NSR Query Results


Output year order : Descending
Format : Normal

NSR database version of April 11, 2024.

Search: Author = A.V.Afanasjev

Found 169 matches.

    Showing 1 to 100.

   [Next]

Back to query form



2024TA08      Phys.Rev. C 109, 024321 (2024)

A.Taninah, B.Osei, A.V.Afanasjev, U.C.Perera, S.Teeti

Toward accurate nuclear mass tables in covariant density functional theory

doi: 10.1103/PhysRevC.109.024321
Citations: PlumX Metrics


2023JA13      Astrophys.J. 955, 51 (2023)

R.Jain, E.F.Brown, H.Schatz, A.V.Afanasjev, M.Beard, L.R.Gasques, S.S.Gupta, G.W.Hitt, W.R.Hix, R.Lau, P.Moller, W.J.Ong, M.Wiescher, Y.Xu

Impact of Pycnonuclear Fusion Uncertainties on the Cooling of Accreting Neutron Star Crusts

NUCLEAR REACTIONS 40Mg(40Mg, X)80Cr, 44Mg(40Mg, X)84Cr, 44Mg(44Mg, X)88Cr, 44Mg(38Ne, X)82Ti, 40Mg(38Ne, X)78Ti, 32Ne(32Ne, X)64Ca, 32Ne(30Ne, X)62Ca, 30Ne(30Ne, X)60Ca, 40Mg(24O, X), E not given; calculated abundances, pycnonuclear fusion rates using the reaction network with the thermal evolution code dStar. 56Fe; deduced impact of uncertainties on the depth at which nuclear heat is deposited although the total heating remains constant.

doi: 10.3847/1538-4357/acebc4
Citations: PlumX Metrics


2023PE09      Phys.Rev. C 107, 064321 (2023)

U.C.Perera, A.V.Afanasjev

Differential charge radii: Proton-neutron interaction effects

NUCLEAR STRUCTURE 198,200,202,204,206,208,210,212,214,216,218Pb; calculated differential charge radii. 218Pb; calculated proton single-particle density redistributions caused by the occupation of neutron subshells, contributions of different spherical subshells to the buildup of differential charge radii. 208,218Pb; single-particle wave functions of proton and neutron subshells. Calculations were performed within the framework of covariant density functional theory (CDFT) with NL3* functional. Comparison with experimental data.

doi: 10.1103/PhysRevC.107.064321
Citations: PlumX Metrics


2023TA07      Phys.Rev. C 107, L041301 (2023)

A.Taninah, A.V.Afanasjev

Anchor-based optimization of energy density functionals

NUCLEAR STRUCTURE Z=1-118; calculated binding energies, charge radii, S(2n), S(2p), masses. 48Ca, 208Pb; calculated neutron skin thickness. Combination of fitting procedure of EDFs to spherical nuclei with global information on the reproduction of experimental masses by EDFs, done by correcting the binding energies of the anchor spherical nuclei used in optimization.

doi: 10.1103/PhysRevC.107.L041301
Citations: PlumX Metrics


2022PE14      Phys.Rev. C 106, 024321 (2022)

U.C.Perera, A.V.Afanasjev

Bubble nuclei: Single-particle versus Coulomb interaction effects

NUCLEAR STRUCTURE 34Si, 36S, 208Pb, 292120, 310126, 466156, 592186; calculated proton and neutron densities as a function of radial coordinate, rms radii of proton and neutron matter distributions, Coulomb potentials, nucleonic potentials and occupied single-particle states of the ground state configurations, total density from the contributions of spherical subshells as function of orbital angular momentum, Single-particle densities of the s-states occupied in the bubble nuclei, depletion factor for proton and neutron subsystems, proton and neutron potentials. 208Pb, 292120, 310126; calculated density distributions for protons and neutrons, single-particle neutrons, and single-particle neutron and proton s-states. 34Si, 36S; calculated Single-particle proton and neutron density distributions of the occupied states. 208,220,230,246,254Pb, 268Cm, 278Sg, 292,302,304120, 310126; calculated changes in proton and neutron densities with increasing proton and neutron numbers. 56Ni, 100Sn, 164Pb, 240120, 252126, 312156, 372186; calculated proton and neutron densities, proton and neutron nucleonic potentials, depletion factors for proton and neutron subsystems for N=Z nuclei. 592186; calculated single-particle states. 292120, 310126; calculated nucleonic potentials for the single-proton states located between the Fermi level and the top of the Coulomb barrier and for the neutron single-particle states located below the continuum threshold. 312,466156, 372,592186; calculated proton and neutron densities. 372,592186; calculated neutron and proton single-particle states. 254No, 276Cn; calculated Coulomb potentials in deformed ground state and excited spherical solution of the nuclei using RHB. Covariant density functional theory for the formation of bubble structures in nuclei with emphasis on the role of the single-particle degrees of freedom and Coulomb interaction.

doi: 10.1103/PhysRevC.106.024321
Citations: PlumX Metrics


2021AF01      Phys.Rev. C 103, 054612 (2021)

A.V.Afanasev, D.V.Karlovets, V.G.Serbo

Elastic scattering of twisted neutrons by nuclei

NUCLEAR REACTIONS 197Au(n, n), (polarized n, n), E=0.025 eV; calculated differential cross section, longitudinal and transverse spin asymmetries as function of neutron scattering azimuthal angle, helicity asymmetry, polarization of scattered neutrons. Theoretical formalism for scattering of twisted neutrons by nuclei.

doi: 10.1103/PhysRevC.103.054612
Citations: PlumX Metrics


2021AG03      Phys.Rev. C 103, 034323 (2021)

S.E.Agbemava, A.V.Afanasjev

Hyperheavy spherical and toroidal nuclei: The role of shell structure

NUCLEAR STRUCTURE 456156; calculated binding energy as function of β2 deformation parameter. Z=1-200, N=1-440; calculated distribution of ellipsoidal and toroidal shapes in the nuclear landscape using RHB with CEDF DD-PC1. 58Ni, 100,132Sn, 208Pb, 304120, 366138, 462154, 592186; calculated proton and neutron shell gaps, fission barrier heights as functions of proton and neutron numbers using NL1, NL3, NL3*, FSUGold, DD-ME2, DD-MEδ, DD-PC1, PC-PK1, PC-F1, and TM1 covariant energy density functionals. 592186; calculated potential energy surfaces in (β2, β3) and (β2cos(γ+30°), β3sin(γ+30°))plane. 348138, 466156, 584174, 592186; calculated proton and neutron densities. 348138, 466156; calculated proton and neutron single-particle energies, deformation energy curves and dominant components Nilsson wave functions, Z=126-144, N=206-228; Z=128-144, N=204-228; Z=126-144; calculated S(2n), S(2p) for even-even nuclei. Investigation of the properties of spherical and toroidal hyperheavy even-even nuclei and their underlying shell structures using covariant density functional theory (CDFT).

doi: 10.1103/PhysRevC.103.034323
Citations: PlumX Metrics


2021DA01      Phys.Rev.Lett. 126, 032502 (2021)

T.Day Goodacre, A.V.Afanasjev, A.E.Barzakh, B.A.Marsh, S.Sels, P.Ring, H.Nakada, A.N.Andreyev, P.Van Duppen, N.A.Althubiti, B.Andel, D.Atanasov, J.Billowes, K.Blaum, T.E.Cocolios, J.G.Cubiss, G.J.Farooq-Smith, D.V.Fedorov, V.N.Fedosseev, K.T.Flanagan, L.P.Gaffney, L.Ghys, M.Huyse, S.Kreim, D.Lunney, K.M.Lynch, V.Manea, Y.Martinez Palenzuela, P.L.Molkanov, M.Rosenbusch, R.E.Rossel, S.Rothe, L.Schweikhard, M.D.Seliverstov, P.Spagnoletti, C.Van Beveren, M.Veinhard, E.Verstraelen, A.Welker, K.Wendt, F.Wienholtz, R.N.Wolf, A.Zadvornaya, K.Zuber

Laser Spectroscopy of Neutron-Rich 207, 208Hg Isotopes: Illuminating the Kink and Odd-Even Staggering in Charge Radii across the N = 126 Shell Closure

NUCLEAR MOMENTS 202,203,206,207,208Hg; measured frequencies; deduced hyperfine spectra, mean-square charge radii. Comparison with relativistic Hartree-Bogoliubov and nonrelativistic Hartree-Fock-Bogoliubov approaches, available data.

doi: 10.1103/PhysRevLett.126.032502
Citations: PlumX Metrics

Data from this article have been entered in the XUNDL database. For more information, click here.


2021DA16      Phys.Rev. C 104, 054322 (2021)

T.Day Goodacre, A.V.Afanasjev, A.E.Barzakh, L.Nies, B.A.Marsh, S.Sels, U.C.Perera, P.Ring, F.Wienholtz, A.N.Andreyev, P.Van Duppen, N.A.Althubiti, B.Andel, D.Atanasov, R.S.Augusto, J.Billowes, K.Blaum, T.E.Cocolios, J.G.Cubiss, G.J.Farooq-Smith, D.V.Fedorov, V.N.Fedosseev, K.T.Flanagan, L.P.Gaffney, L.Ghys, A.Gottberg, M.Huyse, S.Kreim, P.Kunz, D.Lunney, K.M.Lynch, V.Manea, Y.Martinez Palenzuela, T.M.Medonca, P.L.Molkanov, M.Mougeot, J.P.Ramos, M.Rosenbusch, R.E.Rossel, S.Rothe, L.Schweikhard, M.D.Seliverstov, P.Spagnoletti, C.Van Beveren, M.Veinhard, E.Verstraelen, A.Welker, K.Wendt, R.N.Wolf, A.Zadvornaya, K.Zuber

Charge radii, moments, and masses of mercury isotopes across the N=126 shell closure

NUCLEAR MOMENTS 198,202,203,206,207,208Hg; measured hyperfine structure spectra using Versatile Arc Discharge and Laser Ion Source (VADLIS) in CERN-ISOLDE Resonance Ionization Laser Ion Source (RILIS) mode; deduced isotope shifts (δν) and charge radii (δ<r2) with respect to 198Hg, hyperfine factors a and b, static magnetic dipole (μ) and electric quadrupole (Q) moments for the ground states of 203Hg and 207Hg, Comparison of g factors with Schmidt values for 207Hg, 209Pb, 210Bi and 211Po, and charge radii, and odd-even staggering (OES) of the mean square charge radii with relativistic Hartree-Bogoliubov (RHB) calculations using DD-ME2, DD-MEδ, DD-PC1 and NL3* covariant energy-density functionals for 197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214Pb, 201,202,203,204,205,206,207,208,209,210Hg. Source of Hg isotopes were produced in Pb(p, X), E=1.4 GeV reaction, and using VADLIS+RILIS ion source, followed by separation of fragments using ISOLDE General Purpose Separator. 183,184,185,202,203,206,207,208Hg; measured ionization and release efficiency as a function of the half-life of mercury isotopes from a molten lead target, and compared with ABRABLA, FLUKA, and GEANT4 simulations.

ATOMIC MASSES 206,207,208Hg, 208Pb; measured time-of-flight ion-cyclotron resonances, with reference to 208Pb using the RILIS+VADIS ion source and ISOLTRAP MR-ToF mass spectrometer (MS) at CERN-ISOLDE; deduced mass excesses for 206,207,208Hg, and compared with AME2020 values.

doi: 10.1103/PhysRevC.104.054322
Citations: PlumX Metrics

Data from this article have been entered in the XUNDL database. For more information, click here.


