NSR Query Results


Output year order : Descending
Format : Normal

NSR database version of April 26, 2024.

Search: Author = J.Rotureau

Found 30 matches.

Back to query form



2022FO03      Phys.Rev. C 106, 034312 (2022)

K.Fossez, J.Rotureau

Density matrix renormalization group description of the island of inversion isotopes 28-33F

NUCLEAR STRUCTURE 25O, 25,26,27,28,31F; analyzed experimental level energies, J, π with reference to ground-state and width of 24O. 25,26,27,28,29,30,31,32,33F; calculated energies of the ground states with reference to 24O core, occupation numbers of the neutron and proton partial waves for the ground states, experimental and predicted energy differences between the lowest 5/2+ and 1/2+ states in odd-A fluorine nuclei. 26,27,28,29,30,31,32,33F; calculated levels, J, π with 4p-4h truncation; discussed halo structure in the ground state of 29F, and island of inversion (IOI). Large-scale shell model calculations using density matrix renormalization group (DMRG) method, and an effective two-body interaction with adjustable parameters in the central and tensor channels. Comparison with available experimental data.

doi: 10.1103/PhysRevC.106.034312
Citations: PlumX Metrics


2022LJ01      Phys.Rev. C 106, 014314 (2022)

J.Ljungberg, B.G.Carlsson, J.Rotureau, A.Idini, I.Ragnarsson

Nuclear spectra from low-energy interactions

NUCLEAR STRUCTURE 24Mg, 48,49,50,52Cr; calculated levels, J, π, B(E2), Q2, HFB energy versus deformation for with SLy4-H Hamiltonian, Hartree-Fock binding energies versus deformation for 48Cr. Generator-coordinate method using effective Hamiltonian that reproduces stiffness associated with collective modes, and a mapping from a density functional to the corresponding Hamiltonian, with Skyrme-based energy-density functional (EDF). Comparison with experimental data.

doi: 10.1103/PhysRevC.106.014314
Citations: PlumX Metrics


2021CA14      Phys.Rev.Lett. 126, 172501 (2021)

B.G.Carlsson, J.Rotureau

New and Practical Formulation for Overlaps of Bogoliubov Vacua

doi: 10.1103/PhysRevLett.126.172501
Citations: PlumX Metrics


2020MA34      Phys.Rev. C 102, 024309 (2020)

X.Mao, J.Rotureau, W.Nazarewicz, N.Michel, R.M.Id Betan, Y.Jaganathen

Gamow-shell-model description of Li isotopes and their mirror partners

NUCLEAR STRUCTURE 5He, 5,6,7,8,9,10,11Li, 7Be, 8B, 9C, 10N, 11O; calculated levels, resonances, J, π in the framework of the complex-energy Gamow shell model (GSM) assuming the rigid 4He core, and effective interaction between valence nucleons based on a simplified version of the Furutani-Horiuchi-Tamagaki (FHT) potential. Comparison with experimental data.

doi: 10.1103/PhysRevC.102.024309
Citations: PlumX Metrics


2020RO09      J.Phys.(London) G47, 065103 (2020)

J.Rotureau, G.Potel, W.Li, F.M.Nunes

Merging ab initio theory and few-body approach for (d, p) reactions

NUCLEAR REACTIONS 40,48,52,54Ca(d, p), E=10 MeV; calculated σ(θ). Comparison with available data.

doi: 10.1088/1361-6471/ab8530
Citations: PlumX Metrics


2018FO23      Phys.Rev. C 98, 061302 (2018)

K.Fossez, J.Rotureau, W.Nazarewicz

Energy spectrum of neutron-rich helium isotopes: Complex made simple

NUCLEAR STRUCTURE 5,6,7,8,9,10He; calculated levels, J, π, decay widths using Gamow-density-matrix renormalization-group (G-DMRG); predicted parity inversion of narrow resonances in 9He, and s-wave-dominated configuration of the ground state of 10He that could decay by two-neutron emission. Comparison with experimental values.

doi: 10.1103/PhysRevC.98.061302
Citations: PlumX Metrics


2018RO26      Phys.Rev. C 98, 044625 (2018)

J.Rotureau, P.Danielewicz, G.Hagen, G.R.Jansen, F.M.Nunes

Microscopic optical potentials for calcium isotopes

NUCLEAR REACTIONS 40Ca(n, n), E=5.17, 6.34 MeV; 48Ca(n, n), E=4.00, 7.81 MeV; calculated differential σ(θ), real and imaginary parts of the diagonal optical potential and scattering phase shifts. 41,49Ca; calculated energies of bound states, and real part of the radical optical potentials. Green's function approach with coupled-cluster method with chiral nucleon-nucleon and three-nucleon interaction NNLOsat, and the chiral nucleon-nucleon interaction NNLOop. Comparison with experimental data.

doi: 10.1103/PhysRevC.98.044625
Citations: PlumX Metrics


2017FO13      Phys.Rev.Lett. 119, 032501 (2017)

K.Fossez, J.Rotureau, N.Michel, M.Ploszajczak

Can Tetraneutron be a Narrow Resonance?

