NSR Query Results


Output year order : Descending
Format : Normal

NSR database version of March 21, 2024.

Search: Author = S.Tagami

Found 24 matches.

Back to query form



2023WA03      Phys.Rev. C 107, 024608 (2023)

T.Wakasa, S.Tagami, J.Matsui, M.Takechi, M.Yahiro

Neutron-skin values and matter and neutron radii determined from reaction cross sections of proton scattering on 12C, 40, 48Ca, 58Ni, and 208Pb

NUCLEAR REACTIONS 12C, 40,48Ca, 58Ni, 208Pb(p, p), E=20-180 MeV; calculated proton-, neutron-, and matter densities; analyzed reaction σ(E) from proton scattering data; deduced matter radii, neutron radii and neutron skin thickness.Kyushu g-matrix folding model with the densities scaled from the Gogny-D1S HFB (GHFB) with angular momentum projection (AMP). Comparison of obtained values for neutron skin thickness to the data obtained by different methods.

doi: 10.1103/PhysRevC.107.024608
Citations: PlumX Metrics


2021MA74      Phys.Rev. C 104, 054613 (2021)

M.Matsuzaki, S.Tagami, M.Yahiro

Neutron skin thickness of 208Pb, 116, 120, 124Sn, and 40Ca determined from reaction cross sections of 4He scattering

NUCLEAR REACTIONS 208Pb, 116,120,124Sn, 40Ca(α, X), E=20-50 MeV/nucleon; calculated reaction σ(E), nuclear matter radii, neutron skin thicknesses using double folding model with Kyushu chiral g matrix, and densities from mean-field calculations, further renormalized densities to reproduce observed σ(E), and with D1S-GHFB+AMP and SLy7-HFB Skyrme interactions. Comparison with experimental neutron skin thickness of 208Pb from electron scattering data by PREX-II collaboration, and with other experimental data.

doi: 10.1103/PhysRevC.104.054613
Citations: PlumX Metrics


2021TA25      Phys.Rev. C 104, 024606 (2021)

S.Tagami, T.Wakasa, J.Matsui, M.Yahiro, M.Takechi

Neutron skin thickness of 208Pb determined from the reaction cross section for proton scattering

NUCLEAR REACTIONS 208Pb(p, X), E=30-100 MeV; calculated proton-, neutron-, and matter densities; analyzed reaction σ(E) from proton scattering data; deduced neutron radius and neutron skin thickness. Kyushu g-matrix folding model with the densities calculated with Gogny-D1S HFB (GHFB) with the angular momentum projection (AMP).

doi: 10.1103/PhysRevC.104.024606
Citations: PlumX Metrics


2020TA01      Phys.Rev. C 101, 014620 (2020)

S.Tagami, M.Tanaka, M.Takechi, M.Fukuda, M.Yahiro

Chiral g-matrix folding-model approach to reaction cross sections for scattering of Ca isotopes on a C target

NUCLEAR STRUCTURE 40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,62,64Ca; calculated β and γ deformation parameters, even and odd driplines, binding energies, charge, proton, neutron and matter radii, neutron skin for the ground states using Gogny-D1S Hartree-Fock-Bogoliubov (GHFB) theory with and without the angular momentum projection (AMP). Comparison with experimental data.

NUCLEAR REACTIONS 12C(40Ca, X), (41Ca, X), (42Ca, X), (43Ca, X), (44Ca, X), (45Ca, X), (46Ca, X), (47Ca, X), (48Ca, X), (49Ca, X), (50Ca, X), (51Ca, X), (52Ca, X), (53Ca, X), (54Ca, X), (55Ca, X), (56Ca, X), (57Ca, X), (58Ca, X), (59Ca, X), (60Ca, X), (62Ca, X), (64Ca, X), E=280, 250.7 MeV; calculated reaction σ(E) using chiral g-matrix double-folding model (DFM), and compared with GHFB+AMP density, and available experimental data. 9Be, 12C, 27Al(12C, X), E=30-400 MeV; calculated reaction σ(E) using chiral g-matrix double-folding model (DFM). Comparison with results from t-matrix DFM densities, and experimental data.

doi: 10.1103/PhysRevC.101.014620
Citations: PlumX Metrics


2019SA61      J.Phys.(London) G46, 055102 (2019); Corrigendum J.Phys.(London) G46, 109501 (2019)