2021PE14      Phys.Rev. C 104, 064313 (2021)

U.C.Perera, A.V.Afanasjev, P.Ring

Charge radii in covariant density functional theory: A global view

NUCLEAR STRUCTURE 208Pb, 132Sn, 40,48Ca; calculated neutron and proton single-particle states at spherical shape, charge radius, neutron skin, neutron single-particle rms radii without pairing, using DDME2, DDMEδ, DDPC1, NL3*, and PCPK1 interactions. 134Sn; calculated occupation probabilities of the neutron orbitals located above the N=82 shell closure. 198,200,202,204,206,208,210,212,214,216Pb; 176,178,180,182,184,186,188,190,192,194,196,198,200,202,204,206,208,210,212,214,216,218,220,222,224,226,228,230,232,234,236,238,240,242,244,246,248,250,252,254,256,258,260,262,264,266Pb; calculated rms charge radii without and with pairing, the latter using RHB approach, using DDME2, DDMEδ, DDPC1, NL3*, and PCPK1 interactions and for all the even-even Pb isotopes located between the two-proton and two-neutron drip lines, compared to available experimental data. Z=78, 80, 82, 84, 86, N=104-136 (even); Z=50, 52, 54, 56, 58, 60, 62, 64, N=50-100 (even); Z=36, 38, 42, N=32-70 (even); Z=18, 20, 22, 24, 26, N=12-38 (even); 100,102,104,106,108,110,112,114,116,118,120,122,124,126,128,130,132,134,136Sn, 72,74,76,78,80,82,84,86,88,90,92,94,96,98,100,102,104,106,108Sr, 34,36,38,40,42,44,46,48,50,52,54,56,58,60Ca; calculated charge radii δ(r2) for even-even nuclei as function of neutron number using DDME2, DDMEδ, DDPC1, NL3*, and PCPK1 interactions, and compared with available experimental data. Z=10, N=9-15; Z=18, N=15-25; Z=20, N=17-31; Z=22, N=23-27; Z=36, N=39-59; Z=38, N=40-61; Z=48, N=55-69; Z=50, N=59-81; Z=54, N=83-89; Z=56, N=65-89; Z=60, N=75-85; Z=62, N=77-91; Z=66, N=83-97; Z=70, N=85-105; Z=72, N=99-107; Z=78, N=101-117; Z=80, N=98-125; Z=82, N=101-129; Z=84, N=108-126; Z=86, N=119-125, 133-135; Z=88, N=121-125, 133-141; Z=90, N=138-139; Z=92, N=142-143; Z=94, N=145-147; compiled odd-even staggering (OES) of experimental charge radii of even-Z nuclei. 30,32,34,36,38,40,42,44,46,48,50Ar, 32,34,36,38,40,42,44,46,48,50,52Ca, 38,40,42,44,46,48,50,52,54,56,58Ti, 44,46,48,50,52,54,56,58,60,62,64Cr, 46,48,50,52,54,56,58,60,62,64Fe, 68,70,72,74,76,78,80,82,84,86,88Kr, 72,74,76,78,80,82,84,86,88,90,92,94,96,98,100Sr, 80,82,84,86,88,90,92,94,96,98,100,102,104,106,108Mo, 94,96,98,100,102,104,106,108,110,112,114Cd, 100,102,104,106,108,110,112,114,116,118,120Sn, 108,110,112,114,116,118,120,122,124,126,128Te, 110,112,114,116,118,120,122,124,126,128,130Xe, 114,116,118,120,122,124,126,128,130,132,134Ba, 118,120,122,124,126,128,130,132,134,136,138Ce, 122,124,126,128,130,132,134,136,138,140,142Nd, 128,130,132,134,136,138,140,142,144,146,148Sm, 132,134,136,138,140,142,144,146,148,150,152Gd, 178,180,182,184,186,188,190,192,194,196,198Pt, 184,186,188,190,192,194,196,198,200,202,204Po, 186,188,190,192,194,196,198,200,202,204,206Rn; calculated potential energy curves as function of deformation parameter β2 obtained with constrained axial RHB calculations using DDME2, DDMEδ, DDPC1, NL3*, and PCPK1 covariant energy density functionals; deduced β2 parameters in different mass regions. These data are from Supplemental Material of the paper. Detailed systematic global investigation of differential charge radii within the covariant density functional theory (CDFT) framework.

doi: 10.1103/PhysRevC.104.064313
Citations: PlumX Metrics


2021TE03      Phys.Rev. C 103, 034310 (2021)

S.Teeti, A.V.Afanasjev

Global study of separable pairing interaction in covariant density functional theory

NUCLEAR STRUCTURE Z=20, N=15-37; Z=28, N=21-50; Z=50, N=51-86; Z=82, N=96-136; N=20, Z=10-27; N=28, Z=13-32; N=50, Z=29-49; N=82, Z=48-72; N=126, Z=77-92; analyzed experimental neutron and proton pairing indicators of spherical nuclei. N=2-36, Z=2-20; N=16-68, Z=22-40; N=44-100, Z=42-62; N=72-126, Z=64-78; N=92-156, Z=80-98; N=141-170, Z=98-112; Z=4-32; N=4-32; Z=20-56, N=34-62; Z=40-76, N=64-92; Z=56-88, N=94-122; Z=78-104, N=124-152; Z=98-110, N=154-168; analyzed experimental neutron and protonindicators based on measured and estimated binding energies. N=4-170; A=10-280; N-Z=2-58; analyzed distributions of the scaling factors of neutron and proton pairings in the nuclear chart; deduced parameters of global functional dependencies. Analysis of pairing properties based on all the available experimental data on pairing indicators in the framework of covariant density functional theory using NL5(E) covariant energy density functional.

doi: 10.1103/PhysRevC.103.034310
Citations: PlumX Metrics


2020AL10      Phys.Rev. C 102, 024326 (2020)

S.O.Allehabi, V.A.Dzuba, V.V.Flambaum, A.V.Afanasjev, S.E.Agbemava

Using isotope shift for testing nuclear theory: The case of nobelium isotopes

NUCLEAR STRUCTURE 252,254No; calculated nuclear charge distributions, rms charge radii for five nuclear models using covariant density functional theory (CDFT) with state-of-the-art covariant energy density functionals, isotope shifts and field isotope shifts for four electric dipole atomic transitions using CI+MBPT method. Comparison with experimental data. 254No, 286No; calculated difference in charge radii, isotope shifts between 254No and hypothetical 286No in different nuclear models for four electric dipole transitions from the ground state.

doi: 10.1103/PhysRevC.102.024326
Citations: PlumX Metrics


2020CA18      Phys.Rev. C 102, 024311 (2020)

Y.Cao, S.E.Agbemava, A.V.Afanasjev, W.Nazarewicz, E.Olsen

Landscape of pear-shaped even-even nuclei

NUCLEAR STRUCTURE Z=40-100, N=40-200; calculated ground state octupole deformations β3 and octupole deformation energies of even-even nuclei in the (Z, N) plane using the Skyrme energy density functionals (SEDFs): UNEDF0, UNEDF1, UNEDF2, SLy4, and SV-min. 80Zr, 112,146Ba, 224Ra, 286Th; calculated Single-particle energy splitting between the unusual-parity intruder shell and the normal-parity shell using (SEDFs): UNEDF0, UNEDF1, UNEDF2, SLy4, SV-min, DD-ME2, NL3*, DD-PC1 and PC-PK1. 212,214,216,218,220,222,224,226,228,230Rn, 214,216,218,220,222,224,226,228,230,232Ra, 216,218,220,222,224,226,228,230,232,234Th, 216,218,220,222,224,226,228,230,232,234U, 138,140,142,144,146,148,150,152Ba, 140,142,144,146,148,150,152,154Ce, 142,144,146,148,150,152,154,156Nd; calculated deformation parameters β2, β3, and octupole deformation energies using the Skyrme energy density functionals models. 112,114,144,146,148Ba, 144,146,148Ce, 146,148,196,198Nd, 150,194,196,198Sm, 196,198,200Gd, 198,200,202Dy, 200,202Er, 218,220,222,224,278,280,282Rn, 218,220,222,224,226,228,280,282,284,286,288Ra, 220,222,224,226,228,282,284,286,288,290Th, 222,224,226,228,230,282,284,286,288,290U, 224,226,228,230,232,284,286,288,290,292Pu, 224,226,228,230,284,286,288,290,292,294Cm, 226,228,230,284,286,288,290,292,294,296Cf, 226,228,230,232,284,286,288,290,292,294,296,298Fm, 230,286,288,290,292,294,296,298No, 288,290,292,294,296,300Rf, 290,292,294Sg; calculated β3 deformation parameter, octupole deformation energies, proton moments Q20 and Q30 for octupole-deformed nuclei obtained in five Skyrme energy density functionals, and four covariant energy density functionals. Comparison between Skyrme and covariant models, and with relevant experimental data. See also supplemental material.

doi: 10.1103/PhysRevC.102.024311
Citations: PlumX Metrics


2020IT01      Phys.Rev. C 101, 034304 (2020)

N.Itagaki, A.V.Afanasjev, D.Ray

Possibility of 14C cluster as a building block of medium-mass nuclei

NUCLEAR STRUCTURE 12,14C, 16O, 24,28Mg, 32S, 42Ar; calculated energies of 0+ states, principal quantum numbers, neutron density distribution contours, and elastic form factor of 12C, 14C, and 16O clusters, and treating 24Mg as 12C+12C, 28Mg as 14C+14C, 32S as 16O+16O, and 42Ar as 14C+14C+14C cluster structures. Antisymmetrized quasicluster model (AQCM), and cranked relativistic mean field (CRMF) calculations. Discussed role of the 14C cluster as a possible building block of cluster structures in medium-mass nuclei.

doi: 10.1103/PhysRevC.101.034304
Citations: PlumX Metrics


2020TA21      Phys.Rev. C 102, 054330 (2020)

A.Taninah, S.E.Agbemava, A.V.Afanasjev

Covariant density functional theory input for r-process simulations in actinides and superheavy nuclei: The ground state and fission properties

NUCLEAR STRUCTURE 206,208,210,212,214,216,218,220,220,220,220,220,230,232,234,236,238,240,242,244,246,248,250,252,254,256,258,260,262,264,266,268,270,272,274,276,278,280,282,284,286,288,290,292,294,296,298,300Th, 264,266,258,270,272,274,276,278,280,282,284,286,288,290,292,294,296,298,300,302,304,306,308,310,312,314,316,318,320,322,324,326,328,330,332,334,336,338,340,342,344,346,348,350,352,354,356,358,360,362,364,366,368Ds; calculated binding energies as function of deformation β2. 240,242,326,328Cf, 246,330,332Fm, 248,250,334,336No, 250,252,254Rf, 254,256Sg; calculated superdeformed minima, β2, β3, second fission barriers, deformation energy curves and potential energy surface in (β2, β3) plane for 240Cf. 202,204,308,346Th, 210,214,316,350U, 216,220,326,352Pu, 222,224,348,354Cm, 228,354,356Cf, 232,358Fm, 236,238,360No, 242,244,362Rf, 248,250,364Sg, 254,256,366,396Hs, 260,264,368,402Ds, 266,270,370,410Cn, 272,276,376,416Fl, 278,282,402,428Lv, 284,288,412,436Og, 290,294,418,434120; predicted two-proton and two-neutron drip lines. 298,302,306,308,310,312,316,318,320,322,326,328,330,332,336,340Og; calculated potential-energy surfaces in (β2cos(γ+30), β2sin(γ+30)) plane. Z=90-120, N=110-320; calculated proton quadrupole deformations β2, binding-energies, S(2n), Q(α), α-decay half-lives, heights of primary fission barriers. Covariant density functional theory (CDFT) using state-of-the-art DD-PC1, DD-ME2, NL3*, and PC-PK1 CEDFs. Comparison to available data. Relevance to r-process modeling in heavy nuclei, and for the study of fission cycling.

doi: 10.1103/PhysRevC.102.054330
Citations: PlumX Metrics


2020ZH17      Phys.Rev. C 101, 054303 (2020)

Z.-H.Zhang, M.Huang, A.V.Afanasjev

Rotational excitations in rare-earth nuclei: A comparative study within three cranking models with different mean fields and treatments of pairing correlations

NUCLEAR STRUCTURE 164,166,168,170Er, 165,167,169,171Tm, 166,168,170,172Yb; calculated high-spin levels, J, π, Nilsson configurations, kinematic moment of inertia versus angular frequency plots for the ground-state bands, β and γ deformation parameters, proton and neutron pairing energies, total- and neutron and proton single particle-Routhians, angular momentum alignments, and neutron occupation probabilities using the cranked relativistic Hartree-Bogoliubov (CRHB) with Lipkin-Nogami method, the cranking covariant density functional theory (CDFT) with pairing correlations treated by a shell-model-like approach (SLAP), and the cranked shell model based on the Nilsson potential with pairing correlations treated by the particle-number conserving (CSM-PNC) method. Comparison with experimental data.

doi: 10.1103/PhysRevC.101.054303
Citations: PlumX Metrics


2019AF06      Phys.Rev. C 100, 051601 (2019)

A.V.Afanasev, D.V.Karlovets, V.G.Serbo

Schwinger scattering of twisted neutrons by nuclei

NUCLEAR REACTIONS 197Au(n, n), E=cold and thermal neutrons; calculated angular distributions and helicity asymmetry for Schwinger scattering of twisted neutrons.

doi: 10.1103/PhysRevC.100.051601
Citations: PlumX Metrics


2019AG03      Phys.Rev. C 99, 014318 (2019)

S.E.Agbemava, A.V.Afanasjev, A.Taninah

Propagation of statistical uncertainties in covariant density functional theory: Ground state observables and single-particle properties

NUCLEAR STRUCTURE 34,36,38,40,42,44,46,48,50,52,54,56,58,60,62,64,66,68,70,72,74,76Ca, 50,52,54,56,58,60,62,64,66,68,70,72,74,76,78,80,82,84,86,88,90,92,94,96Ni, 98,100,102,104,106,108,110,112,114,116,118,120,122,124,126,128,130,132,134,136,138,140,142,144,146,148,150,152,154,156,158,160,162,164,166,168,170,172Sn, 176,178,180,182,184,186,188,190,192,194,196,198,200,202,204,206,208,210,212,214,216,218,220,222,224,226,228,230,232,234,236,238,240,242,244,246,248,250,252,254,256,258,260,262,264,266Pb, 304120; calculated range of variations of parameters and statistical uncertainties in total binding energy, charge radii, S(2n), and neutron skins using covariant energy density functional theory (CDFT) with only the covariant energy density functionals (CEDFs) with nonlinear density dependency. 208,266Pb, 304120; calculated neutron and proton single-particle states, and relative energies of the pairs of neutron and proton single-particle states. Z=2-112, N=2-172; deduced differences between theoretical and experimental binding energies for several CEDFs for even-even nuclei; calculated charge quadrupole deformations β2 of ground states in even-even nuclei using the RHB calculations. Z=2-96, N=2-152; deduced differences between theoretical and experimental charge radii for several CEDFs.