NUCLEAR STRUCTURE 4NN; analyzed available data; calculated evolution of the energy and width of the four-neutron system with the scaling of the N3LO interaction; deduced the energy of the four-neutron system compatible with the experimental value, its width must be larger than the reported upper limit, supporting the interpretation of the experimental observation as a reaction process too short to form a nucleus. Quasistationary formalism using ab initio techniques with various two-body chiral interactions.

doi: 10.1103/PhysRevLett.119.032501
Citations: PlumX Metrics


2017FO17      Phys.Rev. C 96, 024308 (2017)

K.Fossez, J.Rotureau, N.Michel, W.Nazarewicz

Continuum effects in neutron-drip-line oxygen isotopes

NUCLEAR STRUCTURE 23,24,25,26,27,28O; calculated binding energies, resonances and widths using complex-energy Gamow shell model and density matrix renormalization group method with a finite-range two-body interaction (GSM+DMRG). Comparison with experimental data.

doi: 10.1103/PhysRevC.96.024308
Citations: PlumX Metrics


2017JO12      Phys.Rev. C 96, 054322 (2017)

M.D.Jones, K.Fossez, T.Baumann, P.A.DeYoung, J.E.Finck, N.Frank, A.N.Kuchera, N.Michel, W.Nazarewicz, J.Rotureau, J.K.Smith, S.L.Stephenson, K.Stiefel, M.Thoennessen, R.G.T.Zegers

Search for excited states in 25O

NUCLEAR REACTIONS 2H(24O, 25O), E=83.4 MeV/nucleon, [secondary 24O beam from 9Be(48Ca, X) primary reaction using A1900 fragment separator at NSCL-MSU facility]; measured 24O particles by a position and energy sensitive charged particle detector and separated based on energy loss and time-of-flight, and neutrons from 25O decay by the MoNA-LISA detector array. 25O; deduced two-body (24O+n) decay energy spectrum by invariant-mass spectroscopy technique, neutron-unbound ground state, L-transfer, asymptotic normalization coefficients, cross section and width of a possible 1/2+ resonance above the ground state. Comparisons with previous experimental results, and with theoretical calculations using complex-energy Gamow Shell Model (GSM) and Density Matrix Renormalization Group (DMRG) method with a finite-range two-body interaction.

NUCLEAR STRUCTURE 23,24,25,26,27,28O; calculated levels, J, π using complex-energy Gamow Shell Model (GSM) and Density Matrix Renormalization Group (DMRG) method with a finite-range two-body interaction. Comparison with experimental data.

doi: 10.1103/PhysRevC.96.054322
Citations: PlumX Metrics

Data from this article have been entered in the XUNDL database. For more information, click here.


2017PO13      Eur.Phys.J. A 53, 178 (2017)

G.Potel, G.Perdikakis, B.V.Carlson, M.C.Atkinson, W.H.Dickhoff, J.E.Escher, M.S.Hussein, J.Lei, W.Li, A.O.Macchiavelli, A.M.Moro, F.M.Nunes, S.D.Pain, J.Rotureau

Toward a complete theory for predicting inclusive deuteron breakup away from stability

NUCLEAR REACTIONS 93Nb(d, pn), E=10, 25.5 MeV; calculated σ(ln), σ(θn) assuming both elastic and nonelastic breakup. Compared with published calculations. 40,48,60Ca(d, pn), E=20, 40 MeV; calculated σ(Ep) vs En and vs ln using both elastic and nonelastic breakup and using Hussein-McVoy theory.

doi: 10.1140/epja/i2017-12371-9
Citations: PlumX Metrics


2017RO04      Phys.Rev. C 95, 024315 (2017)

J.Rotureau, P.Danielewicz, G.Hagen, F.M.Nunes, T.Papenbrock

Optical potential from first principles

NUCLEAR REACTIONS 16O(n, n), E=10 MeV; analyzed and constructed microscopic nuclear optical potentials from chiral interactions for nucleon nucleus scattering, and phase shifts by combining the Green's function approach with the coupled cluster method.

