501
Citations: PlumX Metrics


2013KL01      Acta Phys.Pol. B44, 345 (2013)

B.Klos, I.Ciepal, St.Kistryn, E.Stephan, A.Biegun, K.Bodek, A.Deltuva, E.Epelbaum, M.Eslami-Kalantari, A.C.Fonseca, J.Golak, B.Jamroz, V.Jha, N.Kalantar-Nayestanaki, H.Kamada, G.Khatri, Da.Kirillov, Di.Kirillov, St.Kliczewski, A.Kozela, M.Kravcikova, H.Machner, A.Magiera, G.Martinska, J.Messchendorp, A.Nogga, W.Parol, A.Ramazani-Moghaddam-Arani, B.J.Roy, H.Sakai, K.Sekiguchi, I.Sitnik, R.Siudak, R.Skibinski, R.Sworst, J.Urban, H.Witala, A.Wronska, J.Zejma

Systematic Studies of the Three-nucleon System Dynamics in the Deuteron-Proton Breakup Reaction

NUCLEAR REACTIONS 1H(pol d, 2p), E=100, 130, 160 MeV; analyzed available data; deduced 3N system dynamics, 3NF effects.

doi: 10.5506/APhysPolB.44.345
Citations: PlumX Metrics


2013KR04      Phys.Rev. C 87, 054007 (2013)

H.Krebs, A.Gasparyan, E.Epelbaum

Chiral three-nucleon force at N4LO. II. Intermediate-range contributions

doi: 10.1103/PhysRevC.87.054007
Citations: PlumX Metrics


2013LE06      Eur.Phys.J. A 49, 20 (2013)

M.Lenkewitz, E.Epelbaum, H.-W.Hammer, U.-G.Meissner

Threshold neutral pion photoproduction off the tri-nucleon to O(q4)

doi: 10.1140/epja/i2013-13020-1
Citations: PlumX Metrics


2012BA24      Eur.Phys.J. A 48, 69 (2012)

V.Baru, E.Epelbaum, C.Hanhart, M.Hoferichter and A.E.Kudryavtsev, D.R.Phillips

The multiple-scattering series in pion-deuteron scattering and the nucleon-nucleon potential: perspectives from effective field theory

doi: 10.1140/epja/i2012-12069-6
Citations: PlumX Metrics


2012CI01      Phys.Rev. C 85, 017001 (2012)

I.Ciepal, St.Kistryn, E.Stephan, A.Biegun, K.Bodek, A.Deltuva, E.Epelbaum, M.Eslami-Kalantari, A.Fonseca, J.Golak, V.Jha, N.Kalantar-Nayestanaki, H.Kamada, G.Khatri, Da.Kirillov, Di.Kirillov, M.Kis, St.Kliczewski, B.Klos, A.Kozela, M.Kravcikova, M.Lesiak, H.Machner, A.Magiera, G.Martinska, J.Messchendorp, A.Nogga, W.Parol, A.Ramazani-Moghaddam-Arani, B.J.Roy, H.Sakai, K.Sekiguchi, I.Sitnik, R.Siudak, R.Skibinski, R.Sworst, J.Urban, H.Witala, A.Wronska, J.Zejma

Vector analyzing powers of deuteron-proton elastic scattering and breakup at 130 MeV

NUCLEAR REACTIONS 1H(polarized d, d), (polarized d, 2p), E=130 MeV; measured Ep, Ip, Ed, Id, pp-coin, vector analyzing powers of the elastic reaction iT11 and breakup process; deduced effects of three nucleon force and Coulomb interaction. COSY accelerator and GwWall detector at Julich. Comparison with theoretical predictions from realistic NN potential, NN potential combined with a three-nucleon force model, and ChPT framework.

doi: 10.1103/PhysRevC.85.017001
Citations: PlumX Metrics

Data from this article have been entered in the EXFOR database. For more information, access X4 datasetO1974.


