NSR Query Results


Output year order : Descending
Format : Normal

NSR database version of April 27, 2024.

Search: Author = A.Baran

Found 66 matches.

Back to query form



2023YA15      Phys.Rev. C 107, 054304 (2023)

J.Yang, J.Dudek, I.Dedes, A.Baran, D.Curien, A.Gaamouci, A.Gozdz, A.Pedrak, D.Rouvel, H.L.Wang

Islands of oblate hyperdeformed and superdeformed superheavy nuclei with D3h point group symmetry in competition with normal-deformed D3h states: "Archipelago" of D3h-symmetry islands

NUCLEAR STRUCTURE 302Og, 292124, 318130; calculated contours of projections of the total nuclear energy surfaces on (α22, α20), (α33, α20), ( α33, α22) and (α30, α20) planes, deformation parameters. N=166-206;Z=116-138; calculated single-particle neutron and proton energy levels, shell energies defined as sums of the Strutinsky and pairing correction energies, D3h-symmetric hyperdeformed, superdeformed, and normal-deformed configurations. Found three separate islands of nuclei with D3h symmetry ("archipelago of three islands") differing by their average α20 < 0 deformations. Macroscopic-microscopic method with a realistic phenomenological Woods-Saxon potential.

doi: 10.1103/PhysRevC.107.054304
Citations: PlumX Metrics


2022YA11      Phys.Rev. C 105, 034348 (2022)

J.Yang, J.Dudek, I.Dedes, A.Baran, D.Curien, A.Gaamouci, A.Gozdz, A.Pedrak, D.Rouvel, H.L.Wang, J.Burkat

Exotic shape symmetries around the fourfold octupole magic number N=136: Formulation of experimental identification criteria

NUCLEAR STRUCTURE N=122-164; calculated single-particle neutron levelsand Routhians as functions of α30, α31, α32 and α33 octupole deformations; deduced very large neutron shell gaps at N=136 for all the four octupole deformations, and N=136 as a "universal or fourfold octupole magic number". 208,212,216,218Pb, 218,220,222,224Ra, 220Po, 222Rn, 224Ra, 226Th; calculated contours of projections of the total nuclear energy surfaces on (α30, α20) planes for all the isotopes, (α31, α20), (α32, α20), and (α33, α20) planes for 218Pb, (α32, α20) planes for 218,220, 222,224Ra, and (α31, α20) and (α32, α20) planes for 220Po, 222Rn, 224Ra, 226Th. Discussed exotic point-group symmetries C, D2d, Td (tetrahedral symmetry), and D3h in order to formulate spectroscopic criteria for experimental identifications through analysis of collective rotational bands generated by the symmetries. Macroscopic-microscopic method in multidimensional deformation spaces to analyze the expected exotic symmetries and octupole shape instabilities, tetrahedral point group symmetry, and realistic nuclear mean-field theory using phenomenological Woods-Saxon Hamiltonian combined with the Monte Carlo approach. Comparison with available experimental nuclear octupole deformations.

doi: 10.1103/PhysRevC.105.034348
Citations: PlumX Metrics


2022YA26      Phys.Rev. C 106, 054314 (2022)

J.Yang, J.Dudek, I.Dedes, A.Baran, D.Curien, A.Gaamouci, A.Gozdz, A.Pedrak, D.Rouvel, H.L.Wang

Exotic symmetries as stabilizing factors for superheavy nuclei: Symmetry-oriented generalized concept of nuclear magic numbers