doi: 10.1103/PhysRevC.99.014318
Citations: PlumX Metrics


2019AG06      Phys.Rev. C 99, 034316 (2019)

S.E.Agbemava, A.V.Afanasjev, A.Taninah, A.Gyawali

Extension of the nuclear landscape to hyperheavy nuclei

NUCLEAR STRUCTURE 208Pb, 466156; calculated binding energies versus β2. 366138, 466156, 580174; calculated neutron and proton single-particle energies, potential energy surfaces (PES) in (β2, β3) and (β2, γ) planes. 466156; calculated neutron density distribution versus β2, neutron and proton pairing energies and pairing gaps as a function of the β2 and γ deformations. 208Pb, 292120, 368138, 466156, 584174; calculated proton and neutron densities, charge radii, neutron skins. 296,300122, 316,320124; calculated deformation energy curves as function of β2, potential energy surfaces (PES) in (β2, β3) plane. 324,328,332,336,340,344,348,352,356,360,364,368,372,376,380,384,388,392,396,400,404,408,412,416,420,424,428,432,436,440,444,448,452,456,460,464138; calculated deformation energy curves, and proton and neutron chemical potentials as function of β2. 268Sg, 332Ds, 360130, 354,432134, 348138; calculated three-dimensional potential energy surfaces in (β2, β4, γ) plane. 258,268,278,288,298,308,318,328,338,348,358Sg, 272,282,292,302,312,322,332,342,352,362Ds, 276,286,296,306,316,326,336,346,356,366Fl, 290,300,310,320,330,340,350,360,370,380,390Og; calculated heights of fission barriers along the fission paths for quadrupole and triaxial deformations, inner fission barrier heights. 208Pb, 354134, 466156, 426176; calculated Coulomb energies as function of β2. Z=140-180, N=192-420; calculated proton β2 values of the lowest in energy solutions of the Z=140-180 nuclei. Z=132-176, N=292-324; calculated S(2n), S(2p), neutron and proton pairing energies for spherical minima. Z=2-170, N=2-440; calculated proton quadrupole deformations β2 of the lowest in energy minima for axial symmetry with ellipsoidal-like shapes, for nuclei with fission barriers > 2 MeV, and nuclei with two-proton and two-neutron drip lines. Covariant density functional theory with DD-ME2, PC-PK1, DD-PC1 and NL3* functionals, based on axial reflection symmetric and reflection asymmetric relativistic Hartree-Bogoliubov (RHB) calculations, and treating triaxiality within the triaxial RHB and triaxial relativistic mean field+BCS frameworks.

doi: 10.1103/PhysRevC.99.034316
Citations: PlumX Metrics


2019SH23      Phys.Rev. C 99, 064316 (2019)

Z.Shi, A.V.Afanasjev, Z.P.Li, J.Meng

Superheavy nuclei in a microscopic collective Hamiltonian approach: The impact of beyond-mean-field correlations on ground state and fission properties

NUCLEAR STRUCTURE 292,294,296,298,300,302,304,306,308,310120, 282Hs, 284Ds, 286,296Cn, 288,298Fl, 290,300Lv, 292,302Og, 296,306122, 298124; calculated potential energy surfaces, collective energy surfaces, and probability density distributions in (β, γ) plane for 292,298,304,310120, quadrupole deformations, energies of the first 2+ states, B(E2) for first 2+ states, heights of inner fission barriers, dynamical correlations energies at the ground states and the saddles of inner fission barriers, energy differences between the saddle points and the minima of collective energy surfaces. Five-dimensional collective Hamiltonian (5DCH) based on covariant density functional theory, with DD-PC1 and PC-PK1 functionals.

doi: 10.1103/PhysRevC.99.064316
Citations: PlumX Metrics


2018AF01      Phys.Scr. 93, 034002 (2018)

A.V.Afanasjev, H.Abusara, S.E.Agbemava

Octupole deformation in neutron-rich actinides and superheavy nuclei and the role of nodal structure of single-particle wavefunctions in extremely deformed structures of light nuclei

NUCLEAR STRUCTURE 292Cm, 36Ar; calculated octupole deformed shapes in neutron-rich actinides; deduced the presence of new region of octupole deformation in neutron-rich actinides, lack of octupole deformation in the ground states of superheavy for Z>108.

doi: 10.1088/1402-4896/aaa3d0
Citations: PlumX Metrics


2018AF02      Phys.Rev. C 97, 024329 (2018)

A.V.Afanasjev, H.Abusara

From cluster structures to nuclear molecules: The role of nodal structure of the single-particle wave functions

NUCLEAR STRUCTURE 12C, 28Si, 36Ar, 40Ca, 42Sc; calculated nodal structures of neutron density distributions of single-particle states with Nilsson quantum numbers in highly deformed structures such as rod-shaped, hyperdeformed and megadeformed of nonrotating and rotating nuclei; discussed coexistence of ellipsoidal mean-field-type structures and nuclear molecules at similar excitation energies. Cranked relativistic mean field (CRMF) calculations.

doi: 10.1103/PhysRevC.97.024329
Citations: PlumX Metrics


2018BH07      Phys.Rev. C 98, 044316 (2018)

S.Bhattacharyya, E.H.Wang, A.Navin, M.Rejmund, J.H.Hamilton, A.V.Ramayya, J.K.Hwang, A.Lemasson, A.V.Afanasjev, S.Bhattacharya, J.Ranger, M.Caamano, E.Clement, O.Delaune, F.Farget, G.de France, B.Jacquot, Y.X.Luo, Yu.Ts.Oganessian, J.O.Rasmussen, G.M.Ter-Akopian, S.J.Zhu

Deformed band structures in neutron-rich 152-158Pm isotopes

NUCLEAR REACTIONS 9Be(238U, F), E=6.2 MeV/nucleon; measured fission fragments, time of flight, Eγ, Iγ, γγ- and (fragment)γ-coin using the VAMOS++ magnetic spectrometer for fragment separation and the EXOGAM segmented Clover array for γ detection at GANIL. 152,153,154,155,156,157,158Pm; deduced high-spin levels, J, π, bands, alignment and staggering plots. 151Pm; measured γ spectrum in coincidence with fission fragments. Systematics of band structures in 151,153,155,157Pm. Comparison with previous experimental values and cranked Hartree-Bogoliubov calculations.

RADIOACTIVITY 252Cf(SF); measured Eγ, Iγ, γ(θ), high-fold γγ-coin using Gammasphere array with 101 HPGe detectors at LBNL. 152,153,154,155,156,157,158Pm; deduced high-spin levels, bands.

doi: 10.1103/PhysRevC.98.044316
Citations: PlumX Metrics

Data from this article have been entered in the XUNDL database. For more information, click here.


2018LA06      Astrophys.J. 859, 62 (2018)

R.Lau, M.Beard, S.S.Gupta, H.Schatz, A.V.Afanasjev, E.F.Brown, A.Deibel, L.R.Gasques, G.W.Hitt, W.R.Hix, L.Keek, P.Moller, P.S.Shternin, A.W.Steiner, M.Wiescher, Y.Xu

Nuclear Reactions in the Crusts of Accreting Neutron Stars

doi: 10.3847/1538-4357/aabfe0
Citations: PlumX Metrics


2017AG05      Phys.Rev. C 95, 054324 (2017)

S.E.Agbemava, A.V.Afanasjev, D.Ray, P.Ring

Assessing theoretical uncertainties in fission barriers of superheavy nuclei

NUCLEAR STRUCTURE 276,278,280,282,284,286,288,290,292,294,296Cn, 280,282,284,286,288,294,296,298Fl, 284,286,288,290,292,294,296,298,300Lv, 288,290,294,296,298,300,302,304,306Og, 292,294,296,298,300,302,304,306,308120; calculated heights of inner fission barriers. Z=96-126, N=140-196; calculated heights of inner fission barriers, binding energies of ground states, energies of saddle points. 296Cn; calculated deformation energy curves as function of β2. 284Cn, 300120; calculated potential energy surface contours in (β2cos(γ+30), β2sin(γ+30)) plane, with systematic and statistical uncertainties quantified, and benchmarking of the functionals to the experimental data on fission barriers. Covariant energy density functional (CEDF) theory based on the state-of-the-art functionals NL3*, DD-ME2, DD-MEd, DD-PC1, and PC-PK1, in the axially symmetric and triaxial relativistic Hartree-Bogoliubov (RHB) frameworks.

doi: 10.1103/PhysRevC.95.054324
Citations: PlumX Metrics


2017AG08      Phys.Rev. C 96, 024301 (2017)

S.E.Agbemava, A.V.Afanasjev

Octupole deformation in the ground states of even-even Z ∼ 96, N ∼ 196 actinides and superheavy nuclei

NUCLEAR STRUCTURE 278,280,282,284,286,288,290,292,294,296,298Th, 282,284,286,288,290,292,294,296,298,300U, 280,282,284,286,288,290,292,294,296,298,300,302Pu, 280,282,284,286,288,290,292,294,296,298,300,302,304Cm, 282,284,286,288,290,292,294,296,298,300,302,304,306Cf, 284,286,288,290,292,294,296,298,300,302,304,306,308Fm, 282,284,286,288,290,292,294,296,298,300,302,304,306,308,310No, 284,286,288,290,292,294,296,298,300,302,304,306,308,310,312Rf, 286,288,290,292,294,296,298,300,302,304,306,308,310,312,314Sg; calculated equilibrium quadrupole β2, octupole β3 deformations, and ΔE(octupole). 286,288,290,292,294,296,298,300Cm, 288Th, 290U, 292Pu, 296Cf, 298Fm, 300No, 302Rf; calculated potential energy surfaces of even-A Cm isotopes and N=118 isotones in the (β2, β3) plane. State-of-the-art covariant energy density functionals (CDFT) using DD-PC1, DD-ME2, NL3*, and PC-PK1 functionals. Comparison with Skyrme DFT, Gogny DFT, and microscopic+macroscopic calculations.

doi: 10.1103/PhysRevC.96.024301
Citations: PlumX Metrics


2016AF01      Phys.Rev. C 93, 054310 (2016)

A.V.Afanasjev, S.E.Agbemava

Covariant energy density functionals: Nuclear matter constraints and global ground state properties

NUCLEAR STRUCTURE Z<100, N<160; calculated binding energies and charge radii of ground states using state-of-the-art covariant energy density functionals; deduced that density functionals with good description of global binding energies and properties of other ground and excited state not necessarily obtained from strict enforcement of constraints on nuclear matter properties (NMP). Detailed comparisons with experimental data.

doi: 10.1103/PhysRevC.93.054310
Citations: PlumX Metrics


2016AG06      Phys.Rev. C 93, 044304 (2016)

S.E.Agbemava, A.V.Afanasjev, P.Ring

Octupole deformation in the ground states of even-even nuclei: A global analysis within the covariant density functional theory

NUCLEAR STRUCTURE 56,60Ca, 78Sr, 78,80,108,110,112Zr, 82Mo, 90Cd, 108,110,112,142,144Xe, 108,110,112,114,116,142,144,146,148,150Ba, 114,144,146,148,150Ce, 146,148,150Nd, 150Sm, 196,198,200,202Gd, 200,202,204Dy, 198,200,202,204Er, 204Yb, 210Os, 214Pt, 216,218Hg, 180,182,184,216,218,220,222Pb, 218,220,222Po, 218,220,222,224,226,232Rn, 218,220,222,224,226,228,230Ra, 220,222,224,226,228,230,232,236,288,290,292,294Th, 220,222,224,226,228,230,232,234,238,290,292,294,296U, 222,224,226,228,230,232,234,240,288,290,292,294,296Pu, 224,226,228,230,232,234,236,242,286,288,290,292,294,296,298Cm, 224,226,228,230,232,234,236,238,288,290,292,294,296,298,300Cf, 226,228,232,234,236,238,240,290,292,294,296,298,300,302Fm, 236,238,240,242,284,286,288,290,292,294,296,298,300,302,304,306No, 242,244,246,288,290,292,294,296,298,300,304,306,308Rf, 248,250,288,290,292,294,300,302,304,306Sg; calculated equilibrium β2, β3 deformation parameters for ground states using DD-PC1 and NL3* density functional models and ϵ2, ϵ3 parameters by mic-mac (MM) approach, potential energy surfaces in (β2, β3) plane using CEDF DD-PC1 theory. Covariant energy density functionals (CEDF) of different types, with a nonlinear meson coupling, with density-dependent meson couplings, and pairing correlations within relativistic Hartree-Bogoliubov theory. Predicted a new region of octupole deformation around Z=98 and N=196. Comparison with available experimental data.

doi: 10.1103/PhysRevC.93.044304
Citations: PlumX Metrics


2016RA21      Phys.Rev. C 94, 014310 (2016)

D.Ray, A.V.Afanasjev

From superdeformation to extreme deformation and clusterization in the N ≈ Z nuclei of the A ≈ 40 mass region

