NSR Query Results


Output year order : Descending
Format : Normal

NSR database version of April 25, 2024.

Search: Author = A.Gozdz

Found 62 matches.

Back to query form



2023YA15      Phys.Rev. C 107, 054304 (2023)

J.Yang, J.Dudek, I.Dedes, A.Baran, D.Curien, A.Gaamouci, A.Gozdz, A.Pedrak, D.Rouvel, H.L.Wang

Islands of oblate hyperdeformed and superdeformed superheavy nuclei with D3h point group symmetry in competition with normal-deformed D3h states: "Archipelago" of D3h-symmetry islands

NUCLEAR STRUCTURE 302Og, 292124, 318130; calculated contours of projections of the total nuclear energy surfaces on (α22, α20), (α33, α20), ( α33, α22) and (α30, α20) planes, deformation parameters. N=166-206;Z=116-138; calculated single-particle neutron and proton energy levels, shell energies defined as sums of the Strutinsky and pairing correction energies, D3h-symmetric hyperdeformed, superdeformed, and normal-deformed configurations. Found three separate islands of nuclei with D3h symmetry ("archipelago of three islands") differing by their average α20 < 0 deformations. Macroscopic-microscopic method with a realistic phenomenological Woods-Saxon potential.

doi: 10.1103/PhysRevC.107.054304
Citations: PlumX Metrics


2022YA11      Phys.Rev. C 105, 034348 (2022)

J.Yang, J.Dudek, I.Dedes, A.Baran, D.Curien, A.Gaamouci, A.Gozdz, A.Pedrak, D.Rouvel, H.L.Wang, J.Burkat

Exotic shape symmetries around the fourfold octupole magic number N=136: Formulation of experimental identification criteria

NUCLEAR STRUCTURE N=122-164; calculated single-particle neutron levelsand Routhians as functions of α30, α31, α32 and α33 octupole deformations; deduced very large neutron shell gaps at N=136 for all the four octupole deformations, and N=136 as a "universal or fourfold octupole magic number". 208,212,216,218Pb, 218,220,222,224Ra, 220Po, 222Rn, 224Ra, 226Th; calculated contours of projections of the total nuclear energy surfaces on (α30, α20) planes for all the isotopes, (α31, α20), (α32, α20), and (α33, α20) planes for 218Pb, (α32, α20) planes for 218,220, 222,224Ra, and (α31, α20) and (α32, α20) planes for 220Po, 222Rn, 224Ra, 226Th. Discussed exotic point-group symmetries C, D2d, Td (tetrahedral symmetry), and D3h in order to formulate spectroscopic criteria for experimental identifications through analysis of collective rotational bands generated by the symmetries. Macroscopic-microscopic method in multidimensional deformation spaces to analyze the expected exotic symmetries and octupole shape instabilities, tetrahedral point group symmetry, and realistic nuclear mean-field theory using phenomenological Woods-Saxon Hamiltonian combined with the Monte Carlo approach. Comparison with available experimental nuclear octupole deformations.

doi: 10.1103/PhysRevC.105.034348
Citations: PlumX Metrics


2022YA26      Phys.Rev. C 106, 054314 (2022)

J.Yang, J.Dudek, I.Dedes, A.Baran, D.Curien, A.Gaamouci, A.Gozdz, A.Pedrak, D.Rouvel, H.L.Wang

Exotic symmetries as stabilizing factors for superheavy nuclei: Symmetry-oriented generalized concept of nuclear magic numbers