NUCLEAR STRUCTURE Z=82-138, N=164-258; calculated single-particle proton and neutron energies, spherical orbital energies and shell gaps. 314Og; calculated Monte Carlo simulated probability distributions of single-particle level position uncertainties for protons and neutrons. 308122; calculated proton and neutron single-particle energies as functions of the octupole deformations α30, α31, α32 and α33 in the center of Z=114-130, N=166-206 region. 310Fl, 314Og, 318122, 322126, 326130; calculated potential-energy projection contours as functions of quadrupole deformation parameter α20 and octupole deformation parameters α30, α31, α32 and α33 for 310Fl, and α32 for others. 296,298,300,302,304,306,308,310,312,314,316Sg, 304,306,308,310,312,314,316,318,320,322,324Fl, 310Fl, 314,316,318,320,322,324,326,328,330,332,334124, 312Lv, 314Og, 316120, 318122, 320124, 322126, 324128, 326130, 328132, 330134, 332136; calculated nuclear shell energies as functions of octupole deformation parameters α30, α31, α32 and α33, comparisons of nuclear shell-energies as functions of quadrupole deformation α20, and octupole deformation parameters α30 (pear-shaped), α31, α32, and α33 for Z-114, N=190-210, and for N=196, Z=114-136 nuclei. 296,298,300,302,304,306,308,310,312,314,316Sg, 314,316,318,320,322,324,326,328,330,332,334124; calculated energies at the equilibrium before and after allowing the α32 minimization. 280,282,284,286,288,290,292,294,296,298,300,302,304,306,308,310,312,314,316,318,320Fl, 282,284,286,288,290,292,294,296,298,300,302,304,306,308,310,312,314,316,318,320,322Lv, 284,286,288,290,292,294,296,298,300,302,304,306,308,310,312,314,316,318,320,322,324Og, 286,288,290,292,294,296,298,300,302,304,306,308,310,312,314,316,318,320,322,324,326120, 288,290,292,294,296,298,300,302,304,306,308,310,312,314,316,318,320,322,324,326,328122, 290,292,294,296,298,300,302,304,306,308,310,312,314,316,318,320,322,324,326,328,330124, 292,294,296,298,300,302,304,306,308,310,312,314,316,318,320,322,324,326,328,330,332126, 294,296,298,300,302,304,306,308,310,312,314,316,318,320,322,324,326,328,330,332,334128, 296,298,300,302,304,306,308,310,312,314,316,318,320,322,324,326,328,330,332,334,336130; predicted quadrupole deformation α2, components of octupole deformation α30, α31, α32 and α33 for the ground states, energy differences between the nearest quadrupole-shape minima and octupole-deformed configurations; deduced spherical or octupole deformed, with dominance of octupole-tetrahedral geometry for a majority of superheavy nuclei, which lowers the ground-state energy by up to 8 MeV. Realistic phenomenological mean-field approach with the deformed Woods-Saxon potential and macroscopic-microscopic method to examine impact of exotic shapes of nuclei associated with the four-fold octupole degrees of freedom on the stabilization of superheavy nuclei in the mass range of Z=114-130, and N=166-206.

doi: 10.1103/PhysRevC.106.054314
Citations: PlumX Metrics


2021GA18      Phys.Rev. C 103, 054311 (2021)

A.Gaamouci, I.Dedes, J.Dudek, A.Baran, N.Benhamouda, D.Curien, H.L.Wang, J.Yang

Exotic toroidal and superdeformed configurations in light atomic nuclei: Predictions using a mean-field Hamiltonian without parametric correlations

NUCLEAR STRUCTURE 28Si, 28,30,38,40Si, 32,40,42S, 36Ar, 40Ca, 44Ti, 48Cr, 56Ni, 52,56Fe, 82,84,100Zr; A≈30-50; calculated nuclear potential energy surfaces in (α20, α40) and (β2cos(γ+30°)), (β2sin(γ+30°)) planes using mean-field calculations in multidimensional deformation spaces with phenomenological Woods-Saxon Hamiltonian, Monte-Carlo Hamiltonian parameter adjustments based on doubly-magic spherical nuclei: 16O, 40Ca, 48Ca, 56Ni, 90Zr, 132Sn, 146Gd and 208Pb, parametric-correlation removal; tested parametric uncertainties, theoretical prediction uncertainty propagation with nucleon numbers; generated nuclear shape coexistence, low-energy toroidal shape excitations, superdeformed oblate and prolate shapes, exotic shapes and isomers. Comparison with available experimental information for deformation parameters.

doi: 10.1103/PhysRevC.103.054311
Citations: PlumX Metrics


2019DU22      Acta Phys.Pol. B50, 685 (2019)

J.Dudek, I.Dedes, J.Yang, A.Baran, D.Curien, T.Dickel, A.Gozdz, D.Rouvel, H.L.Wang

High-rank Symmetries in Nuclei: Challenges for Prediction Capacities of the Nuclear Mean-field Theories

NUCLEAR STRUCTURE 226Th; calculated total nuclear energy surfaces. Discussed the possible structure of rotational bands in cases of tetrahedral and octahedral nuclear symmetries. Mean-field approach with the phenomenological “universal” Woods–Saxon Hamiltonian.

doi: 10.5506/aphyspolb.50.685
Citations: PlumX Metrics


2016SA19      Nucl.Phys. A952, 1 (2016)

P.Salamon, A.Baran, T.Vertse

Distributions of the S-matrix poles in Woods-Saxon and cut-off Woods-Saxon potentials

doi: 10.1016/j.nuclphysa.2016.04.010
Citations: PlumX Metrics


2015BA32      Eur.Phys.J. A 51, 76 (2015)

A.Baran, Cs.Noszaly, P.Salamon, T.Vertse

Calculating broad neutron resonances in a cut-off Woods-Saxon potential

NUCLEAR REACTIONS 208Pb(n, x), E not given; calculated resonance pole trajectories using CWS (cut-off Woods Saxon) potential.

doi: 10.1140/epja/i2015-15076-1
Citations: PlumX Metrics


2015BA54      Nucl.Phys. A944, 442 (2015)

A.Baran, M.Kowal, P.-G.Reinhard, L.M.Robledo, A.Staszczak, M.Warda

Fission barriers and probabilities of spontaneous fission for elements with Z ≥ 100