A.Saha, T.Bhattacharjee, D.Curien, J.Dudek, I.Dedes, K.Mazurek, A.Gozdz, S.Tagami, Y.R.Shimizu, S.R.Banerjee, S.Rajbanshi, A.Bisoi, G.de Angelis, S.Bhattacharya, S.Bhattacharyya, S.Biswas, A.Chakraborty, S.Das Gupta, B.Dey, A.Goswami, D.Mondal, D.Pandit, R.Palit, T.Roy, R.P.Singh, M.S.Sarkar, S.Saha, J.Sethi

Spectroscopy of a tetrahedral doubly magic candidate nucleus 16070Yb90

NUCLEAR REACTIONS 148Sm(16O, 4n)160Yb, E=90 MeV; measured reaction products, Eγ, Iγ, γγ-coin, γγ(θ)(DCO), γγ(θ)(ADO) and γγ(linearpol) using INGA array of 20 Compton-suppressed HPGe clover detectors at TIFR pelletron facility. 160Yb; deduced high-spin levels, J, π, multipolarities, rotational bands, alignments, tetrahedral deformation. Systematics of g.s. and negative-parity bands in 152,154,156Gd.

doi: 10.1088/1361-6471/ab0573
Citations: PlumX Metrics

Data from this article have been entered in the XUNDL database. For more information, click here.


2019US01      Phys.Rev. C 99, 064328 (2019)

M.Ushitani, S.Tagami, YoshifumiR.Shimizu

Importance of multicranked configuration mixing for angular-momentum-projection calculations: Study of superdeformed rotational bands in 152Dy and 194Hg

NUCLEAR STRUCTURE 152Dy, 194Hg; calculated moment of inertia, energy spectra, and average pairing gaps for superdeformed bands using multicranked configuration mixing in angular-momentum projection calculations. Comparison with experimental data, and with other theoretical models.

doi: 10.1103/PhysRevC.99.064328
Citations: PlumX Metrics


2018DU02      Phys.Rev. C 97, 021302 (2018)

J.Dudek, D.Curien, I.Dedes, K.Mazurek, S.Tagami, Y.R.Shimizu, T.Bhattacharjee

Spectroscopic criteria for identification of nuclear tetrahedral and octahedral symmetries: Illustration on a rare earth nucleus

NUCLEAR STRUCTURE 152Sm; calculated realistic mean-field total nuclear energy; analyzed energy levels. Comparison with group theory predictions, nuclear point-group symmetries, nuclear tetrahedral and octahedral symmetries. Spectral analysis based on irreducible representations; deduced criteria for identification of tetrahedral and octahedral symmetries. Realistic nuclear mean-field theory calculations with the phenomenological macroscopic-microscopic method, the Gogny-Hartree-Fock-Bogoliubov approach.

doi: 10.1103/PhysRevC.97.021302
Citations: PlumX Metrics


2018SH03      Phys.Rev. C 97, 024318 (2018)

M.Shimada, Y.Fujioka, S.Tagami, Y.R.Shimizu

Rotational motion of triaxially deformed nuclei studied by the microscopic angular-momentum-projection method. I. Nuclear wobbling motion

NUCLEAR STRUCTURE 162Yb; calculated levels, J, π, moment of inertia plots for the yrast and the first excited bands. 163Lu; calculated wobbling spectra, levels, J, π, triaxial superdeformed (TSD) bands, multiple wobbling rotational bands, B(E2), B(M1) and B(E2) ratios for transitions in TSD bands for different triaxial deformations, expectation values of the angular-momentum vectors, neutron and proton average pairing gaps, nuclear radius and various deformation parameters as functions of rotational frequency. Microscopic framework of angular-momentum projection from cranked triaxially deformed mean-field states, mainly using Woods-Saxon potential and the schematic separable interaction, and some results with the Gogny D1S interaction for description of wobbling motion. Comparison with experimental data.

doi: 10.1103/PhysRevC.97.024318
Citations: PlumX Metrics


2018SH04      Phys.Rev. C 97, 024319 (2018)

M.Shimada, Y.Fujioka, S.Tagami, Y.R.Shimizu

Rotational motion of triaxially deformed nuclei studied by the microscopic angular-momentum-projection method. II. Chiral doublet band

NUCLEAR STRUCTURE 128Cs, 104Rh; calculated levels, J, π, B(E2), chiral doublet bands, B(M1), B(M1)/B(E2) and B(M1) ratios for transitions in yrast and yrare bands, expectation values of the angular-momentum vectors; discussed chiral rotation in triaxially deformed nuclei. Microscopic framework of angular-momentum projection from cranked triaxially deformed mean-field states, using Woods-Saxon potential and the schematic separable interaction. Comparison with experimental data.