NUCLEAR STRUCTURE Z=82-138, N=164-258; calculated single-particle proton and neutron energies, spherical orbital energies and shell gaps. 314Og; calculated Monte Carlo simulated probability distributions of single-particle level position uncertainties for protons and neutrons. 308122; calculated proton and neutron single-particle energies as functions of the octupole deformations α30, α31, α32 and α33 in the center of Z=114-130, N=166-206 region. 310Fl, 314Og, 318122, 322126, 326130; calculated potential-energy projection contours as functions of quadrupole deformation parameter α20 and octupole deformation parameters α30, α31, α32 and α33 for 310Fl, and α32 for others. 296,298,300,302,304,306,308,310,312,314,316Sg, 304,306,308,310,312,314,316,318,320,322,324Fl, 310Fl, 314,316,318,320,322,324,326,328,330,332,334124, 312Lv, 314Og, 316120, 318122, 320124, 322126, 324128, 326130, 328132, 330134, 332136; calculated nuclear shell energies as functions of octupole deformation parameters α30, α31, α32 and α33, comparisons of nuclear shell-energies as functions of quadrupole deformation α20, and octupole deformation parameters α30 (pear-shaped), α31, α32, and α33 for Z-114, N=190-210, and for N=196, Z=114-136 nuclei. 296,298,300,302,304,306,308,310,312,314,316Sg, 314,316,318,320,322,324,326,328,330,332,334124; calculated energies at the equilibrium before and after allowing the α32 minimization. 280,282,284,286,288,290,292,294,296,298,300,302,304,306,308,310,312,314,316,318,320Fl, 282,284,286,288,290,292,294,296,298,300,302,304,306,308,310,312,314,316,318,320,322Lv, 284,286,288,290,292,294,296,298,300,302,304,306,308,310,312,314,316,318,320,322,324Og, 286,288,290,292,294,296,298,300,302,304,306,308,310,312,314,316,318,320,322,324,326120, 288,290,292,294,296,298,300,302,304,306,308,310,312,314,316,318,320,322,324,326,328122, 290,292,294,296,298,300,302,304,306,308,310,312,314,316,318,320,322,324,326,328,330124, 292,294,296,298,300,302,304,306,308,310,312,314,316,318,320,322,324,326,328,330,332126, 294,296,298,300,302,304,306,308,310,312,314,316,318,320,322,324,326,328,330,332,334128, 296,298,300,302,304,306,308,310,312,314,316,318,320,322,324,326,328,330,332,334,336130; predicted quadrupole deformation α2, components of octupole deformation α30, α31, α32 and α33 for the ground states, energy differences between the nearest quadrupole-shape minima and octupole-deformed configurations; deduced spherical or octupole deformed, with dominance of octupole-tetrahedral geometry for a majority of superheavy nuclei, which lowers the ground-state energy by up to 8 MeV. Realistic phenomenological mean-field approach with the deformed Woods-Saxon potential and macroscopic-microscopic method to examine impact of exotic shapes of nuclei associated with the four-fold octupole degrees of freedom on the stabilization of superheavy nuclei in the mass range of Z=114-130, and N=166-206.

doi: 10.1103/PhysRevC.106.054314
Citations: PlumX Metrics


2021WE07      Phys.Rev. C 103, 054601 (2021)

P.W.Wen, C.J.Lin, R.G.Nazmitdinov, S.I.Vinitsky, O.Chuluunbaatar, A.A.Gusev, A.K.Nasirov, H.M.Jia, A.Gozdz

Potential roots of the deep subbarrier heavy-ion fusion hindrance phenomenon within the sudden approximation approach

NUCLEAR REACTIONS 100Mo(64Ni, X), E=120-160 MeV; 64Ni(64Ni, X), E=85-110 MeV; 64Ni(28Si, X), E=120-160 MeV; 12C(12C, X), E=1-6 MeV; calculated fusion cross sections σ(E) and astrophysical S(E) factors using improved coupled-channels (CC) by finite element method and incoming wave boundary conditions (IWBCs), with the Woods-Saxon potential. Comparison with experimental data.

doi: 10.1103/PhysRevC.103.054601
Citations: PlumX Metrics


2019DU22      Acta Phys.Pol. B50, 685 (2019)