NUCLEAR STRUCTURE 258Fm, 262No, 266Rf, 270Sg, 274Hs, 278Ds, 282Cn, 286Fl, 290,292,294,296,298,300,302,304Lv; calculated fission barriers vs quadrupole moment; revised previous paper by different quadrupole moment definition. 266Hs; calculated fission barriers vs quadrupole moment using MM model, Skyrme HFB approach, Gogny HF model.

doi: 10.1016/j.nuclphysa.2015.06.002
Citations: PlumX Metrics


2015SA13      Acta Phys.Pol. B46, 575 (2015)

J.Sadhukhan, K.Mazurek, J.Dobaczewski, W.Nazarewicz, J.A.Sheikh, A.Baran

Multidimensional Skyrme-density-functional Study of the Spontaneous Fission of 238U

RADIOACTIVITY 238U(SF); calculated T1/2, potential energy surfaces, quadrupole diagonal inertia. Microscopic input based on the ATDHFB approach.

doi: 10.5506/APhysPolB.46.575
Citations: PlumX Metrics


2014BA14      Acta Phys.Pol. B45, 273 (2014)

A.Baran, A.Staszczak

Theoretical Survey of Superheavy Elements

NUCLEAR STRUCTURE Z=108, 110, 112, 114, 116, 118, 120, 122, 124, 126; calculated ground states, spontaneous fission T1/2. Skyrme HFB theory calculations.

doi: 10.5506/APhysPolB.45.273
Citations: PlumX Metrics


2014BA64      Phys.Scr. 89, 054002 (2014)

A.Baran, A.Staszczak

Fission of rotating fermium isotopes

RADIOACTIVITY 238,240,242,244,246,248,250,252,254,256,258,260,262,266,266Fm(SF); calculated fission barrier, T1/2 for different angular momenta.

doi: 10.1088/0031-8949/89/5/054002
Citations: PlumX Metrics


2014SA68      Phys.Rev. C 90, 061304 (2014)

J.Sadhukhan, J.Dobaczewski, W.Nazarewicz, J.A.Sheikh, A.Baran

Pairing-induced speedup of nuclear spontaneous fission

RADIOACTIVITY 240Pu, 264Fm(SF); calculated dynamic fission trajectories fission paths, collective inertia tensor. Superfluid nuclear density functional theory with the Skyrme energy density functional SkM* and a density-dependent pairing interaction. Strong effect of nucleonic pairing correlations on minimum-action fission path.

doi: 10.1103/PhysRevC.90.061304
Citations: PlumX Metrics


2013BA08      Acta Phys.Pol. B44, 283 (2013)

A.Baran, A.Staszczak

Stability of Superheavy Elements in Skyrme HFB Approach

RADIOACTIVITY 264,266,270Hs, 270Ds, 282,284Cn, 286,288Fl, 290,292Lv, 294Og(α); calculated Q-value, T1/2. Comparison with experimental data.

doi: 10.5506/APhysPolB.44.283
Citations: PlumX Metrics


2013BA25      Phys.Scr. T154, 014027 (2013)

A.Baran, A.Staszczak

Rotational 2+ states of superheavy elements in the Skyrme-Hartree-Fock-Bogoliubov model

NUCLEAR STRUCTURE Z=108-126, N=148-180; calculated the energies of first 2+ rotational states of deformed superheavy (SH) elements; deduced estimates of the Q-values of α-decay processes. Fully microscopic Skyrme-HFB theory.

doi: 10.1088/0031-8949/2013/T154/014027
Citations: PlumX Metrics


2013SA62      Phys.Rev. C 88, 064314 (2013)

J.Sadhukhan, K.Mazurek, A.Baran, J.Dobaczewski, W.Nazarewicz, J.A.Sheikh

Spontaneous fission lifetimes from the minimization of self-consistent collective action

RADIOACTIVITY 264Fm(SF); calculated square-root determinants of inertia tensors, energy-weighted moment tensors, single neutron and proton energies, static and dynamic paths as function of quadrupole and triaxial deformations, half-lives for different spontaneous fission paths. Skyrme energy density functional and density-dependent pairing interaction. Comparison with static result obtained with the minimum-energy pathways. Strong dynamical effects predicted.

doi: 10.1103/PhysRevC.88.064314
Citations: PlumX Metrics


2013ST04      Phys.Rev. C 87, 024320 (2013)

A.Staszczak, A.Baran, W.Nazarewicz

Spontaneous fission modes and lifetimes of superheavy elements in the nuclear density functional theory

