NSR Query Results


Output year order : Descending
Format : Normal

NSR database version of April 27, 2024.

Search: Author = A.Gezerlis

Found 25 matches.

Back to query form



2022BU09      Phys.Rev. C 105, 025807 (2022)

M.Buraczynski, S.Martinello, A.Gezerlis

Skyrme-based extrapolation for the static response of neutron matter

doi: 10.1103/PhysRevC.105.025807
Citations: PlumX Metrics


2021BU06      Phys.Lett. B 818, 136347 (2021)

M.Buraczynski, S.Martinello, A.Gezerlis

Satisfying the compressibility sum rule in neutron matter

doi: 10.1016/j.physletb.2021.136347
Citations: PlumX Metrics


2021IS11      Phys.Rev. C 104, 055802 (2021)

N.Ismail, A.Gezerlis

Machine-learning approach to finite-size effects in systems with strongly interacting fermions

doi: 10.1103/PhysRevC.104.055802
Citations: PlumX Metrics


2020BU03      Eur.Phys.J. A 56, 112 (2020)

M.Buraczynski, N.Ismail, A.Gezerlis

Neutron matter at the interface(s)

doi: 10.1140/epja/s10050-020-00096-x
Citations: PlumX Metrics


2020PA47      Phys.Rev. C 102, 064324 (2020)

G.Palkanoglou, F.K.Diakonos, A.Gezerlis

From odd-even staggering to the pairing gap in neutron matter

doi: 10.1103/PhysRevC.102.064324
Citations: PlumX Metrics


2019BU08      Phys.Rev.Lett. 122, 152701 (2019)

M.Buraczynski, N.Ismail, A.Gezerlis

Nonperturbative Extraction of the Effective Mass in Neutron Matter

NUCLEAR STRUCTURE N=0-140; calculated neutron-matter quasiparticle energies, auxiliary field diffusion Monte Carlo effective-mass ratio.

doi: 10.1103/PhysRevLett.122.152701
Citations: PlumX Metrics


2019RR01      Phys.Rev. C 99, 014321 (2019)

E.Rrapaj, A.O.Macchiavelli, A.Gezerlis

Symmetry restoration in mixed-spin paired heavy nuclei

NUCLEAR STRUCTURE 132Dy, 132Gd, 132Nd; calculated difference in ground-state binding energies between the unpaired nucleus and the one subject to pairing constraints, two-dimensional probability distributions, particle number and spin eigenstate composition of the ground state wave function, ground-state to ground-state pair transfer amplitudes; evidence of theoretical qualitative indications of spin-triplet, spin-singlet, or mixed-spin pairing. Hartree-Fock-Bogoliubov (HFB) theory with gradient and symmetry-restoration methods.

doi: 10.1103/PhysRevC.99.014321
Citations: PlumX Metrics


2017BU09      Phys.Rev. C 95, 044309 (2017)

M.Buraczynski, A.Gezerlis

Ab initio and phenomenological studies of the static response of neutron matter

doi: 10.1103/PhysRevC.95.044309
Citations: PlumX Metrics


2017LY01      Phys.Rev. C 96, 054007 (2017)

J.E.Lynn, I.Tews, J.Carlson, S.Gandolfi, A.Gezerlis, K.E.Schmidt, A.Schwenk

Quantum Monte Carlo calculations of light nuclei with local chiral two- and three-nucleon interactions

NUCLEAR STRUCTURE 2H; calculated deuteron wave functions, binding energy, asymptotic D/S ratio, quadrupole moment, root-mean-square (rms) matter radius, momentum distributions and tensor polarization at N2LO, deuteron energy at LO, NLO, and N2LO as function of radius. 3H, 3,4He; calculated wave functions for AV18+UIX at N22LO, energies using Green's function Monte Carlo (GFMC) method, kinetic and potential energy contributions to the GFMC energy, point-proton radii at LO, NLO, and N2LO, one-body proton and neutron distributions for 3,4He at N2LO, longitudinal charge form factor for 4He. Quantum Monte Carlo (QMC) calculations for light nuclei with local chiral NN and 3N interactions.

doi: 10.1103/PhysRevC.96.054007
Citations: PlumX Metrics


2016BU01      Phys.Rev. C 93, 014312 (2016)

B.Bulthuis, A.Gezerlis

Probing mixed-spin pairing in heavy nuclei

NUCLEAR STRUCTURE Z=50-75, N=50-75; calculated heat map contours showing fluctuations in neutron and proton numbers for heavy nuclei on and off the N=Z line, pairing gaps. 132Nd, 132Gd, 132Dy; calculated contour plots of correlation energies as a function of spin-singlet and spin-triplet pairing amplitudes, ratio of spin-singlet amplitude and the total pairing amplitude. Phenomenological Hamiltonian and Hartree-Fock-Bogoliubov theory along with the gradient method for mixed-spin pairing condensates.

doi: 10.1103/PhysRevC.93.014312
Citations: PlumX Metrics


2016BU08      Phys.Rev.Lett. 116, 152501 (2016)

M.Buraczynski, A.Gezerlis

Static Response of Neutron Matter

doi: 10.1103/PhysRevLett.116.152501
Citations: PlumX Metrics


2016KL06      Phys.Rev. C 94, 054005 (2016)

P.Klos, J.E.Lynn, I.Tews, S.Gandolfi, A.Gezerlis, H.-W.Hammer, M.Hoferichter, A.Schwenk