J.Dudek, I.Dedes, J.Yang, A.Baran, D.Curien, T.Dickel, A.Gozdz, D.Rouvel, H.L.Wang

High-rank Symmetries in Nuclei: Challenges for Prediction Capacities of the Nuclear Mean-field Theories

NUCLEAR STRUCTURE 226Th; calculated total nuclear energy surfaces. Discussed the possible structure of rotational bands in cases of tetrahedral and octahedral nuclear symmetries. Mean-field approach with the phenomenological “universal” Woods–Saxon Hamiltonian.

doi: 10.5506/aphyspolb.50.685
Citations: PlumX Metrics


2019SA61      J.Phys.(London) G46, 055102 (2019); Corrigendum J.Phys.(London) G46, 109501 (2019)

A.Saha, T.Bhattacharjee, D.Curien, J.Dudek, I.Dedes, K.Mazurek, A.Gozdz, S.Tagami, Y.R.Shimizu, S.R.Banerjee, S.Rajbanshi, A.Bisoi, G.de Angelis, S.Bhattacharya, S.Bhattacharyya, S.Biswas, A.Chakraborty, S.Das Gupta, B.Dey, A.Goswami, D.Mondal, D.Pandit, R.Palit, T.Roy, R.P.Singh, M.S.Sarkar, S.Saha, J.Sethi

Spectroscopy of a tetrahedral doubly magic candidate nucleus 16070Yb90

NUCLEAR REACTIONS 148Sm(16O, 4n)160Yb, E=90 MeV; measured reaction products, Eγ, Iγ, γγ-coin, γγ(θ)(DCO), γγ(θ)(ADO) and γγ(linearpol) using INGA array of 20 Compton-suppressed HPGe clover detectors at TIFR pelletron facility. 160Yb; deduced high-spin levels, J, π, multipolarities, rotational bands, alignments, tetrahedral deformation. Systematics of g.s. and negative-parity bands in 152,154,156Gd.

doi: 10.1088/1361-6471/ab0573
Citations: PlumX Metrics

Data from this article have been entered in the XUNDL database. For more information, click here.


2018DO03      Phys.Rev. C 97, 024321 (2018)

A.Dobrowolski, K.Mazurek, A.Gozdz

Rotational bands in the quadrupole-octupole collective model

NUCLEAR STRUCTURE 156Dy; calculated levels, J, π, rotational bands, potential energy surfaces in (α20, α22), (α20, α30), (α20, α31), (α20, α32), (α20, α33) quadrupole and quadrupole-octupole planes, B(E2), B(E1), B(E2)/B(E1) ratios and Eγ values for transitions in ground-state and octupole bands. Quadrupole-octupole collective model with negative-parity one phonon-model bands based on four octupole deformations α30, α31, α32 and α33. Comparison with experimental data.

doi: 10.1103/PhysRevC.97.024321
Citations: PlumX Metrics


2017DO03      Acta Phys.Pol. B48, 565 (2017)

A.Dobrowolski, A.Gozdz, K.Mazurek

Influence of Dipole Deformations on Electric Transitions in 156Gd Nucleus

NUCLEAR STRUCTURE 156Gd; calculated nuclear energy surface vs axial octupole and axial dipole gs deformation parameters, influence of the center-of-mass motion generated by octupole deformation connected with induced dipole deformations of 156Gd in its gs, B(E1) for specific transitions using quadrupole-octupole collective approach in presence of rotational motion. B(E1) values compared to data.

doi: 10.5506/APhysPolB.48.565
Citations: PlumX Metrics


2017GO05      Acta Phys.Pol. B48, 281 (2017)

A.Gozdz, A.Pedrak, J.Dudek

GCM+GOA Electromagnetic Multipole Transition Operators and Symmetries of Generating Functions

doi: 10.5506/APhysPolB.48.281
Citations: PlumX Metrics


2016DO09      Phys.Rev. C 94, 054322 (2016)