doi: 10.1103/PhysRevC.95.024315
Citations: PlumX Metrics


2017SH14      J.Phys.(London) G44, 075103 (2017)

I.J.Shin, Y.Kim, P.Maris, J.P.Vary, C.Forssen, J.Rotureau, N.Michel

Ab initio no-core solutions for 6Li

NUCLEAR STRUCTURE 6Li; calculated energy levels, rms radii, quadrupole moments, ground state energy, magnetic dipole moment, B(E2), B(M1), Gamow-Teller matrix elements. Ab initio NCFC approach, comparison with experimental values.

doi: 10.1088/1361-6471/aa6cb7
Citations: PlumX Metrics


2016FO22      Phys.Rev. C 94, 054302 (2016)

K.Fossez, J.Rotureau, N.Michel, Q.Liu, W.Nazarewicz

Single-particle and collective motion in unbound deformed 39Mg

NUCLEAR STRUCTURE 39Mg; calculated levels, J, π, resonances, half-lives and widths, configurations, one-body radial density of the valence neutron, single-particle neutron Nilsson diagram. Conventional shell model (SM), Gamow shell model (GSM), resonating group method (RGM), density matrix renormalization group (DMRG) method, and the nonadiabatic particle-plus-rotor model (PRM) formulated in the Berggren basis, with the interactions optimized to the energies of neutron-rich Mg isotopes and 2+ excitations of 34,36,38Mg.

doi: 10.1103/PhysRevC.94.054302
Citations: PlumX Metrics


2014KI07      Int.J.Mod.Phys. E23, 1461004 (2014)

Y.Kim, I.J.Shin, P.Maris, J.P.Vary, C.Forssen, J.Rotureau

Ab initio no core full configuration approach for light nuclei

doi: 10.1142/S0218301314610047
Citations: PlumX Metrics


2013FO06      Phys.Scr. T152, 014022 (2013)

C.Forssen, G.Hagen, M.Hjorth-Jensen, W.Nazarewicz, J.Rotureau

Living on the edge of stability, the limits of the nuclear landscape

doi: 10.1088/0031-8949/2013/T152/014022
Citations: PlumX Metrics


2013PA30      Phys.Rev. C 88, 044318 (2013)

G.Papadimitriou, J.Rotureau, N.Michel, M.Ploszajczak, B.R.Barrett

Ab initio no-core Gamow shell model calculations with realistic interactions

NUCLEAR STRUCTURE 3H, 4,5He; calculated ground-state energies, widths, asymptotic normalization coefficients (ANC), spectroscopic factors for well-bound and unbound states. No-core Gamow shell model (NCGSM), and density matrix renormalization group (DMRG) method with N3LO interaction. Benchmarking of results against Faddeev and Faddeev-Yakubovsky calculations for 3H and 4He.

doi: 10.1103/PhysRevC.88.044318
Citations: PlumX Metrics


2013ST01      Prog.Part.Nucl.Phys. 69, 182 (2013)

I.Stetcu, J.Rotureau

Effective interactions and operators in the no-core shell model

doi: 10.1016/j.ppnp.2012.10.001
Citations: PlumX Metrics


2012RO07      Phys.Rev. C 85, 034003 (2012); Pub.Note Phys.Rev. C 85, 039903 (2012)

J.Rotureau, I.Stetcu, B.R.Barrett, U.van Kolck

Two and three nucleons in a trap, and the continuum limit

doi: 10.1103/PhysRevC.85.034003
Citations: PlumX Metrics


2011PA35      Phys.Rev. C 84, 051304 (2011)

G.Papadimitriou, A.T.Kruppa, N.Michel, W.Nazarewicz, M.Ploszajczak, J.Rotureau

Charge radii and neutron correlations in helium halo nuclei

NUCLEAR STRUCTURE 6,8He; calculated two-neutron GSM density, ground state configurations, rms charge and neutron radii, S(2n) versus rms neutron radius. The Gamow shell model (GSM) with a finite-range modified MN interaction. Comparison with experimental data.

doi: 10.1103/PhysRevC.84.051304
Citations: PlumX Metrics


2010DA17      Phys.Rev.Lett. 105, 162502 (2010)

I.G.Darby, R.K.Grzywacz, J.C.Batchelder, C.R.Bingham, L.Cartegni, C.J.Gross, M.Hjorth-Jensen, D.T.Joss, S.N.Liddick, W.Nazarewicz, S.Padgett, R.D.Page, T.Papenbrock, M.M.Rajabali, J.Rotureau, K.P.Rykaczewski

Orbital Dependent Nucleonic Pairing in the Lightest Known Isotopes of Tin

RADIOACTIVITY 109Xe, 105Te(α); measured Iα, Eα, Iγ, Iγ; deduced J, π for ground and first excited states in 101Sn, ground state spin inversion, strong pairing interaction. Comparison with shell model calculations.

doi: 10.1103/PhysRevLett.105.162502
Citations: PlumX Metrics

Data from this article have been entered in the XUNDL database. For more information, click here.


