NSR Query Results


Output year order : Descending
Format : Normal

NSR database version of April 26, 2024.

Search: Author = H.W.Hammer

Found 89 matches.

Back to query form



2024KI05      Few-Body Systems 65, 29 (2024)

T.Kirchner, W.Elkamhawy, H.-W.Hammer

Entanglement in Few-Nucleon Scattering Events

NUCLEAR REACTIONS 2H(d, d), E not given; analyzed available data; deduced s-wave contribution to the entanglement power through the phase shifts using the resonating group model (RGM) calculations for the AV18+Urbana-IX and Bonn potentials.

doi: 10.1007/s00601-024-01897-2
Citations: PlumX Metrics


2023EB04      Few-Body Systems 64, 87 (2023)

M.Ebert, H.-W.Hammer, A.Rusetsky

An Alternative Scheme for Pionless EFT: Neutron-Deuteron Scattering in the Doublet S-Wave

NUCLEAR REACTIONS 2H(n, n), E<100 MeV; analyzed available data; deduced the real and imaginary parts of the neutron-deuteron phase shift.

doi: 10.1007/s00601-023-01867-0
Citations: PlumX Metrics


2023EL01      J.Phys.(London) G50, 025103 (2023)

W.Elkamhawy, H.-W.Hammer

Halo EFT for 31Ne in a spherical formalism

NUCLEAR STRUCTURE 30,31Ne; calculated B(E1), σ(E), electromagnetic properties using Halo EFT. Comparison with available data.

doi: 10.1088/1361-6471/aca923
Citations: PlumX Metrics


2023EL03      Phys.Rev. C 108, 015501 (2023)

W.Elkamhawy, H.-W.Hammer, L.Platter

Weak decay of halo nuclei

RADIOACTIVITY 11Be(β-p); calculated differential decay rate for β-delayed proton emission as a function of the final-state particle energy, partial decay rate as a function of the resonance energy, branching ratios, logft. Cluster effective field theory for halo nuclei considering direct decay into the continuum and resonant final state interactions between the proton and the core. Comparison to previous theoretical estimations and available experimental data.

doi: 10.1103/PhysRevC.108.015501
Citations: PlumX Metrics


2023GO01      Phys.Rev. C 107, 014617 (2023)

M.Gobel, B.Acharya, H.-W.Hammer, D.R.Phillips

Final-state interactions and spin structure in E1 breakup of 11Li in halo effective field theory

NUCLEAR STRUCTURE 11Li; charge radii, mean-square neutron charge radius, calculated E1 strength distribution with inclusion of final state interactions in neutron-neutron and neutron-core channels, cumulative B(E1). Halo effective field theory (Halo EFT) at leading order treating 11Li as three-body system 9Li+n+n. Comparison to experimental data.

doi: 10.1103/PhysRevC.107.014617
Citations: PlumX Metrics


2023HI07      Eur.Phys.J. A 59, 280 (2023)

F.Hildenbrand, H.-W.Hammer

Pionic final state interactions and the hypertriton lifetime

RADIOACTIVITY 3H(π-); analyzed available data; deduced good approximation for the hypertriton decay T1/2.

doi: 10.1140/epja/s10050-023-01197-z
Citations: PlumX Metrics


2023LI16      Eur.Phys.J. A 59, 54 (2023)

Y.-H.Lin, H.-W.Hammer, U.-G.Meissner

The electromagnetic Sigma-to-Lambda transition form factors with coupled-channel effects in the space-like region

doi: 10.1140/epja/s10050-023-00973-1
Citations: PlumX Metrics


2023VE01      Eur.Phys.J. A 59, 139 (2023)

S.Velardita, H.Alvarez-Pol, T.Aumann, Y.Ayyad, M.Duer, H.-W.Hammer, L.Ji, A.Obertelli, Y.Sun

Method to evidence hypernuclear halos from a two-target interaction cross section measurement

RADIOACTIVITY 3H(π-) [from 12C(12C, X)3H, E=1.9 GeV/nucleon]; measured decay products; deduced interaction σ of hypernuclei with a target nucleus via a two-target measurement. R3B (GSI/FAIR).

doi: 10.1140/epja/s10050-023-01050-3
Citations: PlumX Metrics


2023ZH45      Phys.Rev. C 108, 044304 (2023)

X.Zhang, H.-L.Fu, F.-K.Guo, H.-W.Hammer

Neutron scattering off one-neutron halo nuclei in halo effective field theory

doi: 10.1103/PhysRevC.108.044304
Citations: PlumX Metrics


2022CA01      Phys.Lett. B 825, 136847 (2022)

P.Capel, D.R.Phillips, H.-W.Hammer

Simulating core excitation in breakup reactions of halo nuclei using an effective three-body force

