NSR Query Results


Output year order : Descending
Format : Normal

NSR database version of March 21, 2024.

Search: Author = J.E.Lynn

Found 59 matches.

Back to query form



2020LY02      J.Phys.(London) G47, 045109 (2020)

J.E.Lynn, D.Lonardoni, J.Carlson, J.-W.Chen, W.Detmold, S.Gandolfi, A.Schwenk

Ab initio short-range-correlation scaling factors from light to medium-mass nuclei

NUCLEAR STRUCTURE 2,3H, 3,4,6He, 6Li, 12C, 16O, 40Ca, 63Cu, 56Fe, 197Au; calculated two-nucleon distributions, short-range-correlation(SRC) scaling factors, binding energies from ab initio low-energy nuclear theory.

doi: 10.1088/1361-6471/ab6af7
Citations: PlumX Metrics


2019LI17      Phys.Rev. C 99, 044904 (2019)

S.H.Lim, J.Carlson, C.Loizides, D.Lonardoni, J.E.Lynn, J.L.Nagle, J.D.Orjuela Koop, J.Ouellette

Exploring new small system geometries in heavy ion collisions

doi: 10.1103/PhysRevC.99.044904
Citations: PlumX Metrics


2018KL03      Phys.Rev. C 98, 034004 (2018)

P.Klos, S.Konig, H.-W.Hammer, J.E.Lynn, A.Schwenk

Signatures of few-body resonances in finite volume

doi: 10.1103/PhysRevC.98.034004
Citations: PlumX Metrics


2018LO06      Phys.Rev.Lett. 120, 122502 (2018)

D.Lonardoni, J.Carlson, S.Gandolfi, J.E.Lynn, K.E.Schmidt, A.Schwenk, X.B.Wang

Properties of Nuclei up to A=16 using Local Chiral Interactions

NUCLEAR STRUCTURE 6He, 6Li, 12C, 16O; calculated ground-state energies and charge radii, form factors. Continuum quantum Monte Carlo (QMC) method, comparison with available data.

doi: 10.1103/PhysRevLett.120.122502
Citations: PlumX Metrics


2018LO09      Phys.Rev. C 97, 044318 (2018)

D.Lonardoni, S.Gandolfi, J.E.Lynn, C.Petrie, J.Carlson, K.E.Schmidt, A.Schwenk

Auxiliary field diffusion Monte Carlo calculations of light and medium-mass nuclei with local chiral interactions

NUCLEAR STRUCTURE 3H, 3,4,6He, 6Li, 12C, 16O; calculated constrained and unconstrained ground state binding energies, charge radii, charge form factors, and Coulomb sum rule by auxilliary field diffusion Monte Carlo (AFDMC) method using AV6' potential in combination with local chiral two- and three-nucleon interactions up to next-to-next-to-leading order; analyzed p-wave n-α elastic scattering phase shifts compared to an R-matrix analysis of experimental data. Comparison with GFMC predictions for Coulomb sum rule.

doi: 10.1103/PhysRevC.97.044318
Citations: PlumX Metrics


2018LY03      Phys.Rev. C 97, 064601 (2018)

J.E.Lynn, P.Talou, O.Bouland

Reexamining the role of the (n, γf) process in the low-energy fission of 235U and 239Pu

NUCLEAR REACTIONS 239Pu(n, γF), E=10-110 eV; 239Pu(n, γF), E=0-40 eV; compiled experimental and evaluated (from ENDF/B-VII.1) data for average prompt fission neutron multiplicity; calculated M1 and E1 photon strength functions, reaction widths, prefission γ-ray spectrum and spin- and parity-dependent fission probabilities for 240Pu* using secondary and tertiary vibrational model, resonance parameters. 235U, 239Pu(n, γF), E=0.001-2 MeV; calculated capture and fission σ(E), compound nucleus level density, M1 scissors mode contributions to the total γ strength function. 239Pu(n, F), E=0-210 MeV; 235U(n, F), E=0-100 MeV; calculated average total kinetic energy (TKE) of the fission fragments, and compared with experimental values. 235U(d, pF), 238Pu(t, pF), E*=4.5-6.5 MeV; calculated fission probability. Comparison with experimental values.