RADIOACTIVITY 234,236,238,240,242,244,246,248,250,252,254,256,258,260,262,264,266Fm, 256,258,260,262,264,266,268,270,272,274,276,278,280,282,284,286,288,290,292,294,296Hs, 260,262,264,266,268,270,272,274,276,278,280,282,284,286,288,290,292,294,296,298Ds, 266,268,270,272,274,276,278,280,282,284,286,288,290,292,294,296,298,300Cn, 272,274,276,278,280,282,284,286,288,290,292,294,296,298,300,302Fl, 278,280,282,284,286,288,290,292,294,296,298,300,302,304Lv, 284,286,288,290,292,294,296,298,300,302,304,306Og, 290,292,294,296,298,300,302,304,306,308120, 296,298,300,302,304,306,308,310122, 302,304,306,308,310,312124, 306,308,310,312,314126(SF), (α); calculated inner fission barrier EA, Q(α), α-decay and SF half-lives. Self-consistent symmetry-unrestricted nuclear density functional (SkM* Skyrme) theory, with adiabatic time-dependent Hartree-Fock-Bogoliubov (HFB) approach. Triaxiality and reflection asymmetry included. Comparison with experimental data. Prediction of two competing SF modes: reflection symmetric and reflection asymmetric.

doi: 10.1103/PhysRevC.87.024320
Citations: PlumX Metrics


2011BA12      Int.J.Mod.Phys. E20, 557 (2011)

A.Baran, A.Staszczak, W.Nazarewicz

Fission half lives of fermium isotopes within Skyrme Hartree-Fock-Bogoliubov theory

RADIOACTIVITY 242,244,246,248,250,252,254,256,258,260Fm(SF); calculated cranking mass parameters, mass quadrupole moments; deduced T1/2.

doi: 10.1142/S0218301311018009
Citations: PlumX Metrics


2011BA45      Phys.Rev. C 84, 054321 (2011)

A.Baran, J.A.Sheikh, J.Dobaczewski, W.Nazarewicz, A.Staszczak

Quadrupole collective inertia in nuclear fission: Cranking approximation

NUCLEAR STRUCTURE 256Fm; calculated total energy, proton, neutron and pairing energies, particle-hole energy, quadrupole mass parameter, quadrupole moment. One-dimensional quadrupole fission pathways. Cranking approximation to the adiabatic time-dependent Hartree-Fock-Bogoliubov (ATDHFB) approach. Comparison with Gaussian overlap approximation.

doi: 10.1103/PhysRevC.84.054321
Citations: PlumX Metrics


2011ST07      Int.J.Mod.Phys. E20, 552 (2011)

A.Staszczak, A.Baran, W.Nazarewicz

Breaking of axial and reflection symmetries in spontaneous fission of fermium isotopes

RADIOACTIVITY 236,238,240,242,244,246,248,250,252,254,256,258,260,262,264,266Fm(SF); calculated quadrupole moments, pre-scission shapes; deduced fission mechanisms.

doi: 10.1142/S0218301311017995
Citations: PlumX Metrics


2010ST15      Eur.Phys.J. A 46, 85 (2010)

A.Staszczak, M.Stoitsov, A.Baran, W.Nazarewicz

Augmented Lagrangian method for constrained nuclear density functional theory

NUCLEAR STRUCTURE 252Fm; calculated energy surface vs quadrupole, octupole moment using augmented Lagrangian method with density functional theory and constrained Skyrme HFB.

doi: 10.1140/epja/i2010-11018-9
Citations: PlumX Metrics


2009BA35      Int.J.Mod.Phys. E18, 1049 (2009)

A.Baran, J.A.Sheikh, A.Staszczak, W.Nazarewicz

Fission quadrupole mass parameters in HF+BCS and HFB methods

NUCLEAR STRUCTURE 252Fm; calculated mass dependent on quadrupole moment using self-consistent Hartree-Fock+BCS and Hartree-Fock-Bogoliubov method for large deformations.

doi: 10.1142/S0218301309013221
Citations: PlumX Metrics


2009BA36      Int.J.Mod.Phys. E18, 1054 (2009)

A.Baran, J.A.Sheikh, W.Nazarewicz

Adiabatic mass parameters for spontaneous fission

NUCLEAR STRUCTURE 252Fm; calculated mass excess, mass parameter dependent on quadrupole moment using different approaches.

doi: 10.1142/S0218301309013233
Citations: PlumX Metrics


2009ST14      Phys.Rev. C 80, 014309 (2009)

A.Staszczak, A.Baran, J.Dobaczewski, W.Nazarewicz

Microscopic description of complex nuclear decay: Multimodal fission

RADIOACTIVITY 242,244,246,248,250,252,254,256,258,260,264Fm, 254Cf, 258No, 262Hs(SF); calculated fission pathways, fission half-lives, quadrupole moments, potential energy curves, total energy surfaces using microscopic description of multi-modal fission based on symmetry unrestricted nuclear density functional theory (DFT). Rf, Sg, Hs; predicted trimodal spontaneous fission. Comparison with experimental data.

doi: 10.1103/PhysRevC.80.014309
Citations: PlumX Metrics


2008BA29      Phys.Rev. C 78, 014318 (2008)

A.Baran, A.Bulgac, M.McNeil Forbes, G.Hagen, W.Nazarewicz, N.Schunck, M.V.Stoitsov