NUCLEAR REACTIONS 12C(11Be, X)10Be, E=67 MeV/nucleon; analyzed available data; deduced breakup σ(E), σ(θ), resonances using Halo Effective Field Theory and the Dynamical Eikonal Approximation to include an effective 10Be-n-target force.

doi: 10.1016/j.physletb.2021.136847
Citations: PlumX Metrics


2022DI03      Phys.Rev. C 105, 064002 (2022)

S.Dietz, H.-W.Hammer, S.Konig, A.Schwenk

Three-body resonances in pionless effective field theory

NUCLEAR STRUCTURE 3NN; calculated hypothetical energy levels, J, π, resonances. Calculations using pionless effective field theory at leading order with Fadeev equations and complemented by finite volume method. Comparison to other calculations obtained in different approaches. Existence of low-energy resonance not confirmed.

doi: 10.1103/PhysRevC.105.064002
Citations: PlumX Metrics


2021EB02      Eur.Phys.J. A 57, 332 (2021)

M.Ebert, H.-W.Hammer, A.Rusetsky

An alternative scheme for effective range corrections in pionless EFT

doi: 10.1140/epja/s10050-021-00637-y
Citations: PlumX Metrics


2021EL08      Phys.Lett. B 821, 136610 (2021)

W.Elkamhawy, Z.Yang, H.-W.Hammer, L.Platter

β-delayed proton emission from 11Be in effective field theory

RADIOACTIVITY 11Be(β-p); calculated decay rate, branching ratios using Halo effective field theory. Comparison with experimental data.

doi: 10.1016/j.physletb.2021.136610
Citations: PlumX Metrics


2021FU10      Few-Body Systems 62, 72 (2021)

R.J.Furnstahl, H.-W.Hammer, A.Schwenk

Nuclear Structure at the Crossroads

doi: 10.1007/s00601-021-01658-5
Citations: PlumX Metrics


2021GO20      Phys.Rev. C 104, 024001 (2021)

M.Gobel, T.Aumann, C.A.Bertulani, T.Frederico, H.-W.Hammer, D.R.Phillips

Neutron-neutron scattering length from the 6He (p, pα) nn reaction

NUCLEAR REACTIONS 2H(π-, γ), (n, p), (d, 2He)2n, E not given; compiled experimental data for neutron-neutron scattering lengths reported between 1998 and 2008. 1H(6He, pα)2n, E=few MeV/nucleon; calculated ground-state nn relative-energy distributions for different nn scattering lengths using halo effective field theory (EFT), s-wave scattering length using a method based on the final-state interaction (FSI) between the neutrons after the sudden knockout of the α particle. Comparison with model calculations using the computer code FaCE. Proposed a novel method to measure the neutron-neutron scattering length in inverse kinematics. Relevance to precise determination of the nn scattering length using data from the approved experiment at RIKEN using the 1H(6He, pα)nn reaction.

doi: 10.1103/PhysRevC.104.024001
Citations: PlumX Metrics


2021LI52      Eur.Phys.J. A 57, 255 (2021)

Y.-H.Lin, H.-W.Hammer, U.-G.Meissner

Dispersion-theoretical analysis of the electromagnetic form factors of the nucleon: Past, present and future

doi: 10.1140/epja/s10050-021-00562-0
Citations: PlumX Metrics


2020HI10      Phys.Rev. C 102, 064002 (2020)

F.Hildenbrand, H.-W.Hammer

Lifetime of the hypertriton

NUCLEAR STRUCTURE 3H; calculated half-life of the decay of hypertriton and partial decay widths as a function of the separation energy BΛ in pionless effective field theory (EFT) with Λ, nucleon and deuteron degrees of freedom. Comparison with experimental data. Discussed impact of new measurements on the weak decay parameter of the Λ hyperon.

COMPILATION 3H; compiled experimental results for half-life of hypertriton from 1964 to 2019, and the evaluated data from Particle Data Group (PDG).

doi: 10.1103/PhysRevC.102.064002
Citations: PlumX Metrics


2019BR24      J.Phys.(London) G46, 115101 (2019)

J.Braun, W.Elkamhawy, R.Roth, H.-W.Hammer

Electric structure of shallow D-wave states in Halo EFT

NUCLEAR STRUCTURE 15C; calculated electric form factors of one-neutron halo nuclei with shallow D-wave states up to next-to-leading order and the E2 transition, B(E2). Comparison with available data.

doi: 10.1088/1361-6471/ab368f
Citations: PlumX Metrics


2019HI08      Phys.Rev. C 100, 034002 (2019);Erratum Phys.Rev. C 102, 039901 (2020)