A.Dobrowolski, K.Mazurek, A.Gozdz

Consistent quadrupole-octupole collective model

NUCLEAR STRUCTURE 156Gd; calculated potential energy surfaces (PES), total energy in octupole planes, quadrupole versus octupole energy contours, profiles of total energy and mass tensor for ground state, levels, J, π, B(E2), B(E1). Collective Hamiltonian, and macroscopic-microscopic Strutinsky-like method with particle-number-projected BCS approach in vibrational, rotational, and nine-dimensional collective space. Comparison with experimental data.

doi: 10.1103/PhysRevC.94.054322
Citations: PlumX Metrics


2015PE11      Phys.Scr. 90, 114012 (2015)

A.Pedrak, A.Gozdz

Symmetry properties of eigenproblems in intrinsic frames

doi: 10.1088/0031-8949/90/11/114012
Citations: PlumX Metrics


2014GO31      Phys.Scr. 89, 054010 (2014)

M.Gozdz, A.Gozdz

On particle oscillations

doi: 10.1088/0031-8949/89/5/054010
Citations: PlumX Metrics


2014GU29      Phys.Scr. 89, 054011 (2014)

A.A.Gusev, S.I.Vinitsky, O.Chuluunbaatar, A.Gozdz, V.L.Derbov

Resonance tunnelling of clusters through repulsive barriers

doi: 10.1088/0031-8949/89/5/054011
Citations: PlumX Metrics


2014PE20      Phys.Scr. 89, 054024 (2014)

A.Pedrak, A.Gozdz

Intrinsic Hamiltonian symmetry group structure analysis for orthogonal partial symmetry decomposition

doi: 10.1088/0031-8949/89/5/054024
Citations: PlumX Metrics


2014SZ05      Phys.Scr. 89, 054033 (2014)

A.Szulerecka, A.Dobrowolski, A.Gozdz

Generalized projection operators for intrinsic rotation groups and nuclear collective models

doi: 10.1088/0031-8949/89/5/054033
Citations: PlumX Metrics


2013DO03      Acta Phys.Pol. B44, 333 (2013)

A.Dobrowolski, A.Szulerecka, A.Gozdz

Electric Transitions in Hypothetical Tetrahedral/Octahedral Bands

NUCLEAR STRUCTURE 156Gd; calculated B(E1), B(E2). Comparison with experimental data.

doi: 10.5506/APhysPolB.44.333
Citations: PlumX Metrics


2013DO10      Phys.Scr. T154, 014024 (2013)

A.Dobrowolski, A.Gozdz, A.Szulerecka

Electric transitions within the symmetrized tetrahedral and octahedral states

doi: 10.1088/0031-8949/2013/T154/014024
Citations: PlumX Metrics


2013DU01      Acta Phys.Pol. B44, 305 (2013)

J.Dudek, D.Curien, A.Gozdz, Y.R.Shimizu, S.Tagami

Exotic Geometrical Symmetries in Nuclei: From Group Theory to Experiments

COMPILATION 156Gd; compiled experimental B(E2)/B(E1) ratios.

doi: 10.5506/APhysPolB.44.305
Citations: PlumX Metrics


2013GO07      Phys.Scr. T154, 014025 (2013)

A.Gozdz, A.Pedrak

Hidden symmetries in the intrinsic frame

doi: 10.1088/0031-8949/2013/T154/014025
Citations: PlumX Metrics


2012DU12      Int.J.Mod.Phys. E21, 1250053 (2012)

J.Dudek, B.Szpak, A.Dromard, M.-G.Porquet, B.Fornal, A.Gozdz

Nuclear physics Hamiltonians, inverse problem and the related issue of predictive power

doi: 10.1142/S021830131250053X
Citations: PlumX Metrics


2012GO07      Int.J.Mod.Phys. E21, 1250045 (2012)