NUCLEAR STRUCTURE 32,34S, 36,38Ar, 40,42,44Ca, 42Sc, 44,46Ti, 48,50Cr; calculated energies of the configurations versus angular momentum for triaxial normal-deformed, triaxial highly-deformed, superdeformed (SD), hyperdeformed (HD) and megadeformed (MD) structures, neutron single-particle energies (Routhians), transition quadrupole moments and γ deformations, proton density contours, kinematic and dynamic moments of inertia. Yrast structures and configurations showing the fingerprints of clusterization and molecular structures. Covariant density functional theory. The N=Z nuclei better candidates for the observation of extremely deformed structures.

doi: 10.1103/PhysRevC.94.014310
Citations: PlumX Metrics


2015AF01      Phys.Rev. C 91, 014324 (2015)

A.V.Afanasjev, S.E.Agbemava, D.Ray, P.Ring

Neutron drip line: Single-particle degrees of freedom and pairing properties as sources of theoretical uncertainties

NUCLEAR STRUCTURE Z=4-110, N=4-260; Z=70, N=78-180; calculated neutron pairing energies, neutron δ(2n)(Z, N) quantities between two-proton and two-neutron drip lines. Z=86, N=184-206; calculated neutron chemical potential, neutron quadrupole deformation β2, neutron pairing gap, neutron pairing energy, and neutron single-particle energies. 114Ge, 180Xe, 266Pb, 270Rn, 366Hs; calculated neutron single-particle states at spherical shape, neutron shell gaps at the 2n-drip lines, spread of theoretical predictions for the single-particle energies. 56Ni, 100,132Sn, 208Pb; calculated spread of theoretical predictions for the single-particle energies for doubly magic nuclei. Analyzed theoretical uncertainties in the prediction of the two-neutron drip line using covariant density functional theory (CEDFs) and several interactions.

doi: 10.1103/PhysRevC.91.014324
Citations: PlumX Metrics


2015AF02      Acta Phys.Pol. B46, 405 (2015)

A.V.Afanasjev, S.E.Agbemava

Nuclear Structure Theory of the Heaviest Nuclei

NUCLEAR STRUCTURE 292,304120; analyzed available data; calculated single-particle states, J, π.

doi: 10.5506/APhysPolB.46.405
Citations: PlumX Metrics


2015AF04      Phys.Rev. C 92, 044317 (2015)

A.V.Afanasjev, E.Litvinova

Impact of collective vibrations on quasiparticle states of open-shell odd-mass nuclei and possible interference with the tensor force

NUCLEAR STRUCTURE 100,102,104,106,108,110,112,114,116,118,120,122,124,126,128,130,132Sn, 134Te, 136Xe, 138Ba, 140Ce, 142Nd, 144Sm, 146Gd, 148Dy, 150Er, 152Yb, 154Hf; calculated level energies, B(E2) and B(E3) for first 2+ and 3- states using relativistic quasiparticle random phase approximation (RQRPA). 116Sn, 148Dy; calculated spectra using RMF and QVC approaches. 101,103,105,107,109,112,113,115,117,119,121,123,125,127,129,131,133Sb, 135Te, 137Xe, 139Ba, 141Ce, 143Nd, 145Sm, 147Gd, 149Dy, 151Er, 153Yb, 155Hf; calculated energy splittings between πh11/2 and πg7/2 states for Sb nuclei, and νi13/2 and νh9/2 states for N=83, Z=52-72 nuclei, spectroscopic factors using covariant density functional theory (CDFT), and relativistic quasiparticle-vibration (RQVC) calculations. Impact of quasiparticle-vibration coupling on the energy splitting of pairs of states in odd-mass nuclei. Comparison with experimental data.

doi: 10.1103/PhysRevC.92.044317
Citations: PlumX Metrics


2015AG09      Phys.Rev. C 92, 054310 (2015)

S.E.Agbemava, A.V.Afanasjev, T.Nakatsukasa, P.Ring

Covariant density functional theory: Reexamining the structure of superheavy nuclei

NUCLEAR STRUCTURE 236,238,240,242,244,246,248,250,252,254,256,258,260,262,264,266,268,270,272,274,276,278,280,282,284,286,288,290,292Cm, 238,240,242,244,246,248,250,252,254,256,258,260,262,264,266,268,270,272,274,276,278,280,282,284,286,288,290,292,294Cf, 240,242,244,246,248,250,252,254,256,258,260,262,264,266,268,270,272,274,276,278,280,282,284,286,288,290,292,294,296Fm, 242,244,246,248,250,252,254,256,258,260,262,264,266,268,270,272,274,276,278,280,282,284,286,288,290,292,294,296,298No, 246,248,250,252,254,256,258,260,262,264,266,268,270,272,274,276,278,280,282,284,286,288,290,292,294,296,298,300Rf, 250,252,254,256,258,260,262,264,266,268,270,272,274,276,278,280,282,284,286,288,290,292,294,296,298,300,302Sg, 258,260,262,264,266,268,270,272,274,276,278,280,282,284,286,288,290,292,294,296,298,300,302,304Hs, 264,266,268,270,272,274,276,278,280,282,284,286,288,290,292,294,296,298,300,302,304,306Ds, 270,272,274,276,278,280,282,284,286,288,290,292,294,296,298,300,302,304,306,308Cn, 276,278,280,282,284,286,288,290,292,294,296,298,300,302,304,306,308,310Fl, 282,284,286,288,290,292,294,296,298,300,302,304,306,308,310,312Lv, 290,292,294,296,298,300,302,304,306,308,310,312,314Og, 292,294,296,298,300,302,304,306,308,310,312,314,316120, 298,300,302,304,306,308,310,312,314,316,318122, 304,306,308,310,312,314,316,318,320124, 312,314,316,318,320,322126, 318,320,322,324128, 324,326130; calculated binding energies, proton and neutron quadrupole deformations, charge radii, root-mean square (rms) proton radii, neutron skin thicknesses, S(2n), S(2p), Q(α) and T1/2(α) using Viola-Seaborg formula. 292,304120; calculated neutron and proton single-particle states, shell gaps. Relativistic Hartree-Bogoliubov theory with DD-PC1 and PC-PK1 interactions, and five most up-to-date covariant energy density functionals of different types.

doi: 10.1103/PhysRevC.92.054310
Citations: PlumX Metrics


2015DO09      Nucl.Phys. A944, 388 (2015)

J.Dobaczewski, A.V.Afanasjev, M.Bender, L.M.Robledo, Y.Shi

Properties of nuclei in the nobelium region studied within the covariant, Skyrme, and Gogny energy density functionals

NUCLEAR STRUCTURE Z=92-104; calculated levels, J, π, mass excess, moments of inertia using three different EDF (energy-density functionals).

doi: 10.1016/j.nuclphysa.2015.07.015
Citations: PlumX Metrics


2014AF04      Phys.Scr. 89, 054001 (2014)

A.V.Afanasjev

Microscopic description of rotation: from ground states to the extremes of ultra-high spin

NUCLEAR STRUCTURE 228,230,232,234,236,238Th, 230,232,234,236,238,240,242U, 234,236,238,240,242,244,246Pu, 240,242,244,246,248,250Cm, 244,246,248,250,252,254Cf, 246,248,250,252,254,256Fm, 248,250,252,254,256,258No, 254,256,258,260,262Rf, 258,260,262,264,266Sg; calculated kinematic moments of inertia for gs rotational band. 158Er; calculated dynamic moments of inertia for triaxial superdeformed rotational bands at ultra high spin. Covariant density functional theory. Compared with available data.

doi: 10.1088/0031-8949/89/5/054001
Citations: PlumX Metrics


2014AG08      Phys.Rev. C 89, 054320 (2014)

S.E.Agbemava, A.V.Afanasjev, D.Ray, P.Ring

Global performance of covariant energy density functionals: Ground state observables of even-even nuclei and the estimate of theoretical uncertainties

NUCLEAR STRUCTURE Z=2-120, N=2-280; calculated properties of ground states of even-even nuclei between the two-proton and two-neutron drip lines, binding energies, S(2n), S(2p), charge quadrupole-, hexadecapole- and isovector β2 deformations, charge radii, neutron skin thickness, positions of two-proton and two-neutron drip line, neutron and proton three-point indicators and pairing gaps, density, energy per particle, incompressibility, effective masses. Large-scale axial relativistic Hartree-Bogoliubov calculations with four modern covariant energy density functionals (CEDF) such as NL3*, DD-ME2, DD-MEd, and DD-PC1. Comparison with other calculations and experimental data. Also supplemental information available.

ATOMIC MASSES A=10-300; calculated masses, binding energies of 835 even-even nuclei and compared with experimental values. Large-scale axial relativistic Hartree-Bogoliubov calculations with four modern covariant energy density functionals (CEDFs).

doi: 10.1103/PhysRevC.89.054320
Citations: PlumX Metrics


2013AF01      Phys.Rev. C 88, 014320 (2013)

A.V.Afanasjev, O.Abdurazakov

Pairing and rotational properties of actinides and superheavy nuclei in covariant density functional theory

NUCLEAR STRUCTURE 228,230,232,234,236,238,240Th, 230,232,234,236,238,240U, 234,236,238,240,242,244,246Pu, 240,242,244,246,248,250Cm, 244,246,248,250,252,254Cf, 246,248,250,252,254,256Fm, 248,250,252,254,256,258No, 254,256,258,260,262Rf, 258,260,262,266Sg; calculated scaling factors, moments of inertia, β2, neutron and proton three-point indicators, moment of inertia versus rotational frequency. 242,244Pu, 248Cm; calculated kinematic moment of inertia for ground state bands. 244Cm; calculated neutron and proton single-particle energies. 237U, 239,243Pu, 235,237Np, 241Am, 247,249Cm, 249Cf, 251Md, 253No, 234,236U, 238,240,242Pu, 246,248Cm, 248Cf, 250Fm, 252No; calculated kinematic moment of inertia for one-quasiparticle bands in odd-A nuclei and ground-state bands in even-A nuclei. 236,238U, 236,239,240Pu, 242Am; calculated kinematic moment of inertia, and quadrupole moments of superdeformed (SD) rotational bands and SD fission isomers. N=144-176, Z=102, 104, 106, 108, 110; calculated moments of inertia and β2 parameter for superheavy nuclides. Cranked relativistic Hartree-Bogoliubov theory and Lipkin-Nogami method (CRHB+LN) with NL1 and NL3* interaction parameters of covariant density functional theory (CFDT). Comparison with experimental data.

doi: 10.1103/PhysRevC.88.014320
Citations: PlumX Metrics


2013AF02      Phys.Lett. B 726, 680 (2013)

A.V.Afanasjev, S.E.Agbemava, D.Ray, P.Ring

Nuclear landscape in covariant density functional theory

NUCLEAR STRUCTURE Z=1-120, N=1-300; calculated two-proton and neutron separation energies and dripline, neutron chemical potentials, quadrupole deformations. Skyrme density and covariant density functional theory calculations.

doi: 10.1016/j.physletb.2013.09.017
Citations: PlumX Metrics


2013CH39      Bull.Rus.Acad.Sci.Phys. 77, 890 (2013); Izv.Akad.Nauk RAS, Ser.Fiz 77, 978 (2013)

A.I.Chugunov, A.V.Afanasjev, M.Beard, M.Wiescher, D.G.Yakovlev

Simple approximation of cross sections for nuclear reactions involving Z = 3-12, 14 nuclei

NUCLEAR REACTIONS Be, B, C, N, O, F, Ne, Na, Mg, Si(Be, X), B, C, N, O, F, Ne, Na, Mg, Si(B, X), C, N, O, F, Ne, Na, Mg, Si(C, X), N, O, F, Ne, Na, Mg, Si(N, X), O, F, Ne, Na, Mg, Si(O, X), F, Ne, Na, Mg, Si(F, X), Ne, Na, Mg, Si(Ne, X), Na, Mg, Si(Na, X), Mg, Si(Mg, X), Si(Si, X), E not given; San Paulo potential, below the Coulomb barrier energies.

doi: 10.3103/S1062873813070083
Citations: PlumX Metrics


2013SN01      Phys.Lett. B 723, 61 (2013)

J.B.Snyder, W.Reviol, D.G.Sarantites, A.V.Afanasjev, R.V.F.Janssens, H.Abusara, M.P.Carpenter, X.Chen, C.J.Chiara, J.P.Greene, T.Lauritsen, E.A.McCutchan, D.Seweryniak, S.Zhu

High-spin transition quadrupole moments in neutron-rich Mo and Ru nuclei: Testing γ softness?