F.Hildenbrand, H.-W.Hammer

Three-body hypernuclei in pionless effective field theory

NUCLEAR STRUCTURE 3H, 3n; calculated structure of three-body hypernuclei with S=-1 using pionless effective field theory at leading order in the isospin I=0 and I=1 sectors, Λ-d scattering phase shifts, matter radii and corresponding form factors. Discussed constraints on the existence of the Λnn bound state.

doi: 10.1103/PhysRevC.100.034002
Citations: PlumX Metrics


2019SC09      Phys.Rev. C 99, 054611 (2019)

M.Schmidt, L.Platter, H.-W.Hammer

Neutron transfer reactions in halo effective field theory

NUCLEAR REACTIONS 10Be(d, p), E=12, 15, 18, 21.4 MeV; calculated differential σ(θ, E) using halo effective field theory (EFT) at leading-order (LO) and next-to-leading-order (NLO). Comparison with experimental data, and with other theoretical calculations.

doi: 10.1103/PhysRevC.99.054611
Citations: PlumX Metrics


2019SC10      Eur.Phys.J. A 55, 85 (2019)

C.H.Schmickler, H.-W.Hammer, E.Hiyama

Efimov universality with Coulomb interaction

doi: 10.1140/epja/i2019-12756-8
Citations: PlumX Metrics


2018BR18      Eur.Phys.J. A 54, 196 (2018)

J.Braun, H.-W.Hammer, L.Platter

Halo structure of 17C

NUCLEAR STRUCTURE 17C; calculated halo nucleus predictions of charge radius, magnetic moment of (1/2)+ state, γ-ray transition strengths, 16C(n, γ) E1 capture σ to (1/2)+ at E(cm) below 30 MeV using EFT (Effective Field Theory); discussed Halo EFT predictive power for (3/2)+ and (5/2)+ states (neutron in D-wave).

doi: 10.1140/epja/i2018-12630-3
Citations: PlumX Metrics


2018CA23      Phys.Rev. C 98, 034610 (2018) Erratum Phys.Rev. C 105, 019901 (2022)

P.Capel, D.R.Phillips, H.-W.Hammer

Dissecting reaction calculations using halo effective field theory and ab initio input

NUCLEAR REACTIONS 208Pb, 12C(11Be, n), E=67, 69 MeV/nucleon; calculated radial wave functions of 11Be g.s. and 1/2- excited state, 11Be projectile partial wave phase shifts, and break-up σ(E) with contributions from the p3/2, s1/2, p1/2, and d partial waves of 11Be. No-core shell model with continuum (NCSMC) for structure calculations of 11Be. Dynamical eikonal approximation with halo effective field theory (EFT) and ab initio input for reaction mechanism. Comparison with experimental values.

doi: 10.1103/PhysRevC.98.034610
Citations: PlumX Metrics


2018KL03      Phys.Rev. C 98, 034004 (2018)

P.Klos, S.Konig, H.-W.Hammer, J.E.Lynn, A.Schwenk

Signatures of few-body resonances in finite volume

doi: 10.1103/PhysRevC.98.034004
Citations: PlumX Metrics


2017BR11      Few-Body Systems 58, 94 (2017)

J.Braun, H.-W.Hammer

Electric Properties of One-Neutron Halo Nuclei in Halo EFT

NUCLEAR STRUCTURE 11Be, 15C; calculated one-neutron halo nuclei form factors, B(E2) using EFT (Effective Field Theory).

doi: 10.1007/s00601-017-1259-5
Citations: PlumX Metrics


2017GA10      Phys.Rev.Lett. 118, 232501 (2017)

S.Gandolfi, H.-W.Hammer, P.Klos, J.E.Lynn, A.Schwenk

Is a Trineutron Resonance Lower in Energy than a Tetraneutron Resonance?

doi: 10.1103/PhysRevLett.118.232501
Citations: PlumX Metrics


2017HA22      J.Phys.(London) G44, 103002 (2017)

H.-W.Hammer, C.Ji, D.R.Phillips

Effective field theory description of halo nuclei

NUCLEAR STRUCTURE 2H, 4,5,6He, 8,11Li, 11,14Be, 15,19,22C; calculated halo, Efimov states, matter radii, one- and two-neutron separation energies. Effective field theory (EFT).

doi: 10.1088/1361-6471/aa83db
Citations: PlumX Metrics


2017KO17      Phys.Rev.Lett. 118, 202501 (2017)

S.Konig, H.W.Griesshammer, H.-W.Hammer, U.van Kolck

Nuclear Physics Around the Unitarity Limit

doi: 10.1103/PhysRevLett.118.202501
Citations: PlumX Metrics


2016HO21      Eur.Phys.J. A 52, 331 (2016)