doi: 10.1103/PhysRevC.97.064601
Citations: PlumX Metrics


2017CH55      Phys.Rev.Lett. 119, 262502 (2017)

J.-W.Chen, W.Detmold, J.E.Lynn, A.Schwenk

Short-Range Correlations and the EMC Effect in Effective Field Theory

NUCLEAR STRUCTURE 3H, 3,4He, 9Be, 12C; calculated scaling factors, parameters. Comparison with available data.

doi: 10.1103/PhysRevLett.119.262502
Citations: PlumX Metrics


2017GA10      Phys.Rev.Lett. 118, 232501 (2017)

S.Gandolfi, H.-W.Hammer, P.Klos, J.E.Lynn, A.Schwenk

Is a Trineutron Resonance Lower in Energy than a Tetraneutron Resonance?

doi: 10.1103/PhysRevLett.118.232501
Citations: PlumX Metrics


2017HU17      Phys.Rev. C 96, 054003 (2017)

L.Huth, I.Tews, J.E.Lynn, A.Schwenk

Analyzing the Fierz rearrangement freedom for local chiral two-nucleon potentials

NUCLEAR STRUCTURE 2H, 4He; calculated binding energies, radii, phase-shifts in the framework of Chiral effective field theory (EFT), by constructing leading order (LO) and next-to-leading order (NLO) potentials for all possible LO-operator pairs.Calculated energy of neutron matter at different densities.

doi: 10.1103/PhysRevC.96.054003
Citations: PlumX Metrics


2017LY01      Phys.Rev. C 96, 054007 (2017)

J.E.Lynn, I.Tews, J.Carlson, S.Gandolfi, A.Gezerlis, K.E.Schmidt, A.Schwenk

Quantum Monte Carlo calculations of light nuclei with local chiral two- and three-nucleon interactions

NUCLEAR STRUCTURE 2H; calculated deuteron wave functions, binding energy, asymptotic D/S ratio, quadrupole moment, root-mean-square (rms) matter radius, momentum distributions and tensor polarization at N2LO, deuteron energy at LO, NLO, and N2LO as function of radius. 3H, 3,4He; calculated wave functions for AV18+UIX at N22LO, energies using Green's function Monte Carlo (GFMC) method, kinetic and potential energy contributions to the GFMC energy, point-proton radii at LO, NLO, and N2LO, one-body proton and neutron distributions for 3,4He at N2LO, longitudinal charge form factor for 4He. Quantum Monte Carlo (QMC) calculations for light nuclei with local chiral NN and 3N interactions.

doi: 10.1103/PhysRevC.96.054007
Citations: PlumX Metrics


2016KL06      Phys.Rev. C 94, 054005 (2016)

P.Klos, J.E.Lynn, I.Tews, S.Gandolfi, A.Gezerlis, H.-W.Hammer, M.Hoferichter, A.Schwenk

Quantum Monte Carlo calculations of two neutrons in finite volume

NUCLEAR STRUCTURE 2n; calculated ground state, energy and nodal surface of the first excited state for a two neutron-system in a box; extracted low-energy S-wave scattering parameters from ground- and excited-state energies for different box sizes using Luscher formula. Auxiliary-field diffusion Monte Carlo (AFDMC) calculations, and chiral EFT interactions. Relevance to effective field theories of strong interaction.

doi: 10.1103/PhysRevC.94.054005
Citations: PlumX Metrics


2016LY02      Phys.Rev.Lett. 116, 062501 (2016)

J.E.Lynn, I.Tews, J.Carlson, S.Gandolfi, A.Gezerlis, K.E.Schmidt, A.Schwenk

Chiral Three-Nucleon Interactions in Light Nuclei, Neutron-α Scattering, and Neutron Matter

NUCLEAR STRUCTURE 4He; analyzed available data; deduced binding and ground-state energies. Quantum Monte Carlo calculations of light nuclei using local two- and three-nucleon (3N) interactions derived from chiral effective field theory up to next-to-next-to-leading order (N2LO).

doi: 10.1103/PhysRevLett.116.062501
Citations: PlumX Metrics


2014BO14      Nucl.Data Sheets 118, 211 (2014)