RADIOACTIVITY 252Cf(SF); measured decay products, Eγ, Iγ. 102,104,106,108Mo, 108,110,112Ru; deduced energy levels, J, π, kinematic and dynamic moments of inertia, B(E2), transition quadrupole moments, potential energy surfaces. Comparison with available data.

doi: 10.1016/j.physletb.2013.04.046
Citations: PlumX Metrics


2012AB01      Phys.Rev. C 85, 024314 (2012)

H.Abusara, A.V.Afanasjev, P.Ring

Fission barriers in covariant density functional theory: Extrapolation to superheavy nuclei

NUCLEAR STRUCTURE Z=90-98, N=138-154; calculated heights of inner fission barriers for even-even nuclei as functions of neutron and proton numbers. Comparison with experimental values. 276,278,280,282,284,286,288,290,292Cn, 280,282,284,286,288,290,292,294,296Fl, 284,286,288,290,292,294,296,298,300Lv, 288,290,292,294,296,298,300,302,304Og, 292,294,296,298,300,302,304,306,308120; calculated heights of axially symmetric and triaxial saddle points, deformation energy curves, ground state deformation parameters, inner and outer fission barriers, superdeformed minima. 240Pu, 278,290Cn, 286,300Lv, 292,304120; calculated potential energy surface contours in β-γ plane. Triaxial and octupole deformation. Covariant density functional models with NL3*, DD-ME2, and DD-PC1 parameterizations.

doi: 10.1103/PhysRevC.85.024314
Citations: PlumX Metrics


2012AF01      Phys.Rev. C 85, 054615 (2012)

A.V.Afanasjev, M.Beard, A.I.Chugunov, M.Wiescher, D.G.Yakovlev

Large collection of astrophysical S factors and their compact representation

NUCLEAR REACTIONS Be(Be, X), (B, X), (C, X), (N, X), (O, X), (F, X), (Ne, X), (Na, X), (Mg, X), (Si, X), B(B, X), (C, X), (N, X), (O, X), (F, X), (Ne, X), (Na, X), (Mg, X), (Si, X), C(C, X), (N, X), (F, X), (O, X), (Ne, X), (Na, X), (Mg, X), (Si, X), N(N, X), (O, X), (F, X), (Ne, X), (Na, X), (Mg, X), (Si, X), O(O, X), (F, X), (Ne, X), (Na, X), (Mg, X), (Si, X), F(F, X), (Ne, X), (Na, X), (Mg, X), (Si, X), Ne(Ne, X), (Na, X), (Mg, X), (Si, X), Na(Na, X), (Mg, X), (Si, X), Mg(Mg, X), (Si, X), Si(Si, X), E<39.8 MeV; calculated astrophysical S factors as function of incident energy for A=8-14 Be, A=9-21 for B, A=10-24 for C, A=11-27 for N, A=12-28 for O, A=17-29 for F, A=18-40 for Ne, A=19-43 for Na, A=20-46 for Mg and A=24-52 for Si for a database of 5000 nonresonant fusion reactions. Sao Paulo method and the barrier penetration model. Comparison with experimental data.

doi: 10.1103/PhysRevC.85.054615
Citations: PlumX Metrics


2012AF04      Int.J.Mod.Phys. E21, 1250025 (2012)

A.V.Afanasjev, H.Abusara, P.Ring

Recent progress in the study of fission barriers in covariant density functional theory

doi: 10.1142/S0218301312500255
Citations: PlumX Metrics


2012AF05      Phys.Rev. C 86, 031304 (2012)

A.V.Afanasjev, Y.Shi, W.Nazarewicz

Description of 158Er at ultrahigh spin in nuclear density functional theory

NUCLEAR STRUCTURE 158Er; calculated energies of configurations in high-spin range of 30-90, proton and neutron single-particle routhians, dynamic moments of inertia of Triaxial superdeformed (TSD) bands. Relativistic and nonrelativistic nuclear density-functional theories. CRMF-NL3*, CRMF-NL1, and CSHF-SkM* interactions. Comparison with experimental data.

doi: 10.1103/PhysRevC.86.031304
Citations: PlumX Metrics


2011AF04      J.Phys.:Conf.Ser. 312, 092004 (2011)

A.V.Afanasjev, H.Abusara, E.Litvinova, P.Ring

Spectroscopy of the heaviest nuclei (theory)

NUCLEAR STRUCTURE 240Pu, 241Am, 251Md; calculated moments of inertia of one-quasiproton configurations using CDFT (covariant density functional theory); compared with data. 228,230,232,234Th, 232,234,236,238,240U, 237,238,240,242,244,246Pu, 242,244,246,248,250Cm, 252,254Cf; calculated deformation energy curves, fission barriers using RMF plus BCS with NL3* parameterization; compared to data.

doi: 10.1088/1742-6596/312/9/092004
Citations: PlumX Metrics


2011LI30      Phys.Rev. C 84, 014305 (2011)

E.V.Litvinova, A.V.Afanasjev

Dynamics of nuclear single-particle structure in covariant theory of particle-vibration coupling: From light to superheavy nuclei

NUCLEAR STRUCTURE 56Ni, 100,132Sn, 208Pb; calculated single particle spectra and strength distributions, proton and neutron shell gaps, spin-orbit and pseudospin doublet splitting energies. 55Co, 55,57Ni, 57Cu, 99,131In, 99,101,131,133Sn, 101,133Sb, 207Tl, 207,209Pb, 209Bi; calculated spectroscopic factors in single-particle transfer reactions. 292120; calculated single-particle spectrum. Relativistic particle-vibration model in combination with the cranked relativistic mean-field (CRMF) approach. Comparison with experimental data.

doi: 10.1103/PhysRevC.84.014305
Citations: PlumX Metrics


2011RI05      Int.J.Mod.Phys. E20, 235 (2011)

P.Ring, H.Abusara, A.V.Afanasjev, G.A.Lalazissis, T.Niksic, D.Vretenar

Modern applications of Covariant Density Functional theory

NUCLEAR STRUCTURE 228,230,232,234Th, 232,234,236,238,240U, 236,238,240,242,244,246Pu, 242,244,246,248,250Cm, 250,252Cf, 150Nd; calculated potential and deformation energy surfaces, J, π.

doi: 10.1142/S0218301311017570
Citations: PlumX Metrics


2010AB23      Phys.Rev. C 82, 044303 (2010)

H.Abusara, A.V.Afanasjev, P.Ring

Fission barriers in actinides in covariant density functional theory: The role of triaxiality

NUCLEAR STRUCTURE 228,230,232,234Th, 232,234,236,238,240U, 236,238,240,242,244,246Pu, 242,244,246,248,250Cm, 250,252Cf; calculated β2- and γ-deformation energy curves, potential energy surfaces, proton and neutron single-particle energies as a function of β2 and γ parameter, fission barriers as a function of proton and neutron number using relativistic mean-field theory and covariant density functional theory. Comparison with experimental data.

doi: 10.1103/PhysRevC.82.044303
Citations: PlumX Metrics


2010AF01      Phys.Rev. C 81, 014309 (2010)

A.V.Afanasjev, H.Abusara

Time-odd mean fields in covariant density functional theory: Nonrotating systems

NUCLEAR STRUCTURE 22,24,26,28,30,32,34,36,38Al, 30,32,34,36,38,40,42,44,46,48,50,52,54Cl;45,47,49,51,53,55,57,59,61,63,65,67,69,71,73,75,77,79,81,83,85Fe, 119,121,123,125,127,129,131,133,135,137,139,141,143,145,147,149,151,153,155,157,159,161,163,165,167,169,171,173,175,177,179,181,183Ce; Z=10-27, N-Z=-3-33; A=31-55; A=133-171, Z=94; N=1-180, Z=1-112; Z=11-25, N=Z; calculated impact of nuclear magnetism (NM) on binding energies, quadrupole deformation, total neutron current distributions, neutron and proton dependencies of additional binding energies, and energy splittings between signature of single-particle states using NL3 parametrization of relativistic mean field (RMF) Lagrangian. 32S; calculated neutron single particle energies (Routhians) as a function of the rotational frequency.

doi: 10.1103/PhysRevC.81.014309
Citations: PlumX Metrics


2010AF02      Phys.Rev. C 82, 034329 (2010)

A.V.Afanasjev, H.Abusara

Time-odd mean fields in covariant density functional theory: Rotating systems

NUCLEAR STRUCTURE 47V, 60Zn, 92Mo, 100Sn, 108Cd, 118Te, 118Ba, 136Nd, 142Sm, 146Gd, 152Dy, 158,160Eu, 194Pb; calculated proton-single particle energies, kinematic and dynamic moments of inertia, transition quadrupole moments and hexadecapole moments, and neutron current distributions for normal-deformed (ND), superdeformed (SD), hyperdeformed (HD) structures and terminating states in a rotating frame. Z=50-74, N=50-110; Z=42-58, N=44-78; calculated contribution of nuclear magnetism (NM) to kinematic moments of inertia for ND, SD and HD structures. Z=63, N=131-209; calculated contribution of nuclear magnetism to binding energies of odd-odd Eu nuclei. Time-odd mean field (nuclear magnetism) calculations in the framework of covariant density functional theory (CDFT).

doi: 10.1103/PhysRevC.82.034329
Citations: PlumX Metrics


2010BE12      At.Data Nucl.Data Tables 96, 541 (2010)

M.Beard, A.V.Afanasjev, L.C.Chamon, L.R.Gasques, M.Wiescher, D.G.Yakovlev

Astrophysical S factors for fusion reactions involving C, O, Ne, and Mg isotopes

NUCLEAR REACTIONS C(C, X), (O, X), (Ne, X), (Mg, X), O(O, X), (Ne, X), (Mg, X), Ne(Ne, X), (Mg, X), Mg(Mg, X), E≈18-30 MeV MeV; calculated S-factors; deduced reaction rates calculation procedure.

doi: 10.1016/j.adt.2010.02.005
Citations: PlumX Metrics


2010DA19      Phys.Rev. C 82, 061303 (2010)

P.J.Davies, A.V.Afanasjev, R.Wadsworth, C.Andreoiu, R.A.E.Austin, M.P.Carpenter, D.Dashdorj, P.Finlay, S.J.Freeman, P.E.Garrett, A.Gorgen, J.Greene, G.F.Grinyer, B.Hyland, D.G.Jenkins, F.L.Johnston-Theasby, P.Joshi, A.O.Macchiavelli, F.Moore, G.Mukherjee, A.A.Phillips, W.Reviol, D.Sarantites, M.A.Schumaker, D.Seweryniak, M.B.Smith, C.E.Svensson, J.J.Valiente-Dobon, D.Ward

Evidence of nontermination of collective rotation near the maximum angular momentum in 75Rb

NUCLEAR REACTIONS 40Ca(40Ca, pα), E=165 MeV; measured Eγ, Iγ, γγ-coin, level half-lives with residual Doppler attenuation method using Gammasphere array. 75Kr; deduced transition quadrupole moments for two rotational bands from measured half-lives. Comparison with data for bands in 74Kr and 109Sb. Cranked Nilsson-Strutinsky (CNS) and cranked relativistic mean field (CRMF) calculations.

doi: 10.1103/PhysRevC.82.061303
Citations: PlumX Metrics

Data from this article have been entered in the XUNDL database. For more information, click here.


2010ID01      Phys.Rev. C 81, 034303 (2010)

E.Ideguchi, B.Cederwall, E.Ganioglu, B.Hadinia, K.Lagergren, T.Back, A.Johnson, R.Wyss, S.Eeckhaudt, T.Grahn, P.Greenlees, R.Julin, S.Juutinen, H.Kettunen, M.Leino, A.-P.Leppanen, P.Nieminen, M.Nyman, J.Pakarinen, P.Rahkila, C.Scholey, J.Uusitalo, D.T.Joss, E.S.Paul, D.R.Wiseman, R.Wadsworth, A.V.Afanasjev, I.Ragnarsson

High-spin intruder band in 107In

NUCLEAR REACTIONS 58Ni(52Cr, 3p), E=187 MeV; measured Eγ, Iγ, γγ-, (recoil)γ-coin, γ(θ) using the JUROGAM array. 107In; deduced levels, J, π, multipolarity, mixing ratios, M1 band and a smooth-terminating band, dynamical moments of inertia, and configurations. Calculated potential energy surfaces. Comparisons with total Routhian surface and cranked Nilsson-Strutinsky calculations, and with systematics of rotational band structures in 105Ag, 106Cd, 108Sn, 109Sb, 110Te and 111I. 104Cd, 106In, 107Sn; measured Eγ.

doi: 10.1103/PhysRevC.81.034303
Citations: PlumX Metrics

Data from this article have been entered in the XUNDL database. For more information, click here.


2009AB02      Phys.Rev. C 79, 024317 (2009)

H.Abusara, A.V.Afanasjev

Hyperdeformation in the Cd isotopes: A microscopic analysis

NUCLEAR STRUCTURE 96,98,100,102,104,106,107,108,109Cd; calculated energies of hyperdeformed configurations as a function of angular momentum, dynamic moments of inertia, transition quadrupole moments and mass hexadecapole moments using cranked relativistic mean field theory.

doi: 10.1103/PhysRevC.79.024317
Citations: PlumX Metrics


2009HE23      Eur.Phys.J. A 42, 333 (2009)

R.-D.Herzberg, S.Moon, S.Eeckhaudt, P.T.Greenlees, P.A.Butler, T.Page, A.V.Afanasjev, N.Amzal, J.E.Bastin, F.Becker, M.Bender, B.Bruyneel, J.F.C.Cocks, I.G.Darby, O.Dorvaux, K.Eskola, J.Gerl, T.Grahn, C.Gray-Jones, N.J.Hammond, K.Hauschild, P.-H.Heenen, K.Helariutta, A.Herzberg, F.Hessberger, M.Houry, A.Hurstel, R.D.Humphreys, G.D.Jones, P.M.Jones, R.Julin, S.Juutinen, H.Kankaanpaa, H.Kettunen, T.L.Khoo, W.Korten, P.Kuusiniemi, Y.LeCoz, M.Leino, A.-P.Leppanen, C.J.Lister, R.Lucas, M.Muikku, P.Nieminen, M.Nyman, R.D.Page, T.Page, J.Pakarinen, A.Pritchard, P.Rahkila, P.Reiter, M.Sandzelius, J.Saren, Ch.Schlegel, C.Scholey, Ch.Theisen, W.H.Trzaska, J.Uusitalo, A.Wiens, H.J.Wollersheim

Structure of rotational bands in 253No

NUCLEAR REACTIONS 207Pb(48Ca, 2n), E=219 MeV; measured Eγ, Iγ, γγ-, (recoil)γ-coin with JUROGRAM and RITU; analyzed conversion electron spectra from SACRED detector. 253No; deduced T1/2, J, π, level energies, multipolarities, branching ratios. Comparison with rotational model.

doi: 10.1140/epja/i2009-10855-9
Citations: PlumX Metrics

Data from this article have been entered in the XUNDL database. For more information, click here.


