NSR Query Results


Output year order : Descending
Format : Normal

NSR database version of April 27, 2024.

Search: Author = N.Rocco

Found 24 matches.

Back to query form



2024KA11      Phys.Rev. C 109, 034317 (2024)

G.Kanwar, A.Lovato, N.Rocco, M.Wagman

Mitigating Green's function Monte Carlo signal-to-noise problems using contour deformations

doi: 10.1103/PhysRevC.109.034317
Citations: PlumX Metrics


2024NI03      Phys.Rev. C 109, 014623 (2024)

A.Nikolakopoulos, A.Lovato, N.Rocco

Relativistic effects in Green's function Monte Carlo calculations of neutrino-nucleus scattering

doi: 10.1103/PhysRevC.109.014623
Citations: PlumX Metrics


2024SA20      Phys.Rev.Lett. 132, 162501 (2024)

S.N.Santiesteban, S.Li, D.Abrams, S.Alsalmi, D.Androic, K.Aniol, J.Arrington, T.Averett, C.Ayerbe Gayoso, J.Bane, S.Barcus, J.Barrow, A.Beck, V.Bellini, H.Bhatt, D.Bhetuwal, D.Biswas, A.Camsonne, J.Castellanos, J.Chen, J.-P.Chen, D.Chrisman, M.E.Christy, C.Clarke, S.Covrig, R.Cruz-Torres, D.Day, D.Dutta, E.Fuchey, C.Gal, F.Garibaldi, T.N.Gautam, T.Gogami, J.Gomez, P.Gueye, T.J.Hague, J.O.Hansen, F.Hauenstein, W.Henry, D.W.Higinbotham, R.J.Holt, C.Hyde, K.Itabashi, M.Kaneta, A.Karki, A.T.Katramatou, C.E.Keppel, P.M.King, L.Kurbany, T.Kutz, N.Lashley-Colthirst, W.B.Li, H.Liu, N.Liyanage, E.Long, A.Lovato, J.Mammei, P.Markowitz, R.E.McClellan, F.Meddi, D.Meekins, R.Michaels, M.Mihovilovic, A.Moyer, S.Nagao, D.Nguyen, M.Nycz, M.Olson, L.Ou, V.Owen, C.Palatchi, B.Pandey, A.Papadopoulou, S.Park, T.Petkovic, S.Premathilake, V.Punjabi, R.D.Ransome, P.E.Reimer, J.Reinhold, S.Riordan, N.Rocco, V.M.Rodriguez, A.Schmidt, B.Schmookler, E.P.Segarra, A.Shahinyan, S.Sirca, K.Slifer, P.Solvignon, T.Su, R.Suleiman, L.Tang, Y.Tian, W.Tireman, F.Tortorici, Y.Toyama, K.Uehara, G.M.Urciuoli, D.Votaw, J.Williamson, B.Wojtsekhowski, S.Wood, Z.H.Ye, J.Zhang, X.Zheng

Novel Measurement of the Neutron Magnetic Form Factor from A=3 Mirror Nuclei

NUCLEAR REACTIONS 3H, 3He(e-, e-), E=2.222, 4.323 GeV; measured reaction products; deduced σ(θ, E), the neutron magnetic form factor using quasielastic scattering from the mirror nuclei. Comparison with available data. Hall A at Jefferson Lab (JLab).

doi: 10.1103/PhysRevLett.132.162501
Citations: PlumX Metrics


2022AN04      Phys.Rev. C 105, 014002 (2022)

L.Andreoli, J.Carlson, A.Lovato, S.Pastore, N.Rocco, R.B.Wiringa

Electron scattering on A=3 nuclei from quantum Monte Carlo based approaches

NUCLEAR REACTIONS 3H(e, e), (e, e'), at momentum transfer θ=300 MeV/c; calculated total longitudinal response density. 3H, 3He(e, e'), at momentum transfer θ=300, 500, 700 MeV/c; calculated longitudinal and transverse response functions, single proton momentum distribution of 3He. 3He(e, e), (e, e'), E=287.2, 319.1, 469.4, 499.9, 560.3, 667.3 MeV; 3H(e, e), (e, e'), E=367.7, 506.9, 557.9, 652.4, 790.2 MeV; calculated inclusive double-differential σ(E). Green's function Monte Carlo (GFMC) method with two approaches for the final hadronic state: the spectral-function (SF) formalism and the short-time approximation (STA). Comparison with experimental data.

doi: 10.1103/PhysRevC.105.014002
Citations: PlumX Metrics


2022BR04      Phys.Rev. C 105, 045501 (2022)

V.Brdar, R.Plestid, N.Rocco

Empirical capture cross sections for cosmic neutrino detection with 151Sm and 171Tm