O.Bouland, J.E.Lynn, P.Talou

The Impact of Intermediate Structure on the Average Fission Cross Sections

NUCLEAR REACTIONS 239,240Pu(n, F), E not given; calculated width fluctuation correction factor, average fission σ using Porter-Thomas hypothesis within Monte Carlo R-matrix.

doi: 10.1016/j.nds.2014.04.039
Citations: PlumX Metrics


2014LY02      Phys.Rev.Lett. 113, 192501 (2014)

J.E.Lynn, J.Carlson, E.Epelbaum, S.Gandolfi, A.Gezerlis, A.Schwenk

Quantum Monte Carlo Calculations of Light Nuclei Using Chiral Potentials

NUCLEAR STRUCTURE 3,4He, 2,3H; calculated one- and two-body proton distributions, nuclear radii, binding energies; deduced the necessity of a three-body force.

doi: 10.1103/PhysRevLett.113.192501
Citations: PlumX Metrics


2014NA29      Phys.Rev.Lett. 113, 112301 (2014)

J.L.Nagle, A.Adare, S.Beckman, T.Koblesky, J.Orjuela Koop, D.McGlinchey, P.Romatschke, J.Carlson, J.E.Lynn, M.McCumber

Exploiting Intrinsic Triangular Geometry in Relativistic He3+Au Collisions to Disentangle Medium Properties

doi: 10.1103/PhysRevLett.113.112301
Citations: PlumX Metrics


2013BO29      Phys.Rev. C 88, 054612 (2013); Erratum Phys.Rev. C 101, 039901 (2020)

O.Bouland, J.E.Lynn, P.Talou

R-matrix analysis and prediction of low-energy neutron-induced fission cross sections for a range of Pu isotopes

NUCLEAR REACTIONS 236,237,238,239,240,241,242,243,244Pu(n, F), 236,240,241,243Pu(n, γ), 236,243Pu(n, n'), E=0.005-5 MeV; calculated σ(E). 237,238,239,240,241,242,243,244,245Pu; calculated inner and outer fission barrier heights, neutron and proton pairing gaps. Hauser-Feshbach statistical theory, and fission decay channel in the R-matrix formalism. Comparison with several previous theoretical and empirical calculations and evaluated data libraries. 243Pu predicted to be fissile in contrast to data in ENDF/B-VII.1 and JEFF-3.1.2 evaluated libraries. Discussed level spacing distributions.

doi: 10.1103/PhysRevC.88.054612
Citations: PlumX Metrics


2012LY01      Phys.Rev. C 86, 014324 (2012)

J.E.Lynn, K.E.Schmidt

Real-space imaginary-time propagators for non-local nucleon-nucleon potentials

doi: 10.1103/PhysRevC.86.014324
Citations: PlumX Metrics


2011BO25      J.Korean Phys.Soc. 59, 833s (2011)

O.Bouland, G.M.Hale, J.E.Lynn, P.Talou, D.Bernard, O.Litaize, G.Noguere, C.De saint Jean, O.Serot

Towards Consistent Nuclear Models and Comprehensive Nuclear Data Evaluations

NUCLEAR REACTIONS 12C(n, X), E=0-6.5 MeV; analyzed σ using R matrix; deduced resonance widths. A=60-175(n, n'), E not given; calculated average prompt neutron multiplicity.

doi: 10.3938/jkps.59.833
Citations: PlumX Metrics


2011TA21      J.Korean Phys.Soc. 59, 797s (2011)

P.Talou, T.Kawano, J.E.Lynn, P.Moller, O.Bouland, M.B.Chadwick

Recent Advances in Nuclear Fission Theory: Pre- and Post-Scission Physics

NUCLEAR REACTIONS 239,240,241,242Pu(n, f), E≈0.01-20 MeV; calculated σ using R-matrix formalism in Bjornholm-Lynn model. 235U(n, f), E=thermal, 0.5 MeV; calculated prompt fission neutron multiplicity using Monte Carlo Hauser-Feshbach; compared to data, ENDF/B-VII.0.

doi: 10.3938/jkps.59.797
Citations: PlumX Metrics


2009KA24      Phys.Rev. C 80, 024611 (2009)

T.Kawano, P.Talou, J.E.Lynn, M.B.Chadwick, D.G.Madland

Calculation of nuclear reaction cross sections on excited nuclei with the coupled-channels method