Broyden's method in nuclear structure calculations

doi: 10.1103/PhysRevC.78.014318
Citations: PlumX Metrics


2008LO03      Int.J.Mod.Phys. E17, 253 (2008)

Z.Lojewski, A.Baran

Spontaneous fission half lives of Z = 112 isotopes

NUCLEAR STRUCTURE Z=112; N=150-190; calculated fission barriers and SF half lives using BCS and Lipkin-Nogami (LN) approach. Comparison with experimental data.

doi: 10.1142/S0218301308009768
Citations: PlumX Metrics


2007BA16      Int.J.Mod.Phys. E16, 320 (2007)

A.Baran, Z.Lojewski, K.Sieja

Pairing and α-decay

NUCLEAR STRUCTURE Z=112-122; calculated α-decay T1/2, pairing effects.

doi: 10.1142/S0218301307005752
Citations: PlumX Metrics


2007BA17      Int.J.Mod.Phys. E16, 443 (2007)

A.Baran, A.Staszczak, J.Dobaczewski, W.Nazarewicz

Collective inertia and fission barriers within the Skyrme-Hartree-Fock theory

NUCLEAR STRUCTURE 252,256,258Fm; calculated fission barriers, quadrupole inertia tensor, zero-point quadrupole correlation energy. Self-consistent Skyrme-Hartree-Fock approach.

doi: 10.1142/S0218301307005879
Citations: PlumX Metrics


2007SI07      Int.J.Mod.Phys. E16, 289 (2007)

K.Sieja, T.L.Ha, P.Quentin, A.Baran

Particle number conserving approach to correlations

NUCLEAR STRUCTURE 64Ge; calculated ground-state configurations, pairing interactions. Higher TDA.

doi: 10.1142/S0218301307005727
Citations: PlumX Metrics


2006BA11      Int.J.Mod.Phys. E15, 452 (2006)

A.Baran, Z.Lojewski, K.Sieja

Superheavy nuclei in different pairing models

RADIOACTIVITY 262,264,266,268,270,272,274,276,278,280,282,284,286Cn(SF); calculated fission barrier heights, T1/2. Several pairing models compared.

doi: 10.1142/S0218301306004351
Citations: PlumX Metrics


2006SI08      Acta Phys.Pol. B37, 107 (2006)

K.Sieja, A.Baran

Proton-neutron pairing in Lipkin-Nogami approach

NUCLEAR STRUCTURE 64Ge; calculated neutron-neutron, proton-proton, and neutron-proton pairing gaps. Comparison of Lipkin-Nogami and BCS approaches.


2006SI35      Phys.Scr. T125, 220 (2006)

K.Sieja, A.Baran, P.Quentin

Skyrme force-like extension of the nuclear pairing interaction

NUCLEAR STRUCTURE 62,64,66,68Ge; calculated pair gap energies. 12C, 16O, 20Ne, 24Mg, 28Si, 32S, 36Ar, 40Ca, 44Ti, 48Cr, 52Fe, 56Ni, 60Zn, 64Ge, 68Se, 72Kr, 76Sr, 80Zr; calculated Wigner energy constant.

doi: 10.1088/0031-8949/2006/T125/060
Citations: PlumX Metrics


2005BA46      Acta Phys.Pol. B36, 1369 (2005)

A.Baran, Z.Lojewski, K.Sieja

Masses and half-lives of superheavy elements

RADIOACTIVITY 270,280Ds, 282,284Cn, 286Fl(SF); 270Ds, 286,287,288,289Fl, 290,292Lv, 294Og(α); calculated T1/2. Lublin-Strasbourg drop model plus pairing corrections.

NUCLEAR STRUCTURE Z=110-118; calculated masses, decay T1/2. Lublin-Strasbourg drop model plus pairing corrections.


2005BA47      Int.J.Mod.Phys. E14, 365 (2005)

A.Baran, M.Kowal, Z.Lojewski, K.Sieja

Properties of superheavy nuclei in various macroscopic-microscopic models

NUCLEAR STRUCTURE Z=108-122; calculated neutron and proton separation energies, radii, quadrupole moments. Z=112-118; calculated spontaneous fission and α-decay T1/2 for even-even isotopes. Macroscopic-microscopic models.

doi: 10.1142/S0218301305003132
Citations: PlumX Metrics


2005BA49      Int.J.Mod.Phys. E14, 445 (2005)

A.Baran, K.Sieja

Neutron-proton pairing in 64Ge

NUCLEAR STRUCTURE 60,62,64,66,68,70,72,74,76Ge; calculated neutron-neutron, proton-proton, and neutron-proton pair gap parameters, pairing energy. Relativistic mean-field theory, δ-pairing residual interaction.

doi: 10.1142/S0218301305003259
Citations: PlumX Metrics


2005BA89      J.Phys.(London) G31, S1823 (2005)