2012EP01      Phys.Rev.Lett. 109, 252501 (2012)

E.Epelbaum, H.Krebs, T.A.Lahde, D.Lee, Ulf.-G.Meissner

Structure and Rotations of the Hoyle State

NUCLEAR STRUCTURE 12C, 4He, 8Be; calculated structure of Hoyle state, B(E2), J, π. ab initio lattice calculations, comparison with available data.

doi: 10.1103/PhysRevLett.109.252501
Citations: PlumX Metrics


2012FI05      Phys.Rev. C 85, 054001 (2012)

A.A.Filin, V.Baru, E.Epelbaum, H.Krebs, C.Hanhart, A.E.Kudryavtsev, F.Myhrer

Pion production in nucleon-nucleon collisions in chiral effective field theory: Next-to-next-to-leading order contributions

doi: 10.1103/PhysRevC.85.054001
Citations: PlumX Metrics


2012KO35      Phys.Rev. C 86, 047001 (2012)

S.Kolling, E.Epelbaum, D.R.Phillips

Magnetic form factor of the deuteron in chiral effective field theory

doi: 10.1103/PhysRevC.86.047001
Citations: PlumX Metrics


2012KR06      Phys.Rev. C 85, 054006 (2012)

H.Krebs, A.Gasparyan, E.Epelbaum

Chiral three-nucleon force at N4LO: Longest-range contributions

doi: 10.1103/PhysRevC.85.054006
Citations: PlumX Metrics


2011BE44      Phys.Rev. C 84, 054001 (2011)

V.Bernard, E.Epelbaum, H.Krebs, U.-G.Meissner

Subleading contributions to the chiral three-nucleon force. II. Short-range terms and relativistic corrections

doi: 10.1103/PhysRevC.84.054001
Citations: PlumX Metrics


2011EP01      Phys.Rev.Lett. 106, 192501 (2011)

E.Epelbaum, H.Krebs, D.Lee, U.-G.Meissner

Ab Initio Calculation of the Hoyle State

NUCLEAR STRUCTURE 4He, 8Be, 12C; calculated ground state energies, J, π, radial distribution function for the ground and Hoyle states; deduced Hoyle state as a resonance with spin zero and positive parity. Lattice effective theory.

doi: 10.1103/PhysRevLett.106.192501
Citations: PlumX Metrics


2011KO51      Phys.Rev. C 84, 054008 (2011)

S.Kolling, E.Epelbaum, H.Krebs, U.-G.Meissner

Two-nucleon electromagnetic current in chiral effective field theory: One-pion exchange and short-range contributions

doi: 10.1103/PhysRevC.84.054008
Citations: PlumX Metrics


2011RO19      Phys.Rev. C 83, 064004 (2011)

D.Rozpedzik, J.Golak, S.Kolling, E.Epelbaum, R.Skibinski, H.Witala, H.Krebs

Signatures of the chiral two-pion exchange electromagnetic currents in the 2H and 3He photodisintegration reactions

NUCLEAR REACTIONS 2H(γ, n)p, E=10, 30, 60 MeV; calculated unpolarized differential cross section, total σ(E), photon and proton analyzing powers, deuteron tensor analyzing powers. 3He(γ, p)np, E=20, 20.5, 50 MeV; calculated differential cross sections, analyzing powers for photons, spin correlation coefficients. Long-range two-pion exchange (TPE) contributions in the framework of Chiral effective field theory (ChEFT) using five different parameterization of the next-to-next-to leading order (N2LO) nucleon-nucleon (NN) potential. Comparison with experimental data.

doi: 10.1103/PhysRevC.83.064004
Citations: PlumX Metrics


2011SK08      Phys.Rev. C 84, 054005 (2011)

R.Skibinski, J.Golak, K.Topolnicki, H.Witala, E.Epelbaum, W.Glockle, H.Krebs, A.Nogga, H.Kamada

Triton with long-range chiral N3LO three-nucleon forces

NUCLEAR STRUCTURE 3H; calculated Long-range contributions to the three-nucleon force (3NF) matrix elements, expectation values for 3NF contributions, two-body correlation function. Chiral effective-field theory with N3LO, Faddeev calculations.

doi: 10.1103/PhysRevC.84.054005
Citations: PlumX Metrics


2010EP01      Phys.Rev.Lett. 104, 142501 (2010)

E.Epelbaum, H.Krebs, D.Lee, U.-G.Meissner

Lattice Effective Field Theory Calculations for A = 3, 4, 6, 12 Nuclei

NUCLEAR STRUCTURE 3H, 3,4He, 6Li, 12C; calculated ground state energies.

doi: 10.1103/PhysRevLett.104.142501
Citations: PlumX Metrics


2010EP02      Eur.Phys.J. A 45, 335 (2010)

E.Epelbaum, H.Krebs, D.Lee, U.-G.Meissner

Lattice calculations for A = 3, 4, 6, 12 nuclei using chiral effective field theory