NUCLEAR REACTIONS 169Tm(n, n), (n, n'), (n, γ), (n, X), E<20 MeV; calculated σ. 239Pu(n, X), E=0.01-10 MeV; calculated fission σ. Coupled-channels and statistical Hauser-Feshbach model calculations. Comparison with experimental data.

doi: 10.1103/PhysRevC.80.024611
Citations: PlumX Metrics


2004RA23      Phys.Rev. C 70, 044318 (2004)

S.Raman, X.Ouyang, M.A.Islam, J.W.Starner, E.T.Jurney, J.E.Lynn, G.Martinez-Pinedo

Thermal-neutron capture by 58Ni, 59Ni, and 60Ni

NUCLEAR REACTIONS 58,59,60Ni(n, γ), E=thermal; measured Eγ, Iγ, σ. 59,60,61Ni deduced levels, J, π, neutron separation energies. Comparison with shell-model predictions.

doi: 10.1103/PhysRevC.70.044318
Citations: PlumX Metrics

Data from this article have been entered in the EXFOR database. For more information, access X4 dataset13947. Data from this article have been entered in the XUNDL database. For more information, click here.


2003LY02      Phys.Rev. C 67, 014607 (2003)

J.E.Lynn, A.C.Hayes

Theoretical evaluations of the fission cross section of the 77 eV isomer of 235U

NUCLEAR REACTIONS 235U(n, F), E < 2 MeV; calculated fission σ for ground and isomeric states. 235U(n, n'), (n, γ), E < 2 MeV; calculated capture and inelastic σ. 237U, 239Pu(n, F), E < 2 MeV; calculated fission σ. Comparisons with data.

doi: 10.1103/PhysRevC.67.014607
Citations: PlumX Metrics


2002BL08      Phys.Rev. C65, 045801 (2002)

J.C.Blackmon, S.Raman, J.K.Dickens, R.M.Lindstrom, R.L.Paul, J.E.Lynn

Thermal-Neutron Capture by 208Pb

NUCLEAR REACTIONS 206,207,208Pb(n, γ), E=subthermal; measured Eγ, Iγ, σ. 209Pb deduced levels, J, π, neutron separation energy. Direct capture model, astrophysical s process.

doi: 10.1103/PhysRevC.65.045801
Citations: PlumX Metrics

Data from this article have been entered in the EXFOR database. For more information, access X4 dataset13846.


2000RA14      Phys.Rev. C61, 067303 (2000)

S.Raman, E.T.Jurney, J.W.Starner, J.E.Lynn

Direct Thermal-Neutron Capture by 30Si

NUCLEAR REACTIONS 30Si(n, γ), E=thermal; calculated σ(E). Direct capture theory, input data from (d, p) reaction, comparison with data.

doi: 10.1103/PhysRevC.61.067303
Citations: PlumX Metrics


1997JU02      Phys.Rev. C56, 118 (1997)

E.T.Jurney, J.W.Starner, J.E.Lynn, S.Raman

Thermal-Neutron Capture by 14N

NUCLEAR REACTIONS 14N(n, γ), E=thermal; measured Eγ, Iγ; deduced capture σ(E). 15N deduced resonances, width parameters. Other data input.

doi: 10.1103/PhysRevC.56.118
Citations: PlumX Metrics

Data from this article have been entered in the EXFOR database. For more information, access X4 dataset13688.


1996RA04      Phys.Rev. C53, 616 (1996)

S.Raman, E.K.Warburton, J.W.Starner, E.T.Jurney, J.E.Lynn, P.Tikkanen, J.Keinonen

Spectroscopy of 20F Levels

NUCLEAR REACTIONS 19F(n, γ), E=thermal; measured Eγ, Iγ. 20F deduced levels, J, π, γ-branching ratios, spectroscopic strengths, γ multipolarity. Other reaction data input.

doi: 10.1103/PhysRevC.53.616
Citations: PlumX Metrics

Data from this article have been entered in the EXFOR database. For more information, access X4 dataset13745.