A.Gozdz, A.Pedrak

Generator coordinate method and intrinsic symmetries

doi: 10.1142/S0218301312500450
Citations: PlumX Metrics


2011CU02      Int.J.Mod.Phys. E20, 219 (2011)

D.Curien, J.Dudek, H.Molique, L.Sengele, A.Gozdz, K.Mazurek

Search for Tetrahedral Symmetry in nuclei: A Short Overview

doi: 10.1142/S0218301311017557
Citations: PlumX Metrics


2011DO04      Int.J.Mod.Phys. E20, 500 (2011)

A.Dobrowolski, A.Gozdz, K.Mazurek, J.Dudek

Tetrahedral symmetry in nuclei: New predictions based on the collective model

NUCLEAR STRUCTURE 156Dy; calculated potential energy surfaces, probability density distributions.

doi: 10.1142/S0218301311017910
Citations: PlumX Metrics


2011GO01      Acta Phys.Pol. B42, 459 (2011)

A.Gozdz, A.Szulerecka, A.Dobrowolski, J.Dudek

Nuclear Collective Models and Partial Symmetries

NUCLEAR STRUCTURE 156Gd, 156Dy; calculated quadrupole moments, B(E1), B(E2).


2011GO06      Int.J.Mod.Phys. E20, 199 (2011)

A.Gozdz, A.Szulerecka, A.Dobrowolski, J.Dudek

Symmetries in the intrinsic nuclear frames

doi: 10.1142/S0218301311017521
Citations: PlumX Metrics


2011GO08      Int.J.Mod.Phys. E20, 565 (2011)

A.Gozdz, A.Szulerecka, A.Dobrowolski

The tetrahedral-octahedral bases for the generalized rotor

doi: 10.1142/S0218301311018010
Citations: PlumX Metrics


2011MO13      Int.J.Mod.Phys. E20, 811 (2011)

H.Molique, J.Dudek, A.Gozdz, K.Mazurek

Exotic nuclear shapes and the level mixing models

doi: 10.1142/S0218301311018733
Citations: PlumX Metrics


2010DO06      Int.J.Mod.Phys. E19, 685 (2010)

A.Dobrowolski, A.Gozdz, J.Dudek

On a selection rule for electric transition in axially-symmetric nuclei

doi: 10.1142/S0218301310015102
Citations: PlumX Metrics


2010DO13      Phys.Rev. C 82, 067306 (2010)

Q.T.Doan, A.Vancraeyenest, O.Stezowski, D.Guinet, D.Curien, J.Dudek, Ph.Lautesse, G.Lehaut, N.Redon, Ch.Schmitt, G.Duchene, B.Gall, H.Molique, J.Piot, P.T.Greenlees, U.Jakobsson, R.Julin, S.Juutinen, P.Jones, S.Ketelhut, M.Nyman, P.Peura, P.Rahkila, A.Gozdz, K.Mazurek, N.Schunck, K.Zuber, P.Bednarczyk, A.Maj, A.Astier, I.Deloncle, D.Verney, G.de Angelis, J.Gerl

Spectroscopic information about a hypothetical tetrahedral configuration in 156Gd

NUCLEAR REACTIONS 154Sm(4He, 2n), E=27 MeV; measured Eγ, Iγ, γγ-coin, γ(θ) using JUROGAM array. 156Gd; deduced levels, J, π, bands, multipolarity, mixing ratio. Search for evidence of hypothetical tetrahedral configuration in 156Gd.

doi: 10.1103/PhysRevC.82.067306
Citations: PlumX Metrics

Data from this article have been entered in the XUNDL database. For more information, click here.