2009RO02      Phys.Rev. C 79, 014304 (2009)

J.Rotureau, N.Michel, W.Nazarewicz, M.Ploszajczak, J.Dukelsky

Density matrix renormalization group approach to two-fluid open many-fermion systems

NUCLEAR STRUCTURE 7,8Li; calculated ground-state energies. Density matrix renormalization group, Gamow shell model.

doi: 10.1103/PhysRevC.79.014304
Citations: PlumX Metrics


2007DO12      Prog.Part.Nucl.Phys. 59, 432 (2007)

J.Dobaczewski, N.Michel, W.Nazarewicz, M.Ploszajczak, J.Rotureau

Shell structure of exotic nuclei

doi: 10.1016/j.ppnp.2007.01.022
Citations: PlumX Metrics


2006MI29      Phys.Rev. C 74, 054305 (2006)

N.Michel, W.Nazarewicz, M.Ploszajczak, J.Rotureau

Antibound states and halo formation in the Gamow shell model

NUCLEAR STRUCTURE 11Li; calculated halo state wave function, related features. Gamow shell model.

doi: 10.1103/PhysRevC.74.054305
Citations: PlumX Metrics


2006RO09      Nucl.Phys. A767, 13 (2006)

J.Rotureau, J.Okolowicz, M.Ploszajczak

Theory of the two-proton radioactivity in the continuum shell model

NUCLEAR STRUCTURE 45Fe, 48Ni, 54Zn; calculated diproton source function, diproton and sequential emission probabilities for two-proton decay of ground state, T1/2, energy spectra. Microscopic approach, real-energy continuum shell model, comparison with data.

RADIOACTIVITY 45Fe, 48Ni, 54Zn(p), (2p); calculated T1/2, Q, emission probabilities for simultaneous and sequential decay. Microscopic approach, real-energy continuum shell model, comparison with data.

doi: 10.1016/j.nuclphysa.2005.12.005
Citations: PlumX Metrics


2005MI33      Eur.Phys.J. A 25, Supplement 1, 493 (2005)

N.Michel, W.Nazarewicz, M.Ploszajczak, J.Rotureau

Shell-model description of weakly bound and unbound nuclear states

NUCLEAR STRUCTURE 6,7,8,9He, 6,7,8,9Li; calculated binding energies. 6He; calculated ground and excited states spectroscopic factors. Gamow shell model.

doi: 10.1140/epjad/i2005-06-136-7
Citations: PlumX Metrics


2005RO23      Phys.Rev.Lett. 95, 042503 (2005)

J.Rotureau, J.Okolowicz, M.Ploszajczak

Microscopic Theory of the Two-Proton Radioactivity

NUCLEAR STRUCTURE 18Ne; calculated diproton source function, diproton and sequential emission probabilities for two-proton decay of excited state. Microscopic approach, real-energy continuum shell model.

doi: 10.1103/PhysRevLett.95.042503
Citations: PlumX Metrics


2005RO41      Eur.Phys.J. A 25, Supplement 1, 173 (2005)

J.Rotureau, R.Chatterjee, J.Okolowicz, M.Ploszajczak

Microscopic theory of the two-proton radioactivity

RADIOACTIVITY 18Ne(2p); calculated excited state decay widths and branching ratios for sequential and di-proton cluster emission. Real-energy continuum shell model.

doi: 10.1140/epjad/i2005-06-121-2
Citations: PlumX Metrics


2004MI31      Acta Phys.Pol. B35, 1249 (2004)

N.Michel, W.Nazarewicz, J.Okolowicz, M.Ploszajczak, J.Rotureau

Shell Model Description of Nuclei Far from Stability

NUCLEAR STRUCTURE 20,21,22,23,24,25,26,27,28,29O, 21,22,23,24,25,26,27,28,29,30,31F; calculated continuum-coupling correction to binding energy. 6,7,8,9He; calculated ground and excited states energies.


2004RO26      Acta Phys.Pol. B35, 1283 (2004)

J.Rotureau, J.Okolowicz, M.Ploszajczak

Microscopic Theory of the Two-Proton Radioactivity

NUCLEAR STRUCTURE 18Ne; calculated diproton and sequential emission probabilities for two-proton decay of excited state. Microscopic approach, comparison with data.


Back to query form