A.Baran

Neutron halo in heavy nuclei

NUCLEAR STRUCTURE 58Ni, 106,108,110,112,114,116,118,120,122,124,126,128,130,132Sn, 176Yb, 208Pb; calculated neutron peripheral excess factor, halo features. Relativistic mean field model.

doi: 10.1088/0954-3899/31/10/080
Citations: PlumX Metrics


2005BA95      Phys.Rev. C 72, 044310 (2005)

A.Baran, Z.Lojewski, K.Sieja, M.Kowal

Global properties of even-even superheavy nuclei in macroscopic-microscopic models

NUCLEAR STRUCTURE Z=100-122; A=242-314; calculated quadrupole moments, radii, pair gap energies, Qα, fission and α-decay T1/2 for even-even nuclides. Macroscopic-microscopic approach, several models compared.

doi: 10.1103/PhysRevC.72.044310
Citations: PlumX Metrics


2005BB04      Eur.Phys.J. A 25, Supplement 1, 611 (2005)

A.Baran, Z.Lojewski, K.Sieja

Ground-state properties of superheavy elements in macroscopic-microscopic models

NUCLEAR STRUCTURE Z=100-116; calculated Qα, fission and α-decay T1/2. Macroscopic-microscopic models.

doi: 10.1140/epjad/i2005-06-006-4
Citations: PlumX Metrics


2004BA14      Int.J.Mod.Phys. E13, 113 (2004)

A.Baran, K.Sieja

δ-pairing forces and nuclear masses

doi: 10.1142/S0218301304001813
Citations: PlumX Metrics


2004BA16      Int.J.Mod.Phys. E13, 337 (2004)

A.Baran, P.Mierzynski

Nuclear periphery in Mean-Field models

NUCLEAR STRUCTURE 48Ca, 58Ni, 96Zr, 96,104Ru, 100Mo, 106,116Cd, 112,124Sn, 128,130Te, 144,154Sm, 148Nd, 160Gd, 176Yb, 232Th, 238U; calculated neutron excess factor. Comparison with data.

doi: 10.1142/S0218301304002156
Citations: PlumX Metrics


2004BA49      Acta Phys.Pol. B35, 779 (2004)

A.Baran, W.Broniowski, W.Florkowski

Description of the particle ratios and transverse-momentum spectra for various centralities at RHIC in a single-freeze-out model

NUCLEAR REACTIONS 197Au(197Au, X), E(cm)=200 GeV/nucleon; analyzed particle yield ratios, transverse momentum spectra; deduced parameters. Single-freeze-out model.


2004BA53      Acta Phys.Pol. B35, 1291 (2004)

A.Baran, K.Sieja

Comparison of δ- and Gogny-Type Pairing Interactions

NUCLEAR STRUCTURE 130,138Nd, 148Ce; calculated pairing interaction matrix elements. 126,128,130,132,134,136,144,146,148,150,152Ce; calculated neutron pair gaps. Comparison of δ and Gogny pairing interactions.


2004BA96      Acta Phys.Pol. B35, 2293 (2004)

A.Baran, P.Mierzynski

Bethe plots and neutron halo

NUCLEAR STRUCTURE 106,108,112,114,118,120,124,126,130,132Sn; calculated neutron excess function. 48Ca, 58Ni, 96Zr, 100Mo, 96,104Ru, 106,116Cd, 112,124Sn, 128,130Te, 144Sm, 148Nd, 154Sm, 160Gd, 176Yb, 232Th, 238U; calculated neutron halo parameters.


2004SI18      Eur.Phys.J. A 20, 413 (2004)

K.Sieja, A.Baran, K.Pomorski

δ-pairing forces and collective pairing vibrations

doi: 10.1140/epja/i2003-10169-0
Citations: PlumX Metrics


2003LO17      Acta Phys.Pol. B34, 1801 (2003)

Z.Lojewski, A.Baran, K.Pomorski

Spontaneous fission and α-decay half-lives of superheavy nuclei in different macroscopic energy models

NUCLEAR STRUCTURE Z=100-106; calculated spontaneous fission and α-decay T1/2, Qα for even-even isotopes. Macroscopic model.


2003SI17      Phys.Rev. C 68, 044308 (2003)

K.Sieja, A.Baran

State dependent δ-pairing force with Nilsson models: Nuclear shapes, radii, and masses

NUCLEAR STRUCTURE 140Nd; calculated pair gap parameters, single-particle level energies vs deformation. 140Ce, 150Nd, 148Sm, 156Gd, 150Dy, 152,160Er, 170Yb; calculated potential energy surfaces. Ce, Nd, Sm, Gd, Dy, Er, Yb, Hf; calculated pairing energy, charge radii, quadrupole moments vs neutron number. State-dependent δ-pairing force.

doi: 10.1103/PhysRevC.68.044308
Citations: PlumX Metrics


2002BR54      Acta Phys.Pol. B33, 4235 (2002)