2009IJ01      Phys.Rev. C 80, 034322 (2009)

Q.A.Ijaz, W.C.Ma, H.Abusara, A.V.Afanasjev, Y.B.Xu, R.B.Yadav, Y.C.Zhang, M.P.Carpenter, R.V.F.Janssens, T.L.Khoo, T.Lauritsen, D.T.Nisius

Excited superdeformed bands in 154Dy and cranked relativistic mean field interpretation

NUCLEAR REACTIONS 122Sn(36S, 4n), E=165 MeV; measured Eγ, Iγ, γγ-coin using Gammasphere array. 154Dy; deduced levels, J, π, superdeformed bands, dynamic moments of inertia, neutron single particle energies. Comparison with the cranked relativistic mean field calculations.

doi: 10.1103/PhysRevC.80.034322
Citations: PlumX Metrics

Data from this article have been entered in the XUNDL database. For more information, click here.


2009JE02      Phys.Rev. C 80, 034324 (2009)

H.B.Jeppesen, R.M.Clark, K.E.Gregorich, A.V.Afanasjev, M.N.Ali, J.M.Allmond, C.W.Beausang, M.Cromaz, M.A.Deleplanque, I.Dragojevic, J.Dvorak, P.A.Ellison, P.Fallon, M.A.Garcia, J.M.Gates, S.Gros, I.Y.Lee, A.O.Macchiavelli, S.L.Nelson, H.Nitsche, L.Stavsetra, F.S.Stephens, M.Wiedeking

High-K multi-quasiparticle states and rotational bands in 255103Lr

NUCLEAR REACTIONS 209Bi(48Ca, 2n), E=222 MeV; measured Eγ, Iγ, γγ, half-lives. 255Lr; deduced levels, J, π, bands, high-K 3qp isomers and configurations. Comparison with microscopic cranked relativistic Hartree-Bogoliubov (CRHB) calculations.

doi: 10.1103/PhysRevC.80.034324
Citations: PlumX Metrics

Data from this article have been entered in the XUNDL database. For more information, click here.


2008AF02      Phys.Rev. C 78, 014315 (2008)

A.V.Afanasjev, H.Abusara

Hyperdeformation in the cranked relativistic mean field theory: The Z=40-58 region of the nuclear chart

NUCLEAR STRUCTURE 122,124,126,128,130,132,134,136,138,140,142Ce, 104,106,108,110,112,114,116,118,120,122,124,126,128,130,132,134,136Te, 116,118,120,122,124,126,128,130,132,134,136Ba, 102,104,106,108,110,112,114,116,118,120,122,124,126,128,130,132,134Sn, 110,112,114,116,118,120,122,124,126,128,130,132,134Xe, 92,94,96,98,100,102,104,106,108,110,112,114Pd, 90,92,94,96,98,100,102,104,106Ru, 86,88,90,92,94,96,98,100Mo, 80,82,84,86,88,90,92Zr, 106,108,110,112,114,116,118,120,122,124,126,128,130,132,134,136Cd; calculated moments of inertia, proton densities, single particle orbital energy gaps. 110Te, 110,111,112,123I, 125Cs, 112,123,124,125Xe; calculated dynamical moments of inertia, effective alignments, transition quadrupole moments. 142Ce; calculated potential energy surfaces. 108Cd; calculated single particle energies. 102Pd; calculated neutron densities. 121,122I; systematics. Cranked relativistic mean-field theory.

doi: 10.1103/PhysRevC.78.014315
Citations: PlumX Metrics


2008AF05      Phys.Rev. C 78, 054303 (2008)

A.V.Afanasjev

Band terminations in density functional theory

NUCLEAR STRUCTURE 20Ne; calculated angular momenta, binding energy, moments of inertia, quadrupole, hexadecapole and γ deformation of bands. 42,44Ca, 44,45Sc, 45,46Ti, 47V; calculated quadrupole deformations. 46Ti; calculated single particle energies. 42Ca, 47V; calculated proton density distributions. Comparison with experimental data. Density functional theory.

doi: 10.1103/PhysRevC.78.054303
Citations: PlumX Metrics


2008JO07      Phys.Rev. C 78, 034312 (2008)

F.Johnston-Theasby, A.V.Afanasjev, C.Andreoiu, R.A.E.Austin, M.P.Carpenter, D.Dashdorj, S.J.Freeman, P.E.Garrett, J.Greene, A.Gorgen, D.G.Jenkins, P.Joshi, A.O.Macchiavelli, F.Moore, G.Mukherjee, W.Reviol, D.Sarantites, D.Seweryniak, M.B.Smith, C.E.Svensson, J.J.Valiente-Dobon, R.Wadsworth, D.Ward

Deformation of rotational structures in 73Kr and 74Rb: Probing the additivity principle at triaxial shapes

NUCLEAR REACTIONS 40Ca(40Ca, n2pα), (40Ca, npα), E=165 MeV; measured Eγ, Iγ, electric quadrupole moments, half-lives using residual doppler shift method. 73Kr, 74Rb; deduced levels, J, π, bands, transition quadrupole moments, configurations. Comparisons with cranked Nilsson-Strutinsky and relativistic mean-field calculations.

doi: 10.1103/PhysRevC.78.034312
Citations: PlumX Metrics

Data from this article have been entered in the XUNDL database. For more information, click here.


2008VA03      Phys.Rev. C 77, 024312 (2008)

J.J.Valiente-Dobon, C.E.Svensson, A.V.Afanasjev, I.Ragnarsson, C.Andreoiu, D.E.Appelbe, R.A.E.Austin, G.C.Ball, J.A.Cameron, M.P.Carpenter, R.M.Clark, M.Cromaz, D.Dashdorj, P.Fallon, S.J.Freeman, P.E.Garrett, A.Gorgen, G.F.Grinyer, D.F.Hodgson, B.Hyland, D.Jenkins, F.Johnston-Theasby, P.Joshi, N.S.Kelsall, A.O.Macchiavelli, D.Mengoni, F.Moore, G.Mukherjee, A.A.Phillips, W.Reviol, D.Sarantites, M.A.Schumaker, D.Seweryniak, M.B.Smith, J.C.Waddington, R.Wadsworth, D.Ward

Low-spin lifetime measurements in 74Kr

NUCLEAR REACTIONS 40Ca(40Ca, 2pα), E=165 MeV; measured Eγ, Iγ, half-lives, transition quadrupole moments. 74Kr; deduced excitation energies, rotational bands.

doi: 10.1103/PhysRevC.77.024312
Citations: PlumX Metrics

Data from this article have been entered in the XUNDL database. For more information, click here.


2007AF01      Int.J.Mod.Phys. E16, 275 (2007)

A.V.Afanasjev

High-spin structures as the probes of proton-neutron pairing

NUCLEAR STRUCTURE 64Ge, 58,59Cu, 60Zn, 68Se, 70Br, 72,73,74,76Kr, 74Rb, 76Sr, 80Zr; analyzed rotational bands energies, configurations, deformation, quadrupole moments, role of neutron-proton pairing.

doi: 10.1142/S0218301307005715
Citations: PlumX Metrics


2007AN12      Phys.Rev. C 75, 041301 (2007); Erratum Phys.Rev. C 75, 049901 (2007)

C.Andreoiu, C.E.Svensson, A.V.Afanasjev, R.A.E.Austin, M.P.Carpenter, D.Dashdorj, P.Finlay, S.J.Freeman, P.E.Garrett, J.Greene, G.F.Grinyer, A.Gorgen, B.Hyland, D.Jenkins, F.Johnston-Theasby, P.Joshi, A.O.Machiavelli, F.Moore, G.Mukherjee, A.A.Phillips, W.Reviol, D.G.Sarantites, M.A.Schumaker, D.Seweryniak, M.B.Smith, J.J.Valiente-Dobon, R.Wadsworth

High-spin lifetime measurements in the N = Z nucleus 72Kr

NUCLEAR REACTIONS 40Ca(40Ca, 2α), E=165 MeV; measured Eγ, Iγ, γγ-, (charged particle)γ-coin, DSA. 72Kr deduced high-spin levels, J, π, T1/2. Gammasphere, Microball arrays. Doppler shift attenuation method, compared results to isovector mean field theory calculations.

doi: 10.1103/PhysRevC.75.041301
Citations: PlumX Metrics

Data from this article have been entered in the XUNDL database. For more information, click here.


2007DA04      Phys.Rev. C 75, 011302 (2007)

P.J.Davies, A.V.Afanasjev, R.Wadsworth, C.Andreoiu, R.A.E.Austin, M.P.Carpenter, D.Dashdorj, S.J.Freeman, P.E.Garrett, A.Gorgen, J.Greene, D.G.Jenkins, F.L.Johnston-Theasby, P.Joshi, A.O.Macchiavelli, F.Moore, G.Mukherjee, W.Reviol, D.Sarantites, D.Seweryniak, M.B.Smith, C.E.Svensson, J.J.Valiente-Dobon, D.Ward

Identification of the g9/2 proton and neutron band crossing in the N = Z nucleus 76Sr

NUCLEAR REACTIONS 40Ca(40Ca, 2n2p), E=165 MeV; measured Eγ, Iγ, γγ-, (charged particle)γ-coin. 76Sr deduced high-spin levels, J, π, configurations. Gammasphere, Microball arrays, comparison with model predictions.

doi: 10.1103/PhysRevC.75.011302
Citations: PlumX Metrics

Data from this article have been entered in the XUNDL database. For more information, click here.


2007GA50      Phys.Rev. C 76, 045802 (2007)

L.R.Gasques, A.V.Afanasjev, M.Beard, J.Lubian, T.Neff, M.Wiescher, D.G.Yakovlev

Sao Paulo potential as a tool for calculating S factors of fusion reactions in dense stellar matter

NUCLEAR REACTIONS 16O(16O, X), E(cm)=0-20 MeV; 20O(20O, X), E=0-28 MeV; 20O(26Ne, X), E=0-20 MeV; 20O(32Mg, X), E=0-24 MeV; 26Ne(26Ne, X), E=0-24 MeV; 26Ne(32Mg, X), E=0-28 MeV; 32Mg(32Mg, X), E=0-28 MeV; 22O(22O, X), E=0-20 MeV; 24O(24O, X), E(cm)=0-20 MeV; calculated astrophysical S-factors for fusion reactions. Sao Paulo potential.

doi: 10.1103/PhysRevC.76.045802
Citations: PlumX Metrics


2007MA67      Phys.Rev. C 76, 034304 (2007)

M.Matev, A.V.Afanasjev, J.Dobaczewski, G.A.Lalazissis, W.Nazarewicz

Additivity of effective quadrupole moments and angular momentum alignments in A ∼ 130 nuclei

doi: 10.1103/PhysRevC.76.034304
Citations: PlumX Metrics


2007PA07      Phys.Rev. C 75, 014308 (2007)

E.S.Paul, K.Starosta, A.O.Evans, A.J.Boston, H.J.Chantler, C.J.Chiara, M.Devlin, A.M.Fletcher, D.B.Fossan, D.R.LaFosse, G.J.Lane, I.Y.Lee, A.O.Macchiavelli, P.J.Nolan, D.G.Sarantites, J.M.Sears, A.T.Semple, J.F.Smith, C.Vaman, A.V.Afanasjev, I.Ragnarsson

Smooth terminating bands in 112Te: Particle-hole induced collectivity

NUCLEAR REACTIONS 58Ni(58Ni, 4p), (58Ni, 2p), E=240, 250 MeV; measured Eγ, Iγ, γγ-, (charged particle)γ-coin, DSA. 112Te deduced high-spin levels, J, π, T1/2, configurations, deformation, band termination features. 114Xe levels deduced T1/2, transition quadrupole moment. Gammasphere, Microball arrays.

doi: 10.1103/PhysRevC.75.014308
Citations: PlumX Metrics

Data from this article have been entered in the XUNDL database. For more information, click here.