M.Hoferichter, B.Kubis, J.Ruiz de Elvira, H.-W.Hammer, U.-G.Meissner

On the ππ continuum in the nucleon form factors and the proton radius puzzle

NUCLEAR STRUCTURE 1n, 1H; calculated nucleon electromagnetic form factors using ππ continuum contribution to isovector spectral functions with up-to-date results for ππ partial waves extracted from Roy-Steiner equations with most recent data on pion vector form factor; deduced contribution to nucleon isovector electric and magnetic radii using sum rules.

doi: 10.1140/epja/i2016-16331-7
Citations: PlumX Metrics


2016KL06      Phys.Rev. C 94, 054005 (2016)

P.Klos, J.E.Lynn, I.Tews, S.Gandolfi, A.Gezerlis, H.-W.Hammer, M.Hoferichter, A.Schwenk

Quantum Monte Carlo calculations of two neutrons in finite volume

NUCLEAR STRUCTURE 2n; calculated ground state, energy and nodal surface of the first excited state for a two neutron-system in a box; extracted low-energy S-wave scattering parameters from ground- and excited-state energies for different box sizes using Luscher formula. Auxiliary-field diffusion Monte Carlo (AFDMC) calculations, and chiral EFT interactions. Relevance to effective field theories of strong interaction.

doi: 10.1103/PhysRevC.94.054005
Citations: PlumX Metrics


2016KO17      J.Phys.(London) G43, 055106 (2016)

S.Konig, H.W.Griesshammer, H.-W.Hammer, U.van Kolck

Effective theory of3H and 3He

NUCLEAR STRUCTURE 3H, 3He; calculated binding energy splitting; deduced Coulomb force in pionless EFT is a completely perturbative effect in the trinucleon bound-state regime.

doi: 10.1088/0954-3899/43/5/055106
Citations: PlumX Metrics


2016RY01      Ann.Phys.(New York) 367, 13 (2016)

E.Ryberg, C.Forssen, H.-W.Hammer, L.Platter

Range corrections in proton halo nuclei

NUCLEAR REACTIONS 16O(p, X)17F, E<2.3 MeV; calculated S-factor, charge radii. Comparison with experimental data.

doi: 10.1016/j.aop.2016.01.008
Citations: PlumX Metrics


2015HA11      Acta Phys.Pol. B46, 379 (2015)

H.-W.Hammer

Three-body Forces: From Cold Atoms to Nuclei

NUCLEAR STRUCTURE 11Li, 12,14Be, 18,20C, 133Cs; calculated excited Efimov states as function of the neutron-core energy.

doi: 10.5506/APhysPolB.46.379
Citations: PlumX Metrics


2015KO11      J.Phys.(London) G42, 345101 (2015)

S.Konig, H.W.Griesshammer, H.-W.Hammer

The proton-deuteron system in pionless EFT revisited

NUCLEAR STRUCTURE 1,2,3H, 3He; calculated binding energies. Pionless effective field theory.

doi: 10.1088/0954-3899/42/4/045101
Citations: PlumX Metrics


2014KO35      Phys.Rev. C 90, 034005 (2014)

S.Konig, H.-W.Hammer

Precision calculation of the quartet-channel p-d scattering length

NUCLEAR REACTIONS 2H(p, X); calculated quartet-channel p-d scattering, length next-to-next-to-leading order (N2LO) in pionless effective field theory, phase-shift analysis. Comparison with experimental data.

doi: 10.1103/PhysRevC.90.034005
Citations: PlumX Metrics


2014RY03      Phys.Rev. C 89, 014325 (2014)

E.Ryberg, C.Forssen, H.-W.Hammer, L.Platter

Effective field theory for proton halo nuclei

NUCLEAR REACTIONS 16O(p, γ)17F*, E(cm)=0-2000 keV; calculated charge form factor, radiative proton capture cross section, charge radius, astrophysical S factor for excited 1/2+ state in 17F using leading order halo effective field theory (LO halo EFT); comparison with experimental data and other theoretical calculation.

doi: 10.1103/PhysRevC.89.014325
Citations: PlumX Metrics


2014RY06      Eur.Phys.J. A 50, 170 (2014)

E.Ryberg, C.Forssen, H.-W.Hammer, L.Platter

Constraining low-energy proton capture on beryllium-7 through charge radius measurements

NUCLEAR REACTIONS 7Be(p, γ), E(cm)=0-500 keV. 8B calculated charge radius, reaction S-factor using leading-order effective field theory. Compared with reaction data.