doi: 10.1103/PhysRevC.97.024319
Citations: PlumX Metrics


2018TA22      Phys.Rev. C 98, 024304 (2018)

S.Tagami, Y.R.Shimizu, J.Dudek

First-order Coriolis-coupling for the rotational spectrum of a tetrahedrally deformed core plus one-particle system

NUCLEAR STRUCTURE 81Zr; calculated levels, J, π for K=1/2 rotational structure properties of the tetrahedrally symmetric even-even core configurations coupled with a single valence nucleon. Angular-momentum and parity projection method, and the Coriolis-coupling model.

doi: 10.1103/PhysRevC.98.024304
Citations: PlumX Metrics


2016SH11      Phys.Rev. C 93, 044317 (2016)

M.Shimada, S.Tagami, Y.R.Shimizu

Realistic description of rotational bands in rare earth nuclei by the angular-momentum-projected multicranked configuration-mixing method

NUCLEAR STRUCTURE 156,158,160Gd, 158,162,164Dy, 160,162,164Er, 164,168,170Yb; calculated nuclear radii, deformation parameters β2 and β4, average pairing gaps for neutrons and protons for ground states in rare earth nuclei, levels, J, π, moment of inertia for ground-state rotational bands, detailed study of characteristics of the s-band in 164Er. Angular-momentum-projected multicranked configuration-mixing method with Gogny D1S force as effective interaction. Comparison with experimental data.

doi: 10.1103/PhysRevC.93.044317
Citations: PlumX Metrics


2016SH21      Phys.Rev. C 93, 064314 (2016)

M.Shimada, S.Watanabe, S.Tagami, T.Matsumoto, Y.R.Shimizu, M.Yahiro

Simultaneous analysis of matter radii, transition probabilities, and excitation energies of Mg isotopes by angular-momentum-projected configuration-mixing calculations

NUCLEAR STRUCTURE 24,26,28,30,32,34,36,38,40Mg; calculated potential-energy curves, level energies, rms matter radii, B(E2), β2, and probability distributions for the first 2+ and 4+ states. Beyond-mean-field (BMF) calculations with angular-momentum-projected configuration mixing with respect to the axially symmetric β2 deformation. Comparison with experimental data.

doi: 10.1103/PhysRevC.93.064314
Citations: PlumX Metrics


2016TA03      Phys.Rev. C 93, 024323 (2016)

S.Tagami, Y.R.Shimizu

Infinitesimal cranking for triaxial angular-momentum-projected configuration-mixing calculations and its application to the γ vibrational band

NUCLEAR STRUCTURE 164Er; calculated levels, J, π, γ-vibrational bands, B(E2), B(E2) ratios using triaxial angular-momentum-projection method with Gogny D1S force as effective interaction. Discussed wobbling motion.

doi: 10.1103/PhysRevC.93.024323
Citations: PlumX Metrics


2015SH23      Prog.Theor.Exp.Phys. 2015, 063D02 (2015)

M.Shimada, S.Tagami, Y.R.Shimizu

Angular momentum projected multi-cranked configuration mixing for reliable calculation of high-spin rotational bands

NUCLEAR STRUCTURE 164Er, 40Mg, 152Dy; calculated excitation energy spectra of the ground-state rotational band, probability distribution over the five HFB configurations, angular momentum and rotational frequency, moments of inertia, B(E2). Comparison with available data.

doi: 10.1093/ptep/ptv073
Citations: PlumX Metrics


2015TA01      J.Phys.(London) G42, 15106 (2015)

S.Tagami, Y.R.Shimizu, J.Dudek

Tetrahedral symmetry in Zr nuclei: calculations of low-energy excitations with Gogny interaction

NUCLEAR STRUCTURE 80,96,110Zr; calculated the low energy excitation patterns, J, π, correlation energy. Realistic Gogny effective interactions.

doi: 10.1088/0954-3899/42/1/015106
Citations: PlumX Metrics


2014DU16      Phys.Scr. 89, 054007 (2014)

J.Dudek, D.Curien, D.Rouvel, K.Mazurek, Y.R.Shimizu, S.Tagami

The suggested presence of tetrahedral symmetry in the ground-state configuration of the 9640Zr56 nucleus

NUCLEAR STRUCTURE 76Ge, 74Se, 76Kr; calculated energy surface with deformations. 90Zr; calculated proton single-particle levels vs axial-symmetry octupole deformation and vs tetrahedral deformation. 96Zr; calculated low-lying levels, J, π, B(E1), B(E2), B(E3); deduced possible gs tetrahedral deformation. Mean field methods with point-group symmetries.