2010GO04      Int.J.Mod.Phys. E19, 621 (2010)

A.Gozdz, A.Dobrowolski, J.Dudek, K.Mazurek

Modeling the electromagnetic transitions in tetrahedral-symmetric nuclei

NUCLEAR STRUCTURE 156Dy; calculated collective excitations, static quadrupole moment, B(E2).

doi: 10.1142/S0218301310015035
Citations: PlumX Metrics


2010MO08      Int.J.Mod.Phys. E19, 633 (2010)

H.Molique, J.Dudek, D.Curien, A.Gozdz, A.Dobrowolski

Nuclear rotational-band interaction-mechanism revisited

doi: 10.1142/S0218301310015047
Citations: PlumX Metrics


2009DO08      Acta Phys.Pol. B40, 725 (2009)

Q.T.Doan, D.Curien, O.Stezowski, J.Dudek, K.Mazurek, A.Gozdz, J.Piot, G.Duchene, B.Gall, H.Molique, M.Richet, P.Medina, D.Guinet, N.Redon, Ch.Schmitt, P.Jones, P.Peura, S.Ketelhut, M.Nyman, U.Jakobsson, P.T.Greenlees, R.Julin, S.Juutinen, P.Rahkila, A.Maj, K.Zuber, P.Bednarczyk, N.Schunck, J.Dobaczewski, A.Astier, I.Deloncle, D.Verney, G.de Angelis, J.Gerl

Search for Fingerprints of Tetrahedral Symmetry in 156Gd

NUCLEAR REACTIONS 154Sm(α, 2n), E=27 MeV; measured Eγ, Iγ, γγ-coin; deduced B(E2)/B(E1).


2009DU04      Acta Phys.Pol. B40, 713 (2009)

J.Dudek, K.Mazurek, D.Curien, A.Dobrowolski, A.Gozdz, D.Hartley, A.Maj, L.Riedinger, N.Schunck

Theory of Nuclear Stability Using Point GROUP Symmetries: Outline and Illustrations


2009DU15      Int.J.Mod.Phys. E18, 2155 (2009)

J.Dudek, D.Curien, A.Gozdz, K.Mazurek

Nuclear point-group symmetries and new ideas about nuclear stability: an overview

doi: 10.1142/S0218301309014470
Citations: PlumX Metrics


2009GO21      Int.J.Mod.Phys. E18, 1028 (2009)

A.Gozdz, M.Miskiewicz, J.Dudek, A.Dobrowolski

Collective Hamiltonians with tetrahedral symmetry: formalism and general features

doi: 10.1142/S0218301309013191
Citations: PlumX Metrics


2009GO22      Int.J.Mod.Phys. E18, 1062 (2009)

A.Gozdz, K.Stefanska

Are there nuclear decayed fragments free or they are in a stationary state?

doi: 10.1142/S0218301309013257
Citations: PlumX Metrics


2009MA29      Acta Phys.Pol. B40, 731 (2009)

K.Mazurek, J.Dudek, A.Gozdz, D.Curien, M.Kmiecik, A.Maj

New Nuclear Stability Islands of Octahedral and Tetrahedral Shapes


2008GO07      Int.J.Mod.Phys. E17, 217 (2008)

A.Gozdz, K.Stefanska

Arrival time for massive particles


2008GO08      Int.J.Mod.Phys. E17, 272 (2008)

A.Gozdz, M.Miskiewicz, J.Dudek

Tensor formalism for rotational and vibrational nuclear motions with discrete symmetries rotational terms

doi: 10.1142/S0218301308009793
Citations: PlumX Metrics


2008RO02      Phys.Rev. C 77, 014308 (2008)

J.Robin, Th.Byrski, G.Duchene, F.A.Beck, D.Curien, N.Dubray, J.Dudek, A.Gozdz, A.Odahara, N.Schunck, N.Adimi, D.E.Appelbe, P.Bednarczyk, A.Bracco, B.Cederwall, S.Courtin, D.M.Cullen, O.Dorvaux, S.Ertuck, G.de France, B.Gall, P.Joshi, S.L.King, A.Korichi, K.Lagergren, G.Lo Bianco, S.Leoni, A.Lopez-Martens, S.Lunardi, B.Million, A.Nourredine, E.Pachoud, E.S.Paul, C.Petrache, I.Piqueras, N.Redon, A.Saltarelli, J.Simpson, O.Stezowski, R.Venturelli, J.P.Vivien, K.Zuber