NUCLEAR REACTIONS 151Sm, 171Tm(ν, X), E ≈ threshold; analyzed experimental data on T1/2 and spectrum shape of β-decay for 151Sm, 171Tm; deduced σ. Estimations for experimental design and constraints relevant to the cosmic neutrino background detection in particular for the proposed PTOLEMY project.

doi: 10.1103/PhysRevC.105.045501
Citations: PlumX Metrics


2022GN01      Few-Body Systems 63, 7 (2022)

A.Gnech, C.Adams, N.Brawand, G.Carleo, A.Lovato, N.Rocco

Nuclei with Up to A=6 Nucleons with Artificial Neural Network Wave Functions

NUCLEAR STRUCTURE 2,3H, 6Li, 3,4,6He; calculated VM-ANN and HH point-nucleon densities, ground-state energies and charge radii using as input the leading-order pionless-EFT Hamiltonian with and without the 3N force.

doi: 10.1007/s00601-021-01706-0
Citations: PlumX Metrics


2022LO15      Phys. Rev. Res. 4, 043178 (2022)

A.Lovato, C.Adams, G.Carleo, N.Rocco

Hidden-nucleons neural-network quantum states for the nuclear many-body problem

NUCLEAR STRUCTURE 16O; calculated the hidden-nucleon ansatz accuracy comparable to the numerically exact hyperspherical harmonic method in light nuclei and to the auxiliary field diffusion Monte Carlo.

doi: 10.1103/PhysRevResearch.4.043178
Citations: PlumX Metrics


2021AD12      Phys.Rev.Lett. 127, 022502 (2021)

C.Adams, G.Carleo, A.Lovato, N.Rocco

Variational Monte Carlo Calculations of A ≤ 4 Nuclei with an Artificial Neural-Network Correlator Ansatz

NUCLEAR STRUCTURE 2,3H, 4He; calculated ground-state energies, point-nucleon densities. Artificial neural networks (ANNs).

doi: 10.1103/PhysRevLett.127.022502
Citations: PlumX Metrics


2021IS02      Phys.Rev. C 103, 015502 (2021)

J.Isaacson, W.I.Jay, A.Lovato, P.A.N.Machado, N.Rocco

New approach to intranuclear cascades with quantum Monte Carlo configurations

NUCLEAR REACTIONS 12C(p, p), (p, X), E=5-200 MeV; calculated nucleon density, proton-proton and proton-neutron correlation functions in carbon from Green's function Monte Carlo and mean-field configurations, total σ(E), carbon transparency as function of incident proton energy, histograms of the distance traveled by a struck particle before the first interaction takes place for different values of the interaction cross section, nucleon multiplicity. Novel intranuclear cascade (INC) model with realistic quantum Monte Carlo (QMC) and mean-field (MF) nuclear configurations. Comparison with experimental data.

doi: 10.1103/PhysRevC.103.015502
Citations: PlumX Metrics


2021RA07      Phys.Rev. C 103, 035502 (2021)

K.Raghavan, P.Balaprakash, A.Lovato, N.Rocco, S.M.Wild

Machine-learning-based inversion of nuclear responses

NUCLEAR STRUCTURE 4He; calculated response functions characterized by an elastic narrow peak and a quasieleastic (QE) peak, physics-informed neural network (Phys-NN) and maximum entropy (MaxEnt) testing metrics, comparison between the Phys-NN and MaxEnt reconstructions for the one-peak and two-peak datasets, energy-dependent entropy for the Phys-NN and Max-Ent for the one-peak and two-peak datasets; deduced Phys-NN and MaxEnt reconstruction performance. Physics-informed artificial neural network architecture for approximating the inverse of the Laplace transform using realistic, electromagnetic response functions. Relevance to short-range nuclear dynamics and for the correct interpretation of neutrino oscillation experiments.

doi: 10.1103/PhysRevC.103.035502
Citations: PlumX Metrics


2020KI08      Phys.Rev. C 101, 065502 (2020)

G.B.King, K.Mahn, L.Pickering, N.Rocco

Comparing event generator predictions and ab initio calculations of ν-12C neutral-current quasielastic scattering at 1 GeV

NUCLEAR REACTIONS 12C(ν, ν), (ν-bar, ν-bar), E=1 GeV; calculated quasielastic differential σ(θ) for neutral-current quasielastic (NCQE) scattering events using event generator (EG) NEUT code (used in analysis of data from T2K experiment at Super-Kamiokande) with two different models on nuclear spectral functions: the relativistic Fermi gas (RFG) and the correlated basis spectral function (CBF). Comparison with analytic calculations using the same two models. Relevance to measurement of neutrino oscillations and exotic physics searches.

doi: 10.1103/PhysRevC.101.065502
Citations: PlumX Metrics


2019BA50      Phys.Rev. C 100, 062501 (2019)

C.Barbieri, N.Rocco, V.Soma

Lepton scattering from 40Ar and 48Ti in the quasielastic peak region

NUCLEAR STRUCTURE 40Ar, 40Ca, 48Ti; calculated radii and charge density distributions, neutron and proton spectral function using the ab initio self-consistent Green's function (SCGF) theory with saturating chiral interactions. Comparison with experimental data.