NUCLEAR STRUCTURE 3H, 3,4He, 6Li, 12C; calculated mass e xcess using chiral effective field theory on lattice.

doi: 10.1140/epja/i2010-11009-x
Citations: PlumX Metrics


2010GO17      Eur.Phys.J. A 43, 241 (2010)

J.Golak, D.Rozpedzik, R.Skibinski, K.Topolnicki, H.Witala, W.Glockle, A.Nogga, E.Epelbaum, H.Kamada, Ch.Elster, I.Fachruddin

A new way to perform partial-wave decompositions of few-nucleon forces

doi: 10.1140/epja/i2009-10903-6
Citations: PlumX Metrics


2010ST08      Phys.Rev. C 82, 014003 (2010)

E.Stephan, St.Kistryn, R.Sworst, A.Biegun, K.Bodek, I.Ciepal, A.Deltuva, E.Epelbaum, A.C.Fonseca, J.Golak, N.Kalantar-Nayestanaki, H.Kamada, M.Kis, B.Klos, A.Kozela, M.Mahjour-Shafiei, A.Micherdzinska, A.Nogga, R.Skibinski, H.Witala, A.Wronska, J.Zejma, W.Zipper

Vector and tensor analyzing powers in deuteron-proton breakup at 130 MeV

NUCLEAR REACTIONS 1H(polarized d, 2p), E=130 MeV; measured proton and deuteron spectra, vector and tensor analyzing powers; deduced asymmetry distributions. Vector- and tensor-polarized deuteron beam. Comparison with coupled-channels calculations and with Chiral perturbed theory.

doi: 10.1103/PhysRevC.82.014003
Citations: PlumX Metrics


2009BA46      Phys.Rev. C 80, 044003 (2009)

V.Baru, E.Epelbaum, J.Haidenbauer, C.Hanhart, A.E.Kudryavtsev, V.Lensky, U.-G.Meissner

p-wave pion production from nucleon-nucleon collisions

NUCLEAR REACTIONS 1H(n, 2pπ-), 1H(p, npπ+), 1H(p, dπ+), E not given; calculated analyzing powers, angular distributions, and σ(θ) using chiral effective field theory. Comparison with experimental data.

doi: 10.1103/PhysRevC.80.044003
Citations: PlumX Metrics


2009BA57      Eur.Phys.J. A 42, 111 (2009)

V.Baru, E.Epelbaum, A.Rusetsky

The role of nucleon recoil in low-energy antikaon-deuteron scattering

doi: 10.1140/epja/i2009-10845-y
Citations: PlumX Metrics


2009EP01      Nucl.Phys. A827, 216c (2009)

E.Epelbaum

Chiral dynamics in nuclei

doi: 10.1016/j.nuclphysa.2009.05.041
Citations: PlumX Metrics


2009EP02      Eur.Phys.J. A 40, 199 (2009)

E.Epelbaum, H.Krebs, D.Lee, U.-G.Meissner

Ground-state energy of dilute neutron matter at next-to-leading order in lattice chiral effective field theory

doi: 10.1140/epja/i2009-10755-0
Citations: PlumX Metrics


2009EP03      Eur.Phys.J. A 41, 125 (2009)

E.Epelbaum, H.Krebs, D.Lee, U.-G.Meissner

Lattice chiral effective field theory with three-body interactions at next-to-next-to-leading order

doi: 10.1140/epja/i2009-10764-y
Citations: PlumX Metrics


2009EP04      Eur.Phys.J. A 41, 341 (2009)

E.Epelbaum, J.Gegelia

Regularization, renormalization and "peratization" in effective field theory for two nucleons

doi: 10.1140/epja/i2009-10833-3
Citations: PlumX Metrics


2009KO28      Phys.Rev. C 80, 045502 (2009)

S.Kolling, E.Epelbaum, H.Krebs, U.-G.Meissner

Two-pion exchange electromagnetic current in chiral effective field theory using the method of unitary transformation

doi: 10.1103/PhysRevC.80.045502
Citations: PlumX Metrics


2009KR06      Phys.Rev. C 80, 028201 (2009)

H.Krebs, E.Epelbaum, Ulf-G.Meissner

On-shell consistency of the Rarita-Schwinger field formulation

doi: 10.1103/PhysRevC.80.028201
Citations: PlumX Metrics


Back to query form    [Next]