1994PA02      Phys.Rev. C49, 672 (1994)

W.E.Parker, J.E.Lynn, G.L.Morgan, P.W.Lisowski, A.D.Carlson, N.W.Hill

Intermediate Structure in the Neutron-Induced Fission Cross Section of 236U

NUCLEAR REACTIONS 236U(n, F), E=5 eV-100 keV; measured fission σ, resonance fission widths; deduced intermediate resonance structure. 237U deduced fission barrier parameters.

doi: 10.1103/PhysRevC.49.672
Citations: PlumX Metrics

Data from this article have been entered in the EXFOR database. For more information, access X4 dataset13642.


1993MO10      Phys.Rev. C48, 553 (1993)

M.C.Moxon, J.A.Harvey, S.Raman, J.E.Lynn, W.Ratynski

Neutron Resonance Parameters and Thermal-Neutron Capture by 43Ca

NUCLEAR REACTIONS 43Ca(n, X), E=0.005-500 keV; measured transmission. 44Ca deduced resonances, J, Γn.

doi: 10.1103/PhysRevC.48.553
Citations: PlumX Metrics

Data from this article have been entered in the EXFOR database. For more information, access X4 dataset13588.


1992RA19      Phys.Rev. C46, 972 (1992)

S.Raman, E.T.Jurney, J.W.Starner, J.E.Lynn

Thermal-Neutron Capture by Silicon Isotopes

NUCLEAR REACTIONS 28,29,30Si(n, γ), E=thermal; measured Eγ, Iγ following capture; deduced σ. 29,30,31Si deduced neutron separation energies, transition γ-multipolarity. Direct capture interpretation.

doi: 10.1103/PhysRevC.46.972
Citations: PlumX Metrics

Data from this article have been entered in the EXFOR database. For more information, access X4 dataset13549.


1992WA06      Phys.Rev. C45, 1597 (1992)

T.A.Walkiewicz, S.Raman, E.T.Jurney, J.W.Starner, J.E.Lynn

Thermal-Neutron Capture by Magnesium Isotopes

NUCLEAR REACTIONS 24,25,26Mg(n, γ), E=thermal; measured Eγ, Iγ; deduced capture σ. 26,27,25Mg deduced levels, neutron separation energies, γ-multipolarity. Direct capture theory.

doi: 10.1103/PhysRevC.45.1597
Citations: PlumX Metrics

Data from this article have been entered in the EXFOR database. For more information, access X4 dataset13544.


1991LY01      Phys.Rev. C44, 764 (1991)

J.E.Lynn, E.T.Jurney, S.Raman

Direct and Valence Neutron Capture by 7Li

NUCLEAR REACTIONS 7Li(n, γ), E=thermal; measured Eγ, Iγ, capture σ. Direct, valence capture.

doi: 10.1103/PhysRevC.44.764
Citations: PlumX Metrics

Data from this article have been entered in the EXFOR database. For more information, access X4 dataset13520.


1991RA11      Phys.Rev. C44, 518 (1991)

S.Raman, J.A.Fernandez-Baca, R.M.Moon, J.E.Lynn

Thermal-Neutron Scattering Length and Capture by 46Ca

NUCLEAR REACTIONS 46Ca(n, n), E=thermal; measured neutron spectra; deduced coherent scattering amplitude, capture σ, mechanism.

doi: 10.1103/PhysRevC.44.518
Citations: PlumX Metrics

Data from this article have been entered in the EXFOR database. For more information, access X4 dataset13529.


1990LY01      At.Data Nucl.Data Tables 44, 191 (1990)

J.E.Lynn, P.A.Seeger

Resonance Effects in Neutron Scattering Lengths of Rare-Earth Nuclides

NUCLEAR REACTIONS Sm, Eu, Gd, Er, Yb, 149Sm, 151Eu, 155,157Gd, 164Dy, 167Er, 168,174Yb, 176Lu(n, n), E=0.01-0.5 eV; analyzed data; deduced coherent scattering lengths. Generalized single-level formalism.

doi: 10.1016/0092-640X(90)90013-A
Citations: PlumX Metrics


1990RA03      Phys.Rev. C41, 458 (1990)

S.Raman, M.Igashira, Y.Dozono, H.Kitazawa, M.Mizumoto, J.E.Lynn

Valence Capture Mechanism in Resonance Neutron Capture by 13C

NUCLEAR REACTIONS 13C(n, γ), E=resonance; measured Eγ, Iγ. 14C levels deduced partial, total Γγ. Valence capture mechanism.

doi: 10.1103/PhysRevC.41.458
Citations: PlumX Metrics

Data from this article have been entered in the EXFOR database. For more information, access X4 dataset22170.