NUCLEAR REACTIONS 40Ar, 48Ti(e, e'), E=2.2 GeV; 12C, 40Ar, 48Ti(ν, ν), (ν, μ-), E=1.0 GeV; calculated inclusive differential σ for electron scattering, and double differential quasielastic neutral and charged current cross sections for muon neutrino scattering, using the calculated spectral functions. Comparison with experimental data from Jefferson Lab. Relevance to long-based neutrino oscillations experiments.

doi: 10.1103/PhysRevC.100.062501
Citations: PlumX Metrics


2019LO11      Phys.Rev. C 100, 035502 (2019)

A.Lovato, N.Rocco, R.Schiavilla

Muon capture in nuclei: An ab initio approach based on Green's function Monte Carlo methods

NUCLEAR REACTIONS 4He(μ, nν)3H, (μ, 2nν)2H, (μ, 3nν)1H, 3H(μ, 3nν), E=0-83.6 MeV; calculated differential rates of muon capture on 3H and 4He as function of energy of the muon neutrino using an ab initio Green's function Monte Carlo (GFMC) method, in a dynamical framework based on realistic two- and three-nucleon interactions and realistic nuclear charge-changing weak currents. Comparison with experimental data for muon capture in 4He.

doi: 10.1103/PhysRevC.100.035502
Citations: PlumX Metrics


2019RO06      Phys.Rev. C 99, 025502 (2019)

N.Rocco, C.Barbieri, O.Benhar, A.De Pace, A.Lovato

Neutrino-nucleus cross section within the extended factorization scheme

NUCLEAR REACTIONS 12C, 16O(ν, X), (ν-bar, X), E=1 GeV muon neutrinos; calculated scattering differential σ(θ), and total σ using extended factorization scheme based on the impulse approximation and spectral function formalism by including relativistic meson-exchange two-body currents (MEC) relevant for charged-current (CC) and neutral-current (NC) interactions. Relevance to experimental data from MiniBooNE Collaboration, and future generation experiments.

doi: 10.1103/PhysRevC.99.025502
Citations: PlumX Metrics


2019RO17      Phys.Rev. C 100, 045503 (2019)

N.Rocco, S.X.Nakamura, T.-S.H.Lee, A.Lovato

Electroweak pion production on nuclei within the extended factorization scheme

NUCLEAR REACTIONS 12C(e, e'π), E=620, 730, 961, 1650 MeV; 12C(ν, ν'), (ν, μ-), E=1.0 GeV; 1H(e, e'π0), (e, e'π+), Q2=0.4, 1.76, 2.95 MeV; 1H(ν, μ-π+), 1n(ν, μ-π0), (ν, μ-π+), E<2.25 GeV muon neutrinos; calculated double differential σ(E) using the dynamical coupled-channel (DCC) ANL-Osaka model and Metropolis Monte Carlo integration techniques for generating the matrix elements of current operators relevant to pion production off the nucleon. Comparison with experimental data from ANL and BNL.

doi: 10.1103/PhysRevC.100.045503
Citations: PlumX Metrics


2019SO10      Phys.Rev. C 99, 065503 (2019)

J.E.Sobczyk, N.Rocco, A.Lovato, J.Nieves

Weak production of strange and charmed ground-state baryons in nuclei

NUCLEAR REACTIONS 12C, 16O, 40Ca(ν-bar, μ+Λ), (ν-bar, μ+Σ-), (ν-bar, μ+Σ0), (ν-bar, μ+Σ+), (ν-bar, μ-Λ), E=0.5-5 GeV; calculated differential σ(E, θ) and total σ(E) for muonic neutrino beams, form factors using realistic hole spectral functions with propagation of hyperons in the nuclear medium via a Monte Carlo cascade. Implications in the analysis of experiments from SciBooNE, MicroBooNE, MINERvA and ArgoNeuT collaborations.

doi: 10.1103/PhysRevC.99.065503
Citations: PlumX Metrics


2019SO16      Phys.Rev. C 100, 035501 (2019)

J.E.Sobczyk, N.Rocco, J.Nieves

Polarization of t in quasielastic (anti)neutrino scattering: The role of spectral functions

NUCLEAR REACTIONS 16O(ν, ν), (ν-bar, ν-bar'), E=4, 6 GeV; calculated double-differential σ(θ, E) and polarization components for scattering of τ neutrino or anti-neutrino off 16O; analyzed cross sections and polarization components for the charge-current reaction, focusing on the quasielastic region where the single nucleon knock-out dominates reaction mechanism. Relevance to experiments at SHiP facility, and neutrino oscillations.