2007PA35      Phys.Rev. C 76, 034323 (2007)

E.S.Paul, A.O.Evans, A.J.Boston, C.J.Chiara, M.Devlin, D.B.Fossan, S.J.Freeman, D.R.LaFosse, G.J.Lane, M.J.Leddy, I.Y.Lee, A.O.Macchiavelli, P.J.Nolan, D.G.Sarantites, J.M.Sears, A.T.Semple, J.F.Smith, K.Starosta, A.V.Afanasjev, I.Ragnarsson

γ-ray spectroscopy of neutron-deficient 110Te. II. High-spin smooth-terminating structures

NUCLEAR REACTIONS 58Ni(58Ni, 2pα), E=240, 250 MeV; measured Eγ, Iγ, γγ, (particle)γ-coinc. 110Te deduced levels, J, π, multipolarity.

doi: 10.1103/PhysRevC.76.034323
Citations: PlumX Metrics

Data from this article have been entered in the XUNDL database. For more information, click here.


2007ZH46      Phys.Rev. C 76, 064321 (2007)

Y.C.Zhang, W.C.Ma, A.V.Afanasjev, G.B.Hagemann, J.Begnaud, M.P.Carpenter, P.Chowdhury, D.M.Cullen, M.K.Djongolov, D.J.Hartley, R.V.F.Janssens, T.L.Khoo, F.G.Kondev, T.Lauritsen, E.F.Moore, E.Ngijoi-Yogo, S.Odegard, L.L.Riedinger, S.V.Rigby, D.G.Roux, D.T.Scholes, R.B.Yadav, J.-Y.Zhang, S.Zhu

Nuclear shapes of highly deformed bands in 171, 172Hf and neighboring Hf isotopes

NUCLEAR REACTIONS 128Te(48Ca, 4n), (48Ca, 5n), E=209 MeV; measured Eγ, Iγ, γγ-coin. 171,172Hf; deduced levels, J, π, configurations, superdeformed bands. 163Lu, 170,173,174,175Hf; systematics.

doi: 10.1103/PhysRevC.76.064321
Citations: PlumX Metrics

Data from this article have been entered in the XUNDL database. For more information, click here.


2006AF01      J.Exper.Theo.Phys. 102, 220 (2006)

A.V.Afanasev, M.I.Konchatnij, N.P.Merenkov

Single-Spin Asymmetries in the Bethe-Heitler Process e- + p → e- + γ + p Induced by Loop Corrections

NUCLEAR REACTIONS 1H(polarized e, e'γ), E=high; calculated single-spin target and beam asymmetries.

doi: 10.1134/S1063776106020038
Citations: PlumX Metrics


2006AF03      Phys.Scr. T125, 62 (2006)

A.V.Afanasjev

Superheavy nuclei: a relativistic mean field outlook

NUCLEAR STRUCTURE 251Cf, 292120; calculated single-particle energy levels. 208,246,254,266Pb, 232,270,278,290,334Sg, 284,292,304,348120, 298,310,254126; calculated neutron and proton density distributions. Relativistic mean field approach.

doi: 10.1088/0031-8949/2006/T125/014
Citations: PlumX Metrics


2006AF04      Phys.Rev. D 155, 114027 (2006)

A.V.Afanasev, C.E.Carlson

Beam single-spin asymmetry in semiinclusive deep inelastic scattering

NUCLEAR REACTIONS 1H(e, e'X), E=4.25, 5.7, 27.5 GeV; calculated jet production associated beam asymmetry. Comparison with data.

doi: 10.1103/PhysRevD.155.114027
Citations: PlumX Metrics


2006BA09      Phys.Rev. C 73, 024308 (2006)

J.E.Bastin, R.-D.Herzberg, P.A.Butler, G.D.Jones, R.D.Page, D.G.Jenkins, N.Amzal, P.M.T.Brew, N.J.Hammond, R.D.Humphreys, P.J.C.Ikin, T.Page, P.T.Greenlees, P.M.Jones, R.Julin, S.Juutinen, H.Kankaanpaa, A.Keenan, H.Kettunen, P.Kuusiniemi, M.Leino, A.P.Leppanen, M.Muikku, P.Nieminen, P.Rahkila, C.Scholey, J.Uusitalo, E.Bouchez, A.Chatillon, A.Hurstel, W.Korten, Y.Le Coz, Ch.Theisen, D.Ackermann, J.Gerl, K.Helariutta, F.P.Hessberger, Ch.Schlegel, H.J.Wollersheim, M.Lach, A.Maj, W.Meczynski, J.Styczen, T.L.Khoo, C.J.Lister, A.V.Afanasjev, H.J.Maier, P.Reiter, P.Bednarczyk, K.Eskola, K.Hauschild

In-beam gamma ray and conversion electron study of 250Fm

NUCLEAR REACTIONS 204Hg(48Ca, 2n), E ≈ 205-216 MeV; measured Eγ, Iγ; deduced excitation function. 204Hg(48Ca, 2n), E=210 MeV; measured Eγ, Iγ, E(ce), I(ce), (recoil)γ-, (recoil)(ce)-, γγ-, (ce)γ-coin. 250Fm deduced levels, J, π, ICC, deformation. Jurosphere IV array, recoil-decay tagging..

RADIOACTIVITY 250Fm(α) [from 204Hg(48Ca, 2n)]; measured T1/2.

doi: 10.1103/PhysRevC.73.024308
Citations: PlumX Metrics

Data from this article have been entered in the XUNDL database. For more information, click here.


2006EV01      Phys.Lett. B 636, 25 (2006)

A.O.Evans, E.S.Paul, A.J.Boston, H.J.Chantler, C.J.Chiara, M.Devlin, A.M.Fletcher, D.B.Fossan, D.R.LaFosse, G.J.Lane, I.Y.Lee, A.O.Macchiavelli, P.J.Nolan, D.G.Sarantites, J.M.Sears, A.T.Semple, J.F.Smith, K.Starosta, C.Vaman, A.V.Afanasjev, I.Ragnarsson

Magnetic properties of smooth terminating dipole bands in 110, 112Te

NUCLEAR REACTIONS 58Ni(58Ni, 2pα), (58Ni, 4p), E=240, 250 MeV; measured Eγ, Iγ, γγ-, (charged particle)γ-coin, DSA. 110,112Te deduced high-spin levels, J, π, B(M1), B(E2), T1/2. Gammasphere and Microball arrays.

doi: 10.1016/j.physletb.2006.03.020
Citations: PlumX Metrics

Data from this article have been entered in the XUNDL database. For more information, click here.


2006EV04      Phys.Scr. T125, 192 (2006)

A.O.Evans, E.S.Paul, A.J.Boston, H.J.Chantler, C.J.Chiara, M.Devlin, A.M.Fletcher, D.B.Fossan, D.R.LaFosse, G.J.Lane, Y.Lee, A.O.Macchiavelli, P.J.Nolan, D.G.Sarantites, J.M.Sears, A.T.Semple, J.F.Smith, K.Starosta, C.Vaman, I.Ragnarsson, A.V.Afanasjev

Magnetic properties of deformed dipole bands in 110, 112Te

NUCLEAR REACTIONS 58Ni(58Ni, 2pα), E=240 MeV; measured Eγ, Iγ, γγ-, (charged particle)γ-coin, DSA. 110Te deduced transitions B(M1).

doi: 10.1088/0031-8949/2006/T125/046
Citations: PlumX Metrics


2006YA14      Phys.Rev. C 74, 035803 (2006)

D.G.Yakovlev, L.R.Gasques, A.V.Afanasjev, M.Beard, M.Wiescher

Fusion reactions in multicomponent dense matter

NUCLEAR REACTIONS 12C, 16O(12C, X), (16O, X), E(cm)=0-20 MeV; calculated astrophysical S-factors, fusion rates in dense matter.

doi: 10.1103/PhysRevC.74.035803
Citations: PlumX Metrics


2005AF01      Phys.Rev. C 71, 024308 (2005)

A.V.Afanasjev, S.Frauendorf

Central depression in nuclear density and its consequences for the shell structure of superheavy nuclei

NUCLEAR STRUCTURE 292120; calculated single-particle level energies. 208,246,254,266Pb, 254No, 232,270,278,290,334Sg, 276Cn, 284,292,304,348120, 298,310,354126; calculated particle density distributions, shell effects. Relativistic mean-field theory.

doi: 10.1103/PhysRevC.71.024308
Citations: PlumX Metrics


2005AF03      Phys.Rev.Lett. 94, 212301 (2005)

A.V.Afanasev, C.E.Carlson

Two-Photon-Exchange Correction to Parity-Violating Elastic Electron-Proton Scattering

NUCLEAR REACTIONS 1H(e, e), E=high; calculated two-photon exchange correction to parity-violating polarization asymmetry.

doi: 10.1103/PhysRevLett.94.212301
Citations: PlumX Metrics


2005AF04      Phys.Rev. C 71, 064318 (2005)

A.V.Afanasjev, S.Frauendorf

Description of rotating N = Z nuclei in terms of isovector pairing

NUCLEAR STRUCTURE 68Se, 70Br, 72,73,74,76Kr, 76,78Sr, 80Zr; calculated rotational bands excitation energies, moments of inertia, effective alignments, deformation, related features; deduced strong isovector pairing. Cranked Nilsson-Strutinsky approach, cranked relativistic Hartree-Bogoliubov theory, comparison with data.

doi: 10.1103/PhysRevC.71.064318
Citations: PlumX Metrics


2005AF05      Phys.Rev. C 72, 031301 (2005)

A.V.Afanasjev, S.Frauendorf

Superdeformation and hyperdeformation in the 108Cd nucleus

NUCLEAR STRUCTURE 108Cd; calculated superdeformed and hyperdeformed bands energies, configurations. Cranked relativistic mean-field theory.

doi: 10.1103/PhysRevC.72.031301
Citations: PlumX Metrics


2005GA33      Phys.Rev. C 72, 025806 (2005)

L.R.Gasques, A.V.Afanasjev, E.F.Aguilera, M.Beard, L.C.Chamon, P.Ring, M.Wiescher, D.G.Yakovlev

Nuclear fusion in dense matter: Reaction rate and carbon burning

NUCLEAR REACTIONS 12C(12C, 12C), E(cm)=6-10 MeV; calculated σ(θ). 12C(12C, X), E(cm) ≈ 0-10 MeV; calculated astrophysical S-factor, fusion rate in dense matter.

doi: 10.1103/PhysRevC.72.025806
Citations: PlumX Metrics


2005GA38      Nucl.Phys. A758, 134c (2005)

L.R.Gasques, A.V.Afanasjev, M.Beard, L.C.Chamon, P.Ring, M.Wiescher

Pycnonuclear reaction rates between neutron-rich nuclei

NUCLEAR REACTIONS 22,24O(22O, X), 24O, 34Ne, 42Mg(24O, X), 34Ne, 42Mg(34Ne, X), 42Mg(42Mg, X), E(cm) ≈ 0-18 MeV; calculated S-factors, pycnonuclear reactions rates.

doi: 10.1016/j.nuclphysa.2005.05.027
Citations: PlumX Metrics


2005RE14      Phys.Rev.Lett. 95, 032501 (2005)

P.Reiter, T.L.Khoo, I.Ahmad, A.V.Afanasjev, A.Heinz, T.Lauritsen, C.J.Lister, D.Seweryniak, P.Bhattacharyya, P.A.Butler, M.P.Carpenter, A.J.Chewter, J.A.Cizewski, C.N.Davids, J.P.Greene, P.T.Greenlees, K.Helariutta, R.-D.Herzberg, R.V.F.Janssens, G.D.Jones, R.Julin, H.Kankaanpaa, H.Kettunen, F.G.Kondev, P.Kuusiniemi, M.Leino, S.Siem, A.A.Sonzogni, J.Uusitalo, I.Wiedenhover

Structure of the Odd-A, Shell-Stabilized Nucleus 253102No

NUCLEAR REACTIONS 207Pb(48Ca, 2n), E=219 MeV; measured Eγ, Iγ, γγ-, (recoil)γ-coin. 253No deduced high-spin levels, J, π, configurations. Gammasphere array, fragment separator.

doi: 10.1103/PhysRevLett.95.032501
Citations: PlumX Metrics

Data from this article have been entered in the XUNDL database. For more information, click here.


2005VA30      Phys.Rev.Lett. 95, 232501 (2005)

J.J.Valiente-Dobon, T.Steinhardt, C.E.Svensson, A.V.Afanasjev, I.Ragnarsson, C.Andreoiu, R.A.E.Austin, M.P.Carpenter, D.Dashdorj, G.de Angelis, F.Donau, J.Eberth, E.Farnea, S.J.Freeman, A.Gadea, P.E.Garrett, A.Gorgen, G.F.Grinyer, B.Hyland, D.Jenkins, F.Johnston-Theasby, P.Joshi, A.Jungclaus, K.P.Lieb, A.O.Macchiavelli, E.F.Moore, G.Mukherjee, D.R.Napoli, A.A.Phillips, C.Plettner, W.Reviol, D.Sarantites, H.Schnare, M.A.Schumaker, R.Schwengner, D.Seweryniak, M.B.Smith, I.Stefanescu, O.Thelen, R.Wadsworth

Evidence for Nontermination of Rotational Bands in 74Kr

NUCLEAR REACTIONS 40Ca(40Ca, 2pα), E=165, 185 MeV; measured Eγ, Iγ, γγ-, (charged particle)γ-, (neutron)γ-coin, DSA. 74Kr deduced high-spin levels, J, π, T1/2, transition quadrupole moments, configurations, nontermination of rotational bands. Euroball III, ISIS, Gammasphere, and Microball arrays.

doi: 10.1103/PhysRevLett.95.232501
Citations: PlumX Metrics

Data from this article have been entered in the XUNDL database. For more information, click here.