NUCLEAR STRUCTURE 8B; calculated S-factor vs charge radius; deduced threshold S-factor using charge radius data.

doi: 10.1140/epja/i2014-14170-2
Citations: PlumX Metrics


2014SC20      Few-Body Systems 55, 961 (2014)

C.H.Schmickler, H.-W.Hammer

Universality in the Four-Body System in an EFT Framework

doi: 10.1007/s00601-014-0806-6
Citations: PlumX Metrics


2013HA32      Phys.Rev.Lett. 111, 132501 (2013)

G.Hagen, P.Hagen, H.-W.Hammer, L.Platter

Efimov Physics Around the Neutron-Rich 60Ca Isotope

NUCLEAR STRUCTURE 60,61,62Ca; calculated neutron S-wave scattering phase shifts; deduced correlations between different three-body observables and the two-neutron separation energy. Modern ab initio interactions derived from chiral effective theory.

doi: 10.1103/PhysRevLett.111.132501
Citations: PlumX Metrics


2013HA33      Eur.Phys.J. A 49, 118 (2013)

P.Hagen, H.-W.Hammer, L.Platter

Charge form factors of two-neutron halo nuclei in halo EFT

NUCLEAR STRUCTURE 9,10,11Li, 12,13,14Be, 20,21,22C; calculated charge formfactors, charge radii including halo nuclei using EFT (effective field theory); deduced parameters. Compared with available measurement.

doi: 10.1140/epja/i2013-13118-4
Citations: PlumX Metrics


2013LE06      Eur.Phys.J. A 49, 20 (2013)

M.Lenkewitz, E.Epelbaum, H.-W.Hammer, U.-G.Meissner

Threshold neutral pion photoproduction off the tri-nucleon to O(q4)

doi: 10.1140/epja/i2013-13020-1
Citations: PlumX Metrics


2012BO13      Phys.Rev. C 86, 034003 (2012)

S.Bour, H.-W.Hammer, D.Lee, U.G.Meissner

Benchmark calculations for elastic fermion-dimer scattering

doi: 10.1103/PhysRevC.86.034003
Citations: PlumX Metrics


2012LO15      Eur.Phys.J. A 48, 151 (2012)

I.T.Lorenz, H.-W.Hammer, U.-G.Meissner

The size of the proton: Closing in on the radius puzzle

NUCLEAR STRUCTURE 1H; analyzed formfactor vs energy; deduced electric radius, magnetic radius; calculated electric radius, magnetic radius using dispersive relations with analyticity and unitarity of nucleon structure.

doi: 10.1140/epja/i2012-12151-1
Citations: PlumX Metrics


2011HA41      Nucl.Phys. A865, 17 (2011)

H.-W.Hammer, D.R.Phillips

Electric properties of the Beryllium-11 system in Halo EFT

NUCLEAR REACTIONS 11Be(γ, n), (γ, γ'), E=0.5-6.5 MeV; calculated formfactors, electric radius, neutron radius, B(E1), Coulomb excitation; deduced interaction parameters. Effective field theory with local, nonlocal interactions.

doi: 10.1016/j.nuclphysa.2011.06.028
Citations: PlumX Metrics


2011KO27      Phys.Rev. C 83, 064001 (2011)

S.Konig, H.-W.Hammer

Low-energy p-d scattering and 3He in pionless effective field theory

NUCLEAR REACTIONS 1H(d, d), E=low; calculated elastic scattering phase shift up to N2LO using the power counting for Coulomb contributions. 3He, 3H; calculated Coulomb contribution to the binding energy difference. S-wave scattering in Pionless effective field theory. Comparison with experimental data.

doi: 10.1103/PhysRevC.83.064001
Citations: PlumX Metrics


2010CA15      Nucl.Phys. A836, 275 (2010)

D.L.Canham, H.-W.Hammer

Range corrections for two-neutron halo nuclei in effective theory

NUCLEAR STRUCTURE 11Li, 12,14Be, 18,20C; calculated radii for 2n halo nuclei Efimov states based on a three-body system.

doi: 10.1016/j.nuclphysa.2010.02.014
Citations: PlumX Metrics


2010KR09      Eur.Phys.J. A 43, 229 (2010)

S.Kreuzer, H.-W.Hammer

On the modification of the Efimov spectrum in a finite cubic box

doi: 10.1140/epja/i2010-10910-6
Citations: PlumX Metrics


2010SI28      Eur.Phys.J. A 45, 357 (2010)

A.Sibirtsev, J.Haidenbauer, H.-W.Hammer, S.Krewald, U.-G.Meissner

Proton-proton scattering above 3 GeV/c

doi: 10.1140/epja/i2010-11014-1
Citations: PlumX Metrics


2008CA29      Eur.Phys.J. A 37, 367 (2008)