W.Broniowski, A.Baran, W.Florkowski

Thermal Approach to RHIC


2001BA30      Acta Phys.Pol. B32, 1025 (2001)

A.Baran

Relativistic Mean Field Antinucleon-Nucleus Potential


2000BA08      Phys.Rev. C61, 024316 (2000)

A.Baran

Relativistic Mean Field Calculations of Single Particle Potentials

NUCLEAR STRUCTURE A=16-220; analyzed data; deduced model parameters. Relativistic mean field approach.

doi: 10.1103/PhysRevC.61.024316
Citations: PlumX Metrics


2000BA50      Acta Phys.Pol. B31, 411 (2000)

A.Baran, Z.Lojewski

Single Particle Nuclear Levels in Extended Thomas-Fermi Potentials

NUCLEAR STRUCTURE 132Sn, 208Pb; calculated single-particle levels. Extended Thomas-Fermi method, several Skyrme forces considered. Comparison with data.


2000LO06      Acta Phys.Pol. B31, 485 (2000)

Z.Lojewski, A.Baran

Spontaneous Fission and α-Decay Half-Lives of Superheavy Nuclei

NUCLEAR STRUCTURE Z=112-120; calculated α-decay, spontaneous fission T1/2 for even-even isotopes. Deformed Woods-Saxon potential.


1999PA06      Phys.Rev. C59, 704 (1999)

Z.Patyk, A.Baran, J.F.Berger, J.Decharge, J.Dobaczewski, P.Ring, A.Sobiczewski

Masses and Radii of Spherical Nuclei Calculated in Various Microscopic Approaches

NUCLEAR STRUCTURE Ca, Sr, Sn, Sm, Pb, Th; calculated masses, radii. Several models compared.

doi: 10.1103/PhysRevC.59.704
Citations: PlumX Metrics


1997BA14      Z.Phys. A357, 33 (1997)

A.Baran, K.Pomorski, M.Warda

Neutron Halos in Heavy Nuclei-Relativistic Mean Field Approach

NUCLEAR STRUCTURE 58Ni, 96Ru, 144,154Sm, 96Zr, 232Th, 176Yb, 238U; calculated single nucleon partial density ratio, halo factor, baryon density related features, antiprotonic-nucleon annihilation width. Spherical relativistic mean field model.

doi: 10.1007/s002180050210
Citations: PlumX Metrics


1997PO13      Nucl.Phys. A624, 349 (1997)

K.Pomorski, P.Ring, G.A.Lalazissis, A.Baran, Z.Lojewski, B.Nerlo-Pomorska, M.Warda

Ground State Properties of the β Stable Nuclei in Various Mean Field Theories

NUCLEAR STRUCTURE A=16-256; calculated even-even stable nucleus proton, neutron separation energies, charge radii, other ground state properties. Several models compared. Comparisons with data.

doi: 10.1016/S0375-9474(97)00367-9
Citations: PlumX Metrics


1996BA16      Phys.Rev. C53, 1571 (1996)

A.Baran, W.Hohenberger

Gd Isotope Systematics with Skyrme and δ-Pairing Forces

NUCLEAR STRUCTURE 150,152,158,160,162,164,166,168,170Gd; calculated binding energy per nucleon, ground state rotational moment of inertia, radii, neutron skin thicknesses, quadrupole moments, deformations. Constrained Hartree-Fock, Skyrme, δ-pairing forces.

doi: 10.1103/PhysRevC.53.1571
Citations: PlumX Metrics


1996PA18      Acta Phys.Pol. B27, 457 (1996)

Z.Patyk, A.Baran, J.F.Berger, J.Decharge, J.Dobaczewski, R.Smolanczuk, A.Sobiczewski

On the Quality of Microscopic Descriptions of Nuclear Mass

NUCLEAR STRUCTURE 202,204,206,208,210,212,214Pb; calculated mass, difference with respect to data. Several microscopic approaches compared.


1995BA45      J.Phys.(London) G21, 657 (1995)

A.Baran, J.L.Egido, B.Nerlo-Pomorska, K.Pomorski, P.Ring, L.M.Robledo

Mean-Field Calculations of Proton and Neutron Distributions in Sr, Xe and Ba Isotopes

NUCLEAR STRUCTURE 78,80,82,84,86,88,90,92,94,96,98,100,102Sr, 114,116,118,120,122,124,126,128,130,132,134,136,138,140,142,144,146Xe, 120,122,124,126,130,132,134,136,138,140,142,144,146,148Ba; calculated rms radii, n-, p- radii, quadrupole deformations differences, electric quadrupole moments. Mean field approach.

doi: 10.1088/0954-3899/21/5/010
Citations: PlumX Metrics


1995BA78      Phys.Rev. C52, 2242 (1995)