Extended investigation of superdeformed bands in 151, 152Tb nuclei

NUCLEAR REACTIONS 130Te(27Al, xn), E=155 MeV; measured Eγ, Iγ, γγ-coin. 151,152Tb; deduced levels, J, π, superdeformed bands, dynamical moments, configurations; calculated single-particle energy levels. Compared with calculations and superdeformed bands in 150Tb, 152Dy.

doi: 10.1103/PhysRevC.77.014308
Citations: PlumX Metrics

Data from this article have been entered in the XUNDL database. For more information, click here.


2007DE06      Int.J.Mod.Phys. E16, 616 (2007)

M.Debicki, A.Gozdz, K.Stefanska

Proton emission γ-lasers and time interference

doi: 10.1142/S021830130700606X
Citations: PlumX Metrics


2007DU07      Int.J.Mod.Phys. E16, 516 (2007)

J.Dudek, J.Dobaczewski, N.Dubray, A.Gozdz, V.Pangon, N.Schunck

Nuclei with tetrahedral symmetry

NUCLEAR STRUCTURE 154Gd; calculated single-particle level energies vs tetrahedral deformation. 156Dy; calculated potential energy surfaces. 148,150,152Sm, 150,152,154Gd; calculated energy differences between spherical and tetrahedral minima.

doi: 10.1142/S0218301307005958
Citations: PlumX Metrics


2007DU15      Acta Phys.Pol. B38, 1389 (2007)

J.Dudek, A.Gozdz, D.Curien, V.Pangon, N.Schunck

Nuclear Tetrahedral Symmetry and Collective Rotation


2007GO04      Int.J.Mod.Phys. E16, 541 (2007)

A.Gozdz, J.Dudek

Optimized description of nuclear shapes and symmetries

doi: 10.1142/S0218301307005971
Citations: PlumX Metrics


2006GO08      Int.J.Mod.Phys. E15, 500 (2006)

A.Gozdz, K.Stefanska

Toy model of fission within the projection evolution approach

doi: 10.1142/S0218301306004430
Citations: PlumX Metrics


2005DU12      Int.J.Mod.Phys. E14, 389 (2005)

J.Dudek, N.Schunck, N.Dubray, A.Gozdz

Exotic nuclear shapes: today and tomorrow

NUCLEAR STRUCTURE 126Xe; calculated total energy vs quadrupole deformation. 78Se; calculated neutron single-particle energies vs octahedral deformation.

doi: 10.1142/S021830130500317X
Citations: PlumX Metrics


2005GO17      Int.J.Mod.Phys. E14, 477 (2005)

A.Gozdz, M.Debicki, M.Pietrow

Projection evolution and decay of a system

doi: 10.1142/S0218301305003302
Citations: PlumX Metrics


2004GO10      Int.J.Mod.Phys. E13, 37 (2004)

A.Gozdz, M.Miskiewicz, A.Olszewski

Remarks on symmetries of generalized rotor space

doi: 10.1142/S0218301304001709
Citations: PlumX Metrics


2004GO11      Int.J.Mod.Phys. E13, 357 (2004)

A.Gozdz, A.Olszewski

Irreducible representations of double point groups within the harmonic oscillator basis

doi: 10.1142/S0218301304002181
Citations: PlumX Metrics


2004MI15      Int.J.Mod.Phys. E13, 127 (2004)

M.Miskiewicz, A.Gozdz, J.Dudek

Quantum rotational spectra and classical rotors

doi: 10.1142/S0218301304001849
Citations: PlumX Metrics


2004SC26      Phys.Rev. C 69, 061305 (2004)