Quantum Monte Carlo calculations of two neutrons in finite volume

NUCLEAR STRUCTURE 2n; calculated ground state, energy and nodal surface of the first excited state for a two neutron-system in a box; extracted low-energy S-wave scattering parameters from ground- and excited-state energies for different box sizes using Luscher formula. Auxiliary-field diffusion Monte Carlo (AFDMC) calculations, and chiral EFT interactions. Relevance to effective field theories of strong interaction.

doi: 10.1103/PhysRevC.94.054005
Citations: PlumX Metrics


2016LY02      Phys.Rev.Lett. 116, 062501 (2016)

J.E.Lynn, I.Tews, J.Carlson, S.Gandolfi, A.Gezerlis, K.E.Schmidt, A.Schwenk

Chiral Three-Nucleon Interactions in Light Nuclei, Neutron-α Scattering, and Neutron Matter

NUCLEAR STRUCTURE 4He; analyzed available data; deduced binding and ground-state energies. Quantum Monte Carlo calculations of light nuclei using local two- and three-nucleon (3N) interactions derived from chiral effective field theory up to next-to-next-to-leading order (N2LO).

doi: 10.1103/PhysRevLett.116.062501
Citations: PlumX Metrics


2016TE01      Phys.Rev. C 93, 024305 (2016)

I.Tews, S.Gandolfi, A.Gezerlis, A.Schwenk

Quantum Monte Carlo calculations of neutron matter with chiral three-body forces

doi: 10.1103/PhysRevC.93.024305
Citations: PlumX Metrics


2014FO09      Phys.Rev. C 89, 041301 (2014)

M.M.Forbes, A.Gezerlis, K.Hebeler, T.Lesinski, A.Schwenk

Neutron polaron as a constraint on nuclear density functionals

doi: 10.1103/PhysRevC.89.041301
Citations: PlumX Metrics


2014GE06      Phys.Rev. C 90, 054323 (2014)

A.Gezerlis, I.Tews, E.Epelbaum, M.Freunek, S.Gandolfi, K.Hebeler, A.Nogga, A.Schwenk

Local chiral effective field theory interactions and quantum Monte Carlo applications

NUCLEAR STRUCTURE 2H; calculated binding energy, quadrupole moment, magnetic moment, asymptotic D/S ratio, rms radius, asymptotic s-wave factor, and the d-state probability using the local chiral potentials. Calculated ground-state energy for a 66-neutron matter system. Local chiral effective field theory interactions to next-to-next-to-leading order and Monte Carlo calculations for neutron matter.

doi: 10.1103/PhysRevC.90.054323
Citations: PlumX Metrics


2014LY02      Phys.Rev.Lett. 113, 192501 (2014)

J.E.Lynn, J.Carlson, E.Epelbaum, S.Gandolfi, A.Gezerlis, A.Schwenk

Quantum Monte Carlo Calculations of Light Nuclei Using Chiral Potentials

NUCLEAR STRUCTURE 3,4He, 2,3H; calculated one- and two-body proton distributions, nuclear radii, binding energies; deduced the necessity of a three-body force.

doi: 10.1103/PhysRevLett.113.192501
Citations: PlumX Metrics


2013GE03      Phys.Rev.Lett. 111, 032501 (2013)

A.Gezerlis, I.Tews, E.Epelbaum, S.Gandolfi, K.Hebeler, A.Nogga, A.Schwenk

Quantum Monte Carlo Calculations with Chiral Effective Field Theory Interactions

doi: 10.1103/PhysRevLett.111.032501
Citations: PlumX Metrics


2012GE01      Phys.Rev. C 85, 015806 (2012)

A.Gezerlis, R.Sharma

Phase separation in low-density neutron matter

doi: 10.1103/PhysRevC.85.015806
Citations: PlumX Metrics


2012GE02      Phys.Rev. C 85, 037303 (2012)

A.Gezerlis, G.F.Bertsch

Energy spectrum and effective mass using a nonlocal 3-body interaction

NUCLEAR STRUCTURE 208Pb; calculated contributions to the energy of 208Pb in density functional theory using Skyrme Ska and Gogny D1S functionals obtained with the EV8 and the HFBAXIAL computer codes. Nonlocal 3-body interaction.

doi: 10.1103/PhysRevC.85.037303
Citations: PlumX Metrics


2011GE05      Phys.Rev.Lett. 106, 252502 (2011)

A.Gezerlis, G.F.Bertsch, Y.L.Luo

Mixed-Spin Pairing Condensates in Heavy Nuclei

NUCLEAR STRUCTURE 132Dy, 132Gd, 132Nd; calculated ground state wave functions, correlation energy contour plots, pairing gaps. deduced mixed-spin condensate. Bogoliubov-de Gennes formalism.

doi: 10.1103/PhysRevLett.106.252502
Citations: PlumX Metrics


2011GE06      Phys.Rev. C 83, 065801 (2011)

A.Gezerlis

Spin-polarized low-density neutron matter

doi: 10.1103/PhysRevC.83.065801
Citations: PlumX Metrics


2010GE01      Phys.Rev. C 81, 025803 (2010)

A.Gezerlis, J.Carlson

Low-density neutron matter

doi: 10.1103/PhysRevC.81.025803
Citations: PlumX Metrics


2010GE05      Phys.Rev.Lett. 105, 212501 (2010)

A.Gezerlis, G.F.Bertsch

Effective 3-Body Interaction for Mean-Field and Density-Functional Theory

doi: 10.1103/PhysRevLett.105.212501
Citations: PlumX Metrics


2008GE01      Phys.Rev. C 77, 032801 (2008)

A.Gezerlis, J.Carlson

Strongly paired fermions: Cold atoms and neutron matter

doi: 10.1103/PhysRevC.77.032801
Citations: PlumX Metrics


Back to query form