2005VR01      Phys.Rep. 409, 101 (2005)

D.Vretenar, A.V.Afanasjev, G.A.Lalazissis, P.Ring

Relativistic Hartree-Bogoliubov theory: static and dynamic aspects of exotic nuclear structure

doi: 10.1016/j.physrep.2004.10.001
Citations: PlumX Metrics


2004AF02      Zh.Eksp.Teor.Fiz. 125, 462 (2004); J.Exper.Theo, Phys. 98, 403 (2004)

A.V.Afanasev, I.Akushevich, N.P.Merenkov

QED Correction to Asymmetry for Polarized ep Scattering from the Method of Electron Structure Functions

NUCLEAR REACTIONS 1H(polarized e, e'X), E=high; calculated σ(Q2), polarization asymmetry, radiative corrections.

doi: 10.1134/1.1705692
Citations: PlumX Metrics


2004AF04      Phys.Lett. B 599, 48 (2004)

A.V.Afanasev, N.P.Merenkov

Collinear photon exchange in the beam normal polarization asymmetry of elastic electron-proton scattering

NUCLEAR REACTIONS 1H(e, e), E=high; calculated parity-conserving single-spin beam asymmetry.

doi: 10.1016/j.physletb.2004.08.023
Citations: PlumX Metrics


2004AF05      Nucl.Phys. A746, 575c (2004)

A.V.Afanasjev, S.Frauendorf

Neutron-proton pairing in rotating N ∼ Z nuclei: dominance of the isovector component

NUCLEAR STRUCTURE 58,59Cu, 60Zn, 68Se, 70Br, 72,74,76Kr, 74Rb; analyzed rotational bands alignments, moments of inertia; deduced dominance of isovector component in neutron-proton pairing.

doi: 10.1016/j.nuclphysa.2004.09.093
Citations: PlumX Metrics


2004KE04      Eur.Phys.J. A 20, 131 (2004)

N.S.Kelsall, C.E.Svensson, S.Fischer, D.E.Appelbe, R.A.E.Austin, D.P.Balamuth, G.C.Ball, J.A.Cameron, M.P.Carpenter, R.M.Clark, M.Cromaz, M.A.Deleplanque, R.M.Diamond, P.Fallon, D.F.Hodgson, R.V.F.Janssens, D.G.Jenkins, G.J.Lane, C.J.Lister, A.O.Macchiavelli, C.D.O'Leary, D.G.Sarantites, F.S.Stephens, D.C.Schmidt, D.Seweryniak, K.Vetter, J.C.Waddington, R.Wadsworth, D.Ward, A.N.Wilson, A.V.Afanasjev, S.Frauendorf, I.Ragnarsson

High-spin structure of N ≈ Z nuclei around the A = 72 region

NUCLEAR REACTIONS 40Ca(36Ar, n3p), E=145 MeV; 40Ca(40Ca, 2α), E=164 MeV; measured Eγ, Iγ, γγ-, (charged particle)γ-coin. 72Br, 72Kr deduced high-spin levels.

doi: 10.1140/epja/i2002-10338-7
Citations: PlumX Metrics


2003AF02      Phys.Rev. C 67, 024309 (2003)

A.V.Afanasjev, T.L.Khoo, S.Frauendorf, G.A.Lalazissis, I.Ahmad

Cranked relativistic Hartree-Bogoliubov theory: Probing the gateway to superheavy nuclei

NUCLEAR STRUCTURE 252,254No; calculated single-particle levels, quasiparticle energies, rotational bands moments of inertia. Fm, Cm, Cf, No; calculated deformation parameters, pairing correlations, related features. 249,251Cf, 249Bk; calculated quasiparticle energies. 292120; calculated single-particle energies. Cranked relativistic Hartree-Bogoliubov theory, several parameterizations compared, comparisons with data.

doi: 10.1103/PhysRevC.67.024309
Citations: PlumX Metrics


2003BO25      Nucl.Phys. A726, 175 (2003)

V.Bondarenko, A.V.Afanasjev, F.Becvar, J.Honzatko, M.-E.Montero-Cabrera, I.Kuvaga, S.J.Robinson, A.M.J.Spits, S.A.Telezhnikov

Nuclear structure of 157Gd

NUCLEAR REACTIONS 156Gd(n, γ), E=thermal, resonance; 157Gd(n, n'), E=fast; measured Eγ, Iγ. 157Gd deduced levels, J, π, configurations, rotational bands.

doi: 10.1016/j.nuclphysa.2003.07.005
Citations: PlumX Metrics

Data from this article have been entered in the EXFOR database. For more information, access X4 dataset22765. Data from this article have been entered in the XUNDL database. For more information, click here.


2003OL02      Phys.Rev. C 67, 021301 (2003)

C.D.O'Leary, C.E.Svensson, S.G.Frauendorf, A.V.Afanasjev, D.E.Appelbe, R.A.E.Austin, G.C.Ball, J.A.Cameron, R.M.Clark, M.Cromaz, P.Fallon, D.F.Hodgson, N.S.Kelsall, A.O.Macchiavelli, I.Ragnarsson, D.Sarantites, J.C.Waddington, R.Wadsworth

Evidence for isovector neutron-proton pairing from high-spin states in N = Z 74Rb

NUCLEAR REACTIONS 40Ca(40Ca, npα), E=164 MeV; measured Eγ, Iγ, γγ-, (charged particle)γ-coin. 74Rb deduced high-spin levels, J, π, configurations, isovector neutron-proton pairing. Gammasphere, Microball arrays, cranked mean-field calculations.

doi: 10.1103/PhysRevC.67.021301
Citations: PlumX Metrics

Data from this article have been entered in the XUNDL database. For more information, click here.


2003PA09      Phys.Rev. C 67, 034316 (2003)

J.Pavan, S.L.Tabor, A.V.Afanasjev, C.Baktash, F.Cristancho, M.Devlin, J.Doring, C.J.Gross, G.D.Johns, R.A.Kaye, D.R.LaFosse, I.Y.Lee, F.Lerma, A.O.Macchiavelli, I.Ragnarsson, D.G.Sarantites, G.N.Solomon

Lifetime measurements and terminating structures in 87Nb

NUCLEAR REACTIONS 58Ni(32S, 3p), E=135 MeV; measured Eγ, Iγ, γγ-, (charged particle)γ-coin, DSA. 87Nb deduced high-spin levels, J, π, T1/2, B(M1), deformation, configurations. Gammasphere, Microball arrays. Cranked mean-field calculations.

doi: 10.1103/PhysRevC.67.034316
Citations: PlumX Metrics

Data from this article have been entered in the XUNDL database. For more information, click here.


2002AF02      Phys.Rev. D65, 013006 (2002)

A.V.Afanasev, I.Akushevich, N.P.Merenkov

Radiative Correction to the Transferred Polarization in Elastic Electron-Proton Scattering

NUCLEAR REACTIONS 1H(polarized e, e), E=4.26 GeV; calculated radiative corrections to recoil proton polarization.

doi: 10.1103/PhysRevD.65.013006
Citations: PlumX Metrics


2002JE07      Phys.Rev. C65, 064307 (2002)

D.G.Jenkins, N.S.Kelsall, C.J.Lister, D.P.Balamuth, M.P.Carpenter, T.A.Sienko, S.M.Fischer, R.M.Clark, P.Fallon, A.Gorgen, A.O.Macchiavelli, C.E.Svensson, R.Wadsworth, W.Reviol, D.G.Sarantites, G.C.Ball, J.Rikovska Stone, O.Juillet, P.Van Isacker, A.V.Afanasjev, S.Frauendorf

T = 0 and T = 1 States in the Odd-Odd N = Z Nucleus, 3570Br35

NUCLEAR REACTIONS 40Ca(32S, np), E=80-100 MeV; 40Ca(36Ar, npα), E=145 MeV; measured Eγ, Iγ, γγ-, (charged particle)γ-, (neutron)γ-coin. 70Br deduced high-spin levels, J, π, isomeric state, relative neutron-proton pairing strength features. Gammasphere, Microball arrays. Comparisons with model predictions.

doi: 10.1103/PhysRevC.65.064307
Citations: PlumX Metrics

Data from this article have been entered in the XUNDL database. For more information, click here.


2002KE03      Phys.Rev. C65, 044331 (2002)

N.S.Kelsall, S.M.Fischer, D.P.Balamuth, G.C.Ball, M.P.Carpenter, R.M.Clark, J.Durell, P.Fallon, S.J.Freeman, P.A.Hausladen, R.V.F.Janssens, D.G.Jenkins, M.J.Leddy, C.J.Lister, A.O.Macchiavelli, D.G.Sarantites, D.C.Schmidt, D.Seweryniak, C.E.Svensson, B.J.Varley, S.Vincent, R.Wadsworth, A.N.Wilson, A.V.Afanasjev, S.Frauendorf, I.Ragnarsson, R.Wyss

Testing Mean-Field Models Near the N = Z Line: γ-Ray spectroscopy of the Tz = 1/2 nucleus 73Kr

NUCLEAR REACTIONS 40Ca(36Ar, n2p), E=145 MeV; 40Ca(40Ca, n2pα), E=160 MeV; measured Eγ, Iγ, γγ-, (charged particle)γ-, (neutron)γ-coin. 73Kr deduced high-spin levels, J, π, configurations. Gammasphere, Microball arrays, comparisons with cranked mean-field results.

doi: 10.1103/PhysRevC.65.044331
Citations: PlumX Metrics

Data from this article have been entered in the XUNDL database. For more information, click here.


2002LA09      Phys.Rev.Lett. 88, 152501 (2002)

R.W.Laird, F.G.Kondev, M.A.Riley, D.E.Archer, T.B.Brown, R.M.Clark, M.Devlin, P.Fallon, D.J.Hartley, I.M.Hibbert, D.T.Joss, D.R.LaFosse, P.J.Nolan, N.J.O'Brien, E.S.Paul, J.Pfohl, D.G.Sarantites, R.K.Sheline, S.L.Shepherd, J.Simpson, R.Wadsworth, M.T.Matev, A.V.Afanasjev, J.Dobaczewski, G.A.Lalazissis, W.Nazarewicz, W.Satula

Quadrupole Moments of Highly Deformed Structures in the A ∼ 135 Region: Probing the single-particle motion in a rotating potential

NUCLEAR REACTIONS 105Pd(35Cl, xnypzα), E=173 MeV; measured Eγ, Iγ, γγ-, (charged particle)γ-coin, DSA. 130,131,132Pr, 133,135Nd, 133,134,136Pm, 135,137Sm deduced rotational bands transition quadrupole moments, additivity of single-particle moments. Cranked Skyrme-Hartree-Fock and cranked relativistic mean field calculations. Gammasphere, Microball arrays.

doi: 10.1103/PhysRevLett.88.152501
Citations: PlumX Metrics


2001AF12      Acta Phys.Hung.N.S. 13, 139 (2001)

A.V.Afanasjev, P.Ring

Properties of Superdeformed Fission Isomers in the Cranked Relativistic Hartree-Bogoliubov Theory

NUCLEAR STRUCTURE 236,238U, 236,239,240Pu, 242Am; calculated superdeformed fission isomers moments of inertia, quadrupole moments. Cranked relativistic Hartree-Bogoliubov theory, comparison with data.

doi: 10.1556/APH.13.2001.1-3.15
Citations: PlumX Metrics


2001AF15      Zh.Eksp.Teor.Fiz. 120, 515 (2001); J.Exper.Theo.Phys. 93, 449 (2001)

A.V.Afanasev, I.Akushevich, G.I.Gakh, N.P.Merenkov

Radiative Corrections to Polarized Inelastic Scattering in the Coincidence Setup

doi: 10.1134/1.1410589
Citations: PlumX Metrics


2001ID01      Phys.Rev.Lett. 87, 222501 (2001)

E.Ideguchi, D.G.Sarantites, W.Reviol, A.V.Afanasjev, M.Devlin, C.Baktash, R.V.F.Janssens, D.Rudolph, A.Axelsson, M.P.Carpenter, A.Galindo-Uribarri, D.R.LaFosse, T.Lauritsen, F.Lerma, C.J.Lister, P.Reiter, D.Seweryniak, M.Weiszflog, J.N.Wilson

Superdeformation in the Doubly Magic Nucleus 2040Ca20

NUCLEAR REACTIONS 28Si(20Ne, 2α), E=84 MeV; measured Eγ, Iγ, γγ-, (charged particle)γ-coin, residual Doppler shifts. 40Ca deduced high-spin levels, J, π, configurations, quadrupole moments, superdeformed band. Gammasphere, Microball arrays, cranked mean-field calculations.

doi: 10.1103/PhysRevLett.87.222501
Citations: PlumX Metrics

Data from this article have been entered in the XUNDL database. For more information, click here.


Back to query form    [Next]


Note: The following list of authors and aliases matches the search parameter A.V.Afanasjev: A.V.AFANASEV, A.V.AFANASIEV, A.V.AFANASJEV