D.L.Canham, H.-W.Hammer

Universal properties and structure of halo nuclei

NUCLEAR STRUCTURE A=1-100; 11Li, 12,14Be, 18,20C; calculated three-body binding energies, Efimov state energies, matter density form factors, radii in 2n halo nuclei using an effective quantum mechanics approach. Comparison with data.

doi: 10.1140/epja/i2008-10632-4
Citations: PlumX Metrics


2008HA35      Eur.Phys.J. A 37, 193 (2008)

H.-W.Hammer, R.Higa

A model study of discrete scale invariance and long-range interactions

doi: 10.1140/epja/i2008-10617-3
Citations: PlumX Metrics


2008HI12      Nucl.Phys. A809, 171 (2008)

R.Higa, H.-W.Hammer, U.van Kolck

αα scattering in halo effective field theory

NUCLEAR REACTIONS 4H(α, α'), E=0-3.5 MeV; calculated phase shifts. Effective field theory and effective-range expansion, halo and cluster nuclei discussed.

doi: 10.1016/j.nuclphysa.2008.06.003
Citations: PlumX Metrics


2008SI28      Eur.Phys.J. A 37, 287 (2008)

A.Sibirtsev, H.-W.Hammer, U.-G.Meissner

A-dependence of φ-meson production in p + A collisions

doi: 10.1140/epja/i2008-10649-7
Citations: PlumX Metrics


2007BE12      Phys.Rev. C 75, 035202 (2007)

M.A.Belushkin, H.-W.Hammer, Ulf-G.Meissner

Dispersion analysis of the nucleon form factors including meson continua

NUCLEAR STRUCTURE 1n, 1H; analyzed electromagnetic form factors. Dispersion analysis.

doi: 10.1103/PhysRevC.75.035202
Citations: PlumX Metrics


2007HA26      Nucl.Phys. A790, 103c (2007)

H.-W.Hammer

Few-body effects in cold atoms and limit cycles

doi: 10.1016/j.nuclphysa.2007.03.159
Citations: PlumX Metrics


2007HA41      Eur.Phys.J. A 32, 113 (2007)

H.-W.Hammer, L.Platter

Universal properties of the four-body system with large scattering length

doi: 10.1140/epja/i2006-10301-8
Citations: PlumX Metrics


2007HA42      Eur.Phys.J. A 32, 335 (2007)

H.-W.Hammer, D.R.Phillips, L.Platter

Pion-mass dependence of three-nucleon observables

NUCLEAR STRUCTURE 3H; calculated ground and excited state binding energies using effective field theory.

doi: 10.1140/epja/i2007-10380-y
Citations: PlumX Metrics


2007SI26      Eur.Phys.J. A 32, 229 (2007)

A.Sibirtsev, J.Haidenbauer, H.-W.Hammer, U.-G.Meissner

The pp → K+Σ+ n cross-section from missing-mass spectra

doi: 10.1140/epja/i2007-10370-1
Citations: PlumX Metrics


2006HA41      Eur.Phys.J. A 28, Supplement 1, 49 (2006)

H.-W.Hammer

Nucleon form factors in dispersion theory

NUCLEAR STRUCTURE 1n, 1H; calculated form factors, two-pion and pion-cloud contributions. Comparison with data.

doi: 10.1140/epja/i2006-09-006-5
Citations: PlumX Metrics


2006PL02      Nucl.Phys. A766, 132 (2006)

L.Platter, H.-W.Hammer

Universality in the triton charge form factor

NUCLEAR STRUCTURE 3H; calculated charge form factor, charge radius, correlations. Comparison with data.

doi: 10.1016/j.nuclphysa.2005.11.023
Citations: PlumX Metrics


2006SI15      Eur.Phys.J. A 27, 269 (2006)

A.Sibirtsev, J.Haidenbauer, H.-W.Hammer, S.Krewald

Resonances and final-state interactions in the reaction pp → pK+Λ

NUCLEAR REACTIONS 1H(p, pK+X), E=high; analysed Λ hyperon production σ, partial scattering amplitudes, invariant mass spectra, angular correlation effects and proton-hyperon final state interaction.

doi: 10.1140/epja/i2005-10268-x
Citations: PlumX Metrics


2006SI28      Eur.Phys.J. A 29, 209 (2006)

A.Sibirtsev, H.-W.Hammer, U.-G.Meissner, A.W.Thomas

φ-meson photoproduction from nuclei

doi: 10.1140/epja/i2006-10070-4
Citations: PlumX Metrics


2006SI30      Eur.Phys.J. A 29, 363 (2006)

A.Sibirtsev, J.Haidenbauer, H.-W.Hammer, U.-G.Meissner

Phenomenology of the Λ/Σ0 production ratio in pp collisions

NUCLEAR REACTIONS 1H(p, K+X), E=high; analyzed hyperon yields, related data; deduced final state interaction effects.