N.Schunck, J.Dudek, A.Gozdz, P.H.Regan

Tetrahedral symmetry in ground and low-lying states of exotic A ∼ 110 nuclei

NUCLEAR STRUCTURE 104,106,108,110,112Zr; calculated single-particle energies, potential energy surfaces; deduced deformation, tetrahedral symmetry. Possible experimental signatures discussed.

doi: 10.1103/PhysRevC.69.061305
Citations: PlumX Metrics


2003DU26      Acta Phys.Pol. B34, 2491 (2003)

J.Dudek, A.Gozdz, N.Schunck

Atomic nuclei with tetrahedral and octahedral symmetries


2003GO32      Acta Phys.Pol. B34, 2123 (2003)

A.Gozdz, J.Dudek, M.Miskiewicz

Symmetries of nuclear Hamiltonians with redundant variables


2002DU14      Phys.Rev.Lett. 88, 252502 (2002)

J.Dudek, A.Gozdz, N.Schunck, M.Miskiewicz

Nuclear Tetrahedral Symmetry: Possibly present throughout the periodic table

NUCLEAR STRUCTURE 80,108Zr, 160Yb, 242Fm; calculated energy vs deformation, tetrahedral symmetry features.

doi: 10.1103/PhysRevLett.88.252502
Citations: PlumX Metrics


2001DU13      Acta Phys.Pol. B32, 2625 (2001)

J.Dudek, A.Gozdz, D.Rosly

Quantum Rotors and Their Symmetries


1996GO16      Acta Phys.Pol. B27, 469 (1996)

A.Gozdz, J.Dudek

D(3h) Intrinsic Symmetry Versus Laboratory Reference Frame


1994BO30      Acta Phys.Pol. B25, 645 (1994)

A.Bogusz, A.Gozdz

An Application of the Direct Integrals in the AGCM Approach

NUCLEAR STRUCTURE 8Be; calculated levels. Algebraic generator coordinate method.


1994GO22      Acta Phys.Pol. B25, 665 (1994)

A.Gozdz, A.Staszczak, K.Zajac

The Pseudo-SU(3) Symmetry Scheme for Deformed Single-Particle Levels

NUCLEAR STRUCTURE N=82-126; calculated Nilsson neutron single particle levels. Pseudo-SU(3) symmetry scheme.


1988LO09      Phys.Lett. 213B, 107 (1988)

Z.Lojewski, A.Gozdz

Mean-Field Mass Parameters for Odd Nuclei within the GOA + GCM Approach

NUCLEAR STRUCTURE 240,241Pu; calculated mean field mass parameters. Generator coordinate method.

doi: 10.1016/0370-2693(88)91007-6
Citations: PlumX Metrics


1986GO01      Nucl.Phys. A451, 1 (1986)

A.Gozdz, K.Pomorski

Restoring of Broken Symmetries in the Generator-Coordinate Method

NUCLEAR STRUCTURE 126Ba; calculated proton, neutron ground state energies. Generator coordinate method, comparison with BCS.

doi: 10.1016/0375-9474(86)90237-X
Citations: PlumX Metrics


1985GO14      Nucl.Phys. A442, 26 (1985)

A.Gozdz, K.Pomorski, M.Brack, W.Werner

The Mass Parameters for the Average Mean-Field Potential

NUCLEAR STRUCTURE 240Pu, 154Sm; calculated mass parameters. Average mean field potential.

doi: 10.1016/0375-9474(85)90131-9
Citations: PlumX Metrics


1985GO15      Nucl.Phys. A442, 50 (1985)

A.Gozdz, K.Pomorski, M.Brack, E.Werner

Collective Pairing Hamiltonian in the GCM Approximation

NUCLEAR STRUCTURE 240Pu; calculated collective potentials, ground state wave functions. Generator coordinate method, gaussian overlap approximation.

doi: 10.1016/0375-9474(85)90132-0
Citations: PlumX Metrics


Back to query form