1989RA06      Phys.Rev. C39, 1297 (1989)

S.Raman, S.Kahane, R.M.Moon, J.A.Fernandez-Baca, J.L.Zarestky, J.E.Lynn, J.W.Richardson, Jr.

Thermal-Neutron Scattering Lengths and Capture by Even Calcium Isotopes

NUCLEAR REACTIONS 40,42,43,44,48Ca(n, n), E=thermal; measured Bragg diffration patterns; deduced thermal neutron scattering lengths. 40,42,43,44,48Ca(n, γ), E=thermal; analyzed σ(E(γ)). Lane-Lynn-Raman model.

doi: 10.1103/PhysRevC.39.1297
Citations: PlumX Metrics

Data from this article have been entered in the EXFOR database. For more information, access X4 dataset13528.


1989SU13      Nucl.Sci.Eng. 103, 37 (1989)

M.Sugimoto, P.T.Guenther, J.E.Lynn, A.B.Smith, J.F.Whalen

The Interaction of Fast Neutrons with Beryllium

NUCLEAR REACTIONS 9Be(n, n), E=1-10 MeV; measured σ(E), σ(θ). 9Be(n, n'), E=4.5-10 MeV; measured σ(θ); deduced angle-integrated σ.

doi: 10.13182/NSE89-A23658
Citations: PlumX Metrics

Data from this article have been entered in the EXFOR database. For more information, access X4 dataset13154.


1988RA10      J.Phys.(London) G14, Supplement S223 (1988)

S.Raman, S.Kahane, J.E.Lynn

Direct Thermal Neutron Capture

NUCLEAR REACTIONS 9Be, 12,13C, 24,25,26Mg, 32,34,33S, 40,44Ca(n, γ), E=slow; calculated capture σ.

doi: 10.1088/0305-4616/14/S/024
Citations: PlumX Metrics


1987KA28      Phys.Rev. C36, 533 (1987)

S.Kahane, J.E.Lynn, S.Raman

Analysis of Primary Electric Dipole Gamma Rays from Slow-Neutron Capture by Ca Isotopes

NUCLEAR REACTIONS 40,42,44,46,48Ca(n, γ), E=thermal; calculated direct capture σ. 41,43,45,47,49Ca deduced resonance parameters. Optical model.

doi: 10.1103/PhysRevC.36.533
Citations: PlumX Metrics


1987LY01      Phys.Rev. C35, 26 (1987)

J.E.Lynn, S.Kahane, S.Raman

Analysis of Slow Neutron Capture by 9Be, 12C, and 13C

NUCLEAR REACTIONS 9Be, 12,13C(n, γ), E=thermal; calculated capture σ. Optical model, Lane-Lynn-Raman method.

doi: 10.1103/PhysRevC.35.26
Citations: PlumX Metrics


1987LY03      Phys.Rev. C36, 671 (1987)

J.E.Lynn

Coriolis Interaction and Variable Reflection Asymmetry in Fission Vibrational Resonances

NUCLEAR REACTIONS 230Th(n, F), E=0.69-0.75 MeV; analyzed fission σ(E), fragment angular anisotropy vs E. Vibrational model.

doi: 10.1103/PhysRevC.36.671
Citations: PlumX Metrics


1985RA15      Phys.Rev. C32, 18 (1985)

S.Raman, R.F.Carlton, J.C.Wells, E.T.Jurney, J.E.Lynn

Thermal Neutron Capture Gamma Rays from Sulfur Isotopes: Experiment and theory

NUCLEAR REACTIONS 34,33,32,36S(n, γ), E=thermal; measured Eγ, Iγ; deduced model dependent effects. 33,34,35,37S deduced levels, γ-branching, J, π, E1 transition. Potential capture theory.

doi: 10.1103/PhysRevC.32.18
Citations: PlumX Metrics

Data from this article have been entered in the EXFOR database. For more information, access X4 dataset12896.