A.Baran, W.Hohenberger

Ground-State Properties of Strontium Isotopes

NUCLEAR STRUCTURE 78,80,82,84,86,88,90,92,94,96,98,100Sr; calculated binding energy per particle vs deformation, isotope shifts. 98Sr; calculated level energies vs deformation. Constrained Hartree-Fock calculations.

doi: 10.1103/PhysRevC.52.2242
Citations: PlumX Metrics


1995RA28      Nucl.Instrum.Methods Phys.Res. A352, 652 (1995)

M.S.Rapaport, A.Gayer, E.Iszak, C.Goresnic, A.Baran, E.Polak

A Dual-Mode Industrial CT

doi: 10.1016/0168-9002(95)90021-7
Citations: PlumX Metrics


1994BA67      Acta Phys.Pol. B25, 621 (1994)

A.Baran, Z.Lojewski

Fission Numerics Errors and Corrections

NUCLEAR STRUCTURE 242Fm; calculated mass parameter vs deformation lattice, SF-decay T1/2; N=142-162; calculated SF-decay T1/2, Fm isotopes; deduced possible calculational errors, corrections.


1994BA97      Acta Phys.Pol. B25, 1231 (1994)

A.Baran, Z.Lojewski

Temperature Dependence of Mass Parameters and Fission Barriers

NUCLEAR STRUCTURE 258Rf; calculated total mass parameter, free energy vs deformation, entropy vs temperature, internal energy. Unified temperature dependent model.


1988LO03      Z.Phys. A329, 161 (1988)

Z.Lojewski, A.Baran

Half Lives of Heaviest Nuclei with Woods-Saxon Potential

RADIOACTIVITY Z=102-111; calculated α-decay T1/2. Z=104-111; calculated (SF)-T1/2. Woods-Saxon potential.


1987BA77      Nucl.Phys. A475, 327 (1987)

A.Baran, Z.Lojewski

Spontaneous Fission of Isomeric States of Actinide Nuclei

NUCLEAR STRUCTURE Z=96-110; N=144-158; calculated isomeric state SF-decay T1/2.

doi: 10.1016/0375-9474(87)90169-2
Citations: PlumX Metrics


1986BA43      Phys.Lett. 176B, 7 (1986)

A.Baran, Z.Lojewski

Spontaneous Fission of Isomeric States in 250Fm and 254No

RADIOACTIVITY 250mFm, 254mNo(SF); calculated T1/2. Nilsson basis, Strutinsky prescription.

doi: 10.1016/0370-2693(86)90914-7
Citations: PlumX Metrics


1985LO17      Z.Phys. A322, 695 (1985)

Z.Lojewski, A.Baran

Spontaneous Fission Half-Times of Double-Odd Nuclei (Z ≥ 97)

NUCLEAR STRUCTURE 239,241,243,245,247Am, 241,243,245,247,249,251Cm, 243,245,247,249,251Bk, 245,247,249,251,253Cf, 249,251,253,255Es, 249,251,253,255,257Fm, 255,257,259Md, 253,255,257No; calculated levels, SF-decay T1/2. 250Rf, 252Rf, 254Rf, 256Rf, 258Rf, 260Rf, 262Rf, 251Db, 252Db, 253Db, 254Db, 255Db, 256Db, 257Db, 258Db, 259Db, 260Db, 261Db, 262Db, 263Db, 251,253,255,257,259,261Lr, 256Sg, 257Sg, 258Sg, 259Sg, 260Sg, 261Sg, 262Sg, 263Sg, 264Sg, 265Sg, 266Sg, 257Bh, 259Bh, 261Bh, 262Bh, 263Bh, 265Bh, 267Bh, 268Bh, 261Mt, 262Mt, 263Mt, 265Mt, 267Mt, 268Mt, 260Hs, 262Hs, 264Hs, 266Hs, 268Hs, 270Hs, 246,248,250,252,254,256,258Fm, 247,248,249,250,251,252,253,254,255,256,257,258,259Md; calculated SF-decay T1/2; deduced Nilsson parameters, hindrance factors.


1985ST22      Phys.Lett. 161B, 227 (1985)

A.Staszczak, A.Baran, K.Pomorski, K.Boning

Coupling of the Pairing Vibrations with the Fission Mode

NUCLEAR STRUCTURE 252Fm; calculated fission barrier, mass parameter. 234,236,238,240,242,244,246,248,250,252,254,256,258,260,264Fm; calculated T1/2(SF). Nilsson basis, monopole pairing interaction, cranking model.

doi: 10.1016/0370-2693(85)90750-6
Citations: PlumX Metrics


1981BA14      Nucl.Phys. A361, 83 (1981)

A.Baran, K.Pomorski, A.Lukasiak, A.Sobiczewski

A Dynamic Analysis of Spontaneous-Fission Half-Lives

RADIOACTIVITY, Fission A=232-268; calculated T1/2(SF), barrier heights. Dynamical macroscopic, microscopic method.

doi: 10.1016/0375-9474(81)90471-1
Citations: PlumX Metrics


Back to query form