doi: 10.1103/PhysRevC.100.035501
Citations: PlumX Metrics


2018RO11      Phys.Rev. C 97, 055501 (2018)

N.Rocco, W.Leidemann, A.Lovato, G.Orlandini

Relativistic effects in ab initio electron-nucleus scattering

NUCLEAR REACTIONS 4He(e-, e-'), E=300-1108 MeV; calculated longitudinal and transverse electromagnetic response functions with and without two-body relativistic kinematics, and double differential σ(E, θ) using Green's Function Monte Carlo (GFMC) approach with the inclusion of two-fragment model; developed a new algorithm to interpolate response functions to arbitrary values of momentum transfer. Comparison with previous theoretical predictions, and with experimental values.

doi: 10.1103/PhysRevC.97.055501
Citations: PlumX Metrics


2018RO21      Phys.Rev. C 98, 025501 (2018)

N.Rocco, C.Barbieri

Inclusive electron-nucleus cross section within the self-consistent Green's function approach

NUCLEAR STRUCTURE 4He, 16O; calculated charge form factors, point-proton densities, charge densities, and single-nucleon momentum distributions by ab initio self-consistent Green's function approach (SCGF) approach for single-particle propagators using a METROPOLIS Monte Carlo algorithm.

NUCLEAR REACTIONS 4He(e, X), E=300, 500, 600, 730, 961 MeV; 16O(e, X), E=737, 880, 1080, 1200 MeV; calculated double-differential σ(E, θ) using the SCGF-ADC(3) propagator, and compared with experimental data.

doi: 10.1103/PhysRevC.98.025501
Citations: PlumX Metrics


2018SO03      Phys.Rev. C 97, 035506 (2018)

J.E.Sobczyk, N.Rocco, A.Lovato, J.Nieves

Scaling within the spectral function approach

NUCLEAR REACTIONS 12C(e, e'), at momentum transfer q=0.57-1.2 GeV; calculated nucleon-density response function, transverse, longitudinal, and nucleon-density scaling functions, nonrelativistic PWIA scaling responses using two approaches, semi-phenomenological model, and hole spectral function (SF) based on correlated basis function (CBF). Comparison with experimental data.

doi: 10.1103/PhysRevC.97.035506
Citations: PlumX Metrics


2017RO17      Phys.Rev. C 96, 015504 (2017)

N.Rocco, L.Alvarez-Ruso, A.Lovato, J.Nieves

Electromagnetic scaling functions within the Green's function Monte Carlo approach

NUCLEAR REACTIONS 4He, 12C(e, e'), q=300, 400, 500, 600, 700 MeV; calculated longitudinal and transverse scaling functions in the relativistic and nonrelativistic cases; deduced scaling properties of the electromagnetic response functions. Green's function Monte Carlo (GFMC) approach, with only the one-body current contribution. Comparison with experimental data. Novel interpretation of the scaling function, and role of relativistic effects.

doi: 10.1103/PhysRevC.96.015504
Citations: PlumX Metrics


2016RO10      Phys.Rev.Lett. 116, 192501 (2016)

N.Rocco, A.Lovato, O.Benhar

Unified Description of Electron-Nucleus Scattering within the Spectral Function Formalism

NUCLEAR REACTIONS 12C(E, E'), E=0.680, 1.3 GeV; calculated σ(θ, E). Comparison with experimental data.

doi: 10.1103/PhysRevLett.116.192501
Citations: PlumX Metrics


2016RO32      Phys.Rev. C 94, 065501 (2016)

N.Rocco, A.Lovato, O.Benhar

Comparison of the electromagnetic responses of 12C obtained from the Green's function Monte Carlo and spectral function approaches

NUCLEAR REACTIONS 12C(e, e'), at momentum transfer q=300, 380, 570 MeV; analyzed and evaluated electromagnetic response function data in the longitudinal and transverse channels using the Green's function Monte Carlo (GFMC) and spectral function (SF) approaches.

doi: 10.1103/PhysRevC.94.065501
Citations: PlumX Metrics


2015BE26      Phys.Rev. C 92, 024602 (2015)

O.Benhar, A.Lovato, N.Rocco

Contribution of two-particle-two-hole final states to the nuclear response

NUCLEAR REACTIONS 4He(e, e'), E not given; 12C(e, e'), E=961 MeV; calculated transverse electromagnetic response, differential using state-of-the-art models of nuclear Hamiltonian and currents, within the Green's function Monte Carlo (GFMC) computational scheme; analyzed mechanisms of correlations in the initial and final states and coupling to meson exchange currents (MEC) which lead to the appearance of two-particle-two-hole final states. Comparison with experimental data. Relevance to experiments and analyses of MiniBooNE collaboration.

doi: 10.1103/PhysRevC.92.024602
Citations: PlumX Metrics


Back to query form