1983LY02      J.Phys.(London) G9, 665 (1983)

J.E.Lynn

The Concept of Vibrational Resonances Associated with the Secondary and Tertiary Wells of a Multi-Humped Fission Barrier

NUCLEAR REACTIONS 230,232,228Th, 231Pa(n, F), E not given; calculated vibrational resonances, fission strengths. Secondary, tertiary wells, multi-humped fission barrier. Single particle, vibrational motion coupling.

doi: 10.1088/0305-4616/9/6/011
Citations: PlumX Metrics


1980BJ02      Rev.Mod.Phys. 52, 725 (1980)

S.Bjornholm, J.E.Lynn

The Double-Humped Fission Barrier

NUCLEAR STRUCTURE A=231-245; analyzed resonance structure, fission data; deduced fission features. Double-humped fission barrier concept.

doi: 10.1103/RevModPhys.52.725
Citations: PlumX Metrics


1980LY01      J.Phys.(London) G6, 1271 (1980)

J.E.Lynn, J.D.Moses

Line-Fitting Procedures for Intermediate Structure

NUCLEAR REACTIONS, Fission 237Np, 238Pu, 234U(n, F), E=slow; analyzed fine structure underlying intermediate resonances. 238Np, 239Pu, 235U resonances deduced spreading widths. Basic Lorentzian line fitting procedure.

doi: 10.1088/0305-4616/6/10/014
Citations: PlumX Metrics


1974LY01      J.Phys.(London) A7, 395 (1974)

J.E.Lynn, B.B.Back

Sub-Barrier Fission Probability for a Double-Humped Barrier

NUCLEAR REACTIONS 240Pu(t, nF), 236U(3He, dF), 237Np(d, pF); measured nothing, calculated σ.

doi: 10.1088/0305-4470/7/3/011
Citations: PlumX Metrics


1972JA11      Nucl.Phys. A189, 225 (1972)

G.D.James, J.E.Lynn, L.G.Earwaker

Nuclear Spectroscopy of Highly Deformed 231Th

NUCLEAR REACTIONS 230Th(n, F), En=625 keV-1.4 MeV; measured σ(E, θ(fragment)). 231Th deduced moment of inertia in shape isomeric state.

doi: 10.1016/0375-9474(72)90292-8
Citations: PlumX Metrics

Data from this article have been entered in the EXFOR database. For more information, access X4 dataset20472.


1971BR39      Phys.Rev. C4, 1444 (1971)

H.C.Britt, S.C.Burnett, B.H.Erkkila, J.E.Lynn, W.E.Stein

Systematics of Spontaneously Fissioning Isomers

RADIOACTIVITY, Fission 235m,237m,238m,239m,240m,241mPu, 241m,242m,243m,244m,245mCm, 236mU, 239m,240m,242m,243m,244mAm(SF); measured T1/2, T1/2 lower limits.

NUCLEAR REACTIONS 233,235,236,238U, 237Np, 239,240,242,244Pu(α, xn), E=20-29 MeV; 235U, 237Np, 239,240,242,244Pu, 243Am(d, p), (d, np), E=20-29 MeV; measured isomeric σ ratios(E); deduced thresholds for SF-isomer production.

doi: 10.1103/PhysRevC.4.1444
Citations: PlumX Metrics

Data from this article have been entered in the EXFOR database. For more information, access X4 datasetC0810.


1966CU04      Nucl.Phys. 84, 49 (1966)

J.G.Cuninghame, K.Fritze, J.E.Lynn, C.B.Webster

The Ratio Of Asymmetric To Symmetric Fission In Fission Of 239Pu By Neutrons Of Energies From 30 Kev To 14.7 Mev

NUCLEAR REACTIONS 239Pu(n, f), E=30 keV-14.7 MeV; measured products, 111Ag, 99Mo, 113Ag; deduced yields. Data were imported from EXFOR entry 22053.

doi: 10.1016/0029-5582(66)90432-9
Citations: PlumX Metrics

Data from this article have been entered in the EXFOR database. For more information, access X4 dataset22053.


1963FI03      Nucl.Phys. 41, 614 (1963)

F.W.K.Firk, J.E.Lynn, M.C.Moxon

Resonance Parameters of the Neutron Cross Section of U238

NUCLEAR STRUCTURE 238U; measured not abstracted; deduced nuclear properties.

doi: 10.1016/0029-5582(63)90541-8
Citations: PlumX Metrics

Data from this article have been entered in the EXFOR database. For more information, access X4 dataset20963.