doi: 10.1140/epja/i2006-10097-5
Citations: PlumX Metrics


2005HA40      J.Phys.(London) G31, S1253 (2005)

H.-W.Hammer

Few-body physics in effective field theory

doi: 10.1088/0954-3899/31/8/003
Citations: PlumX Metrics


2005PL01      Phys.Lett. B 607, 254 (2005)

L.Platter, H.-W.Hammer, Ulf.-G.Meissner

On the correlation between the binding energies of the triton and the α-particle

NUCLEAR STRUCTURE 3H, 4He; calculated binding energies, correlations.

doi: 10.1016/j.physletb.2004.12.068
Citations: PlumX Metrics


2004HA17      Phys.Lett. B 586, 291 (2004)

H.-W.Hammer, D.Drechsel, Ulf-G.Meissner

On the pion cloud of the nucleon

NUCLEAR STRUCTURE 1n, 1H; calculated form factors, two-pion contributions.

doi: 10.1016/j.physletb.2003.12.073
Citations: PlumX Metrics


2004HA32      Nucl.Phys. A737, 275 (2004)

H.-W.Hammer

Universality in the physics of cold atoms with large scattering length

doi: 10.1016/j.nuclphysa.2004.03.088
Citations: PlumX Metrics


2004HA35      Eur.Phys.J. A 20, 469 (2004)

H.-W.Hammer, U.-G.Meissner

Updated dispersion-theoretical analysis of the nucleon electromagnetic form factors

NUCLEAR STRUCTURE 1n, 1H; compiled, analyzed form factor data, radii. Dispersion-theoretical analysis.

doi: 10.1140/epja/i2003-10223-y
Citations: PlumX Metrics


2003BE08      Nucl.Phys. A714, 589 (2003)

P.E.Bedaque, G.Rupak, H.W.Griesshammer, H.-W.Hammer

Low energy expansion in the three body system to all orders and the triton channel

NUCLEAR REACTIONS 2H(n, n), E not given; calculated phase shifts, three-body force effects.

doi: 10.1016/S0375-9474(02)01402-1
Citations: PlumX Metrics


2003BE42      Phys.Lett. B 569, 159 (2003)

P.F.Bedaque, H.-W.Hammer, U.van Kolck

Narrow resonances in effective field theory

NUCLEAR REACTIONS 4He(n, n), E=0-1 MeV; calculated total σ. 4He(n, n), E(cm)=15.5 MeV; calculated σ(θ). Effective field theory.

doi: 10.1016/j.physletb.2003.07.049
Citations: PlumX Metrics


2003PL01      Nucl.Phys. A714, 250 (2003)

L.Platter, H.-W.Hammer, U.-G.Meissner

Quasiparticle properties in effective field theory

doi: 10.1016/S0375-9474(02)01365-9
Citations: PlumX Metrics


2002BE83      Nucl.Phys. A712, 37 (2002)

C.A.Bertulani, H.-W.Hammer, U.van Kolck

Effective field theory for halo nuclei: shallow p-wave states

NUCLEAR REACTIONS 4H(n, n'), E=0-4 MeV; calculated phase shifts, σ, σ(θ). Effective field theory, application to halo nuclei discussed.

doi: 10.1016/S0375-9474(02)01270-8
Citations: PlumX Metrics


2002FU06      Phys.Lett. 531B, 203 (2002)

R.J.Furnstahl, H.-W.Hammer

Are Occupation Numbers Observable ?

doi: 10.1016/S0370-2693(01)01504-0
Citations: PlumX Metrics


2002HA28      Nucl.Phys. A705, 173 (2002)

H.-W.Hammer

The Hypertriton in Effective Field Theory

NUCLEAR STRUCTURE 3H; calculated hypertriton binding energy, Λd scattering length. Effective field theory.

doi: 10.1016/S0375-9474(02)00621-8
Citations: PlumX Metrics


2001FU08      Nucl.Phys. A689, 846 (2001)

R.J.Furnstahl, H.-W.Hammer, N.Tirfessa

Field Redefinitions at Finite Density

doi: 10.1016/S0375-9474(00)00687-4
Citations: PlumX Metrics


2001HA42      Nucl.Phys. A690, 535 (2001)

H.-W.Hammer, T.Mehen

A Renormalized Equation for the Three-Body System with Short-Range Interactions

doi: 10.1016/S0375-9474(00)00710-7
Citations: PlumX Metrics


2001HA53      Phys.Lett. 516B, 353 (2001)

H.-W.Hammer, T.Mehen

Range Corrections to Doublet S-Wave Neutron-Deuteron Scattering

NUCLEAR REACTIONS 2H(n, n), E not given; calculated S-wave phase shifts, range corrections. Comparison with data.

doi: 10.1016/S0370-2693(01)00918-2
Citations: PlumX Metrics


2000BE39      Nucl.Phys. A676, 357 (2000)

P.F.Bedaque, H.-W.Hammer, U.van Kolck

Effective Theory of the Triton

NUCLEAR STRUCTURE 3H; calculated phase shifts, three-nucleon bound state spectrum, scattering lengths. Three-body forces discussed. Effective field theory calculations.

NUCLEAR REACTIONS 2H(n, X), E=low; calculated phase shifts, three-nucleon bound state spectrum, scattering lengths. Three-body forces discussed. Effective field theory calculations.

doi: 10.1016/S0375-9474(00)00205-0
Citations: PlumX Metrics


2000HA49      Nucl.Phys. A678, 277 (2000)

H.-W.Hammer, R.J.Furnstahl

Effective Field Theory for Dilute Fermi Systems

doi: 10.1016/S0375-9474(00)00325-0
Citations: PlumX Metrics


1999BE06      Nucl.Phys. A646, 444 (1999)

P.F.Bedaque, H.-W.Hammer, U.van Kolck

The Three-Boson System with Short-Range Interactions

doi: 10.1016/S0375-9474(98)00650-2
Citations: PlumX Metrics


1999HA50      Eur.Phys.J. A 6, 115 (1999)

H.-W.Hammer, J.N.Ng

Rare Pionium Decays and Pion Polarizability

doi: 10.1007/s100500050324
Citations: PlumX Metrics


1999HA53      Phys.Rev. C60, 045204 (1999); Erratum Phys.Rev. C62, 049902 (2000)

H.-W.Hammer, M.J.Ramsey-Musolf

K(K-bar) Continuum and Isoscalar Nucleon Form Factors

doi: 10.1103/PhysRevC.60.045204
Citations: PlumX Metrics


1999HA54      Phys.Rev. C60, 045205 (1999); Erratum Phys.Rev. C62, 049903 (2000)

H.-W.Hammer, M.J.Ramsey-Musolf

Spectral Content of Isoscalar Nucleon Form Factors

doi: 10.1103/PhysRevC.60.045205
Citations: PlumX Metrics


1998BA70      Nucl.Phys. A640, 259 (1998)

L.L.Barz, H.Forkel, H.-W.Hammer, F.S.Navarra, M.Nielsen, M.J.Ramsey-Musolf

K* Mesons and Nucleon Strangeness

doi: 10.1016/S0375-9474(98)00438-2
Citations: PlumX Metrics


1998BE37      Phys.Rev. C58, R641 (1998)

P.F.Bedaque, H.-W.Hammer, U.van Kolck

Effective Theory for Neutron-Deuteron Scattering: Energy dependence

NUCLEAR REACTIONS 2H(n, X), E not given; calculated phase shifts.

doi: 10.1103/PhysRevC.58.R641
Citations: PlumX Metrics


1998HA04      Phys.Lett. 416B, 5 (1998)

H.-W.Hammer, M.J.Ramsey-Musolf

Nucleon Vector Strangeness Form Factors: Multi-pion continuum and the OZI rule

doi: 10.1016/S0370-2693(97)01322-1
Citations: PlumX Metrics


1998MU10      Nucl.Phys. A633, 481 (1998)

N.C.Mukhopadhyay, M.J.Ramsey-Musolf, S.J.Pollock, J.Liu, H.-W.Hammer

Parity-Violating Excitation of the Δ(1232): Hadron structure and new physics

doi: 10.1016/S0375-9474(98)00147-X
Citations: PlumX Metrics


1996HA35      Phys.Lett. 385B, 343 (1996)

H.-W.Hammer, Ulf.-G.Meissner, D.Drechsel

Dispersion-Theoretical Analysis of the Nucleon Electromagnetic Form Factors: Inclusion of time-like data

NUCLEAR STRUCTURE 1H, 1n; analyzed electromagnetic form factor data; deduced perturbative, nonperturbative regime separation scale parameter. Time-like region included.

doi: 10.1016/0370-2693(96)00865-9
Citations: PlumX Metrics


1996HA42      Phys.Lett. 367B, 323 (1996)

H.-W.Hammer, Ulf.-G.Meissner, D.Drechsel

The Strangeness Radius and Magnetic Moment of the Nucleon Revisted

doi: 10.1016/0370-2693(95)01409-8
Citations: PlumX Metrics


1995HA41      Z.Phys. A353, 321 (1995)

H.-W.Hammer, D.Drechsel

Parity Violating Pion Electroproduction Off the Nucleon

doi: 10.1007/BF01292338
Citations: PlumX Metrics


Back to query form