1963FI06      Nucl.Phys. 44, 431 (1963)

F.W.K.Firk, J.E.Lynn, M.C.Moxon

Resonances in the Neutron Cross Section of Bismuth

NUCLEAR STRUCTURE 210Bi; measured not abstracted; deduced nuclear properties.

doi: 10.1016/0029-5582(63)90036-1
Citations: PlumX Metrics

Data from this article have been entered in the EXFOR database. For more information, access X4 dataset21318.


1963FI11      Proc.Phys.Soc.(London) 82, 477 (1963)

F.W.K.Firk, J.E.Lynn, M.C.Moxon

Analysis and Interpretation of the Neutron Cross Section of Vanadium below 25 keV

NUCLEAR STRUCTURE 52V; measured not abstracted; deduced nuclear properties.

doi: 10.1088/0370-1328/82/4/301
Citations: PlumX Metrics

Data from this article have been entered in the EXFOR database. For more information, access X4 dataset21277.


1962JA15      Phys.Rev. 127, 461 (1962)

H.E.Jackson, J.E.Lynn

Resonant Absorption Of Neutrons By Crystals

NUCLEAR REACTIONS Os(n, n), Os(n, x), U(n, n), U(n, x), E=6.65-6.71 eV; measured products; deduced resonance parameters. Data were imported from EXFOR entry 11373.

doi: 10.1103/PhysRev.127.461
Citations: PlumX Metrics

Data from this article have been entered in the EXFOR database. For more information, access X4 dataset11373.


1961LY01      Bull.Am.Phys.Soc. 6, No.1, 70, X9 (1961)

J.E.Lynn, F.W.Firk, M.C.Moxon

NUCLEAR STRUCTURE 52V; measured not abstracted; deduced nuclear properties.


1960FI06      Proc.Intern.Conf.Nuclear Structure, Kingston, Canada, D.A.Bromley, E.W.Vogt, Eds., Univ.Of Toronto Press, p.757 (1960)

F.W.K.Firk, J.E.Lynn, M.C.Moxon

Parameters of Neutron Resonances in U238 + n up to 1.8 keV

NUCLEAR STRUCTURE 239U; measured not abstracted; deduced nuclear properties.


1960LA05      Nuclear Phys. 17, 586 (1960)

A.M.Lane, J.E.Lynn

Anomalous Radiative Capture in the Neutron Resonance Region: Analysis of the experimentatl data on electric dipole transitions

NUCLEAR STRUCTURE 208Pb, 207Pb, 56Mn, 41Ca, 40K; measured not abstracted; deduced nuclear properties.

doi: 10.1016/0029-5582(60)90147-4
Citations: PlumX Metrics


1959FI33      Bull.Am.Phys.Soc. 4, No.1, 34, M4 (1959)

F.W.K.Firk, M.C.Moxon, J.E.Lynn

Neutron Total Cross Sections of Vanadium, Cobalt, and Bismuth from 3 to 30 keV

Data from this article have been entered in the EXFOR database. For more information, access X4 dataset21277.


1958LY03      Nuclear Phys. 5, 603 (1958)

J.E.Lynn, F.W.K.Firk, M.C.Moxon

The 2.85 keV Neutron Resonance of Sodium

doi: 10.1016/0029-5582(58)90059-2
Citations: PlumX Metrics

Data from this article have been entered in the EXFOR database. For more information, access X4 dataset21045.


1958LY63      Nuclear Phys. 7, 613 (1958)

J.E.Lynn, M.C.Moxon, F.W.K.Firk

The Low Energy Neutron Resonances of Bismuth

doi: 10.1016/0029-5582(58)90299-2
Citations: PlumX Metrics

Data from this article have been entered in the EXFOR database. For more information, access X4 dataset21119.


1958RA06      Nuclear Phys. 5, 89 (1958)

E.R.Rae, E.R.Collins, B.B.Kinsey, J.E.Lynn, E.R.Wiblin

Analyses of Slow Neutron Resonances in Silver

doi: 10.1016/0029-5582(58)90010-5
Citations: PlumX Metrics

Data from this article have been entered in the EXFOR database. For more information, access X4 dataset21315.


Back to query form