doi: 10.1088/0031-8949/89/5/054007
Citations: PlumX Metrics


2014TA32      Phys.Rev. C 90, 061305 (2014)

M.Takechi, S.Suzuki, D.Nishimura, M.Fukuda, T.Ohtsubo, M.Nagashima, T.Suzuki, T.Yamaguchi, A.Ozawa, T.Moriguchi, H.Ohishi, T.Sumikama, H.Geissel, N.Aoi, R.-J.Chen, D.-Q.Fang, N.Fukuda, S.Fukuoka, H.Furuki, N.Inabe, Y.Ishibashi, T.Itoh, T.Izumikawa, D.Kameda, T.Kubo, M.Lantz, C.S.Lee, Y.-G.Ma, K.Matsuta, M.Mihara, S.Momota, D.Nagae, R.Nishikiori, T.Niwa, T.Ohnishi, K.Okumura, M.Ohtake, T.Ogura, H.Sakurai, K.Sato, Y.Shimbara, H.Suzuki, H.Takeda, S.Takeuchi, K.Tanaka, M.Tanaka, H.Uenishi, M.Winkler, Y.Yanagisawa, S.Watanabe, K.Minomo, S.Tagami, M.Shimada, M.Kimura, T.Matsumoto, Y.R.Shimizu, M.Yahiro

Evidence of halo structure in 37Mg observed via reaction cross sections and intruder orbitals beyond the island of inversion

NUCLEAR REACTIONS 12C(24Mg, X), (25Mg, X), (26Mg, X), (27Mg, X), (28Mg, X), (29Mg, X), (30Mg, X), (31Mg, X), (32Mg, X), (33Mg, X), (34Mg, X), (35Mg, X), (36Mg, X), (37Mg, X), (38Mg, X), E=240 MeV/nucleon, [secondary Mg beams from 9Be(48Ca, X), E=345 MeV/nucleon primary reaction]; measured spectra and TOF of outgoing particles, precise reaction σ using BigRIPS spectrometer at RIBF-RIKEN facility. Comparison with theoretical deformation parameter β2 versus mass plot using double-folding model (DFM) calculation combined with antisymmetrized molecular dynamics (AMD) calculation. 37Mg; deduced deformed halo effect from observed enhanced cross section, comparison with DFM calculation based on the deformed Woods-Saxon (DWS) model; collapse of N=28 magic shell for neutrons.

doi: 10.1103/PhysRevC.90.061305
Citations: PlumX Metrics

Data from this article have been entered in the EXFOR database. For more information, access X4 datasetE2471.


2014TA36      Phys.Scr. 89, 054013 (2014)

S.Tagami, M.Shimada, Y.Fujioka, Y.R.Shimizu, J.Dudek

Nuclear tetrahedral states and high-spin states studied using the quantum number projection method

NUCLEAR STRUCTURE 80,81,82Zr, 104Rh; calculated low-lying levels, J, π; deduced rotational spectra for tetrahedral deformation. 163Lu; calculated low and high spin levels, J, π, B(E2), triaxial superdeformed states. 40Mg; calculated moment of inertia. HFB mean field with allowance for triaxial superdeformed nuclei and tetrahedral deformation; preliminary. Compared with available data.

doi: 10.1088/0031-8949/89/5/054013
Citations: PlumX Metrics


2014WA14      Phys.Rev. C 89, 044610 (2014)

S.Watanabe, K.Minomo, M.Shimada, S.Tagami, M.Kimura, M.Takechi, M.Fukuda, D.Nishimura, T.Suzuki, T.Matsumoto, Y.R.Shimizu, M.Yahiro

Ground-state properties of neutron-rich Mg isotopes

NUCLEAR REACTIONS 12C(24Mg, X), (25Mg, X), (26Mg, X), (27Mg, X), (28Mg, X), (29Mg, X), (30Mg, X), (31Mg, X), (32Mg, X), (33Mg, X), (34Mg, X), (35Mg, X), (36Mg, X), (37Mg, X), (38Mg, X), E=240 MeV/nucleon; calculated reaction σ; deduced rms matter radii from reaction cross sections. Antisymmetrized molecular dynamics (AMD) with folding model and deformed Woods-Saxon model. Comparison with experimental data, and with other theoretical calculations.

NUCLEAR STRUCTURE 24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40Mg; calculated ground state binding J, π, S(n), S(2n) for 40Mg, β and γ deformation parameters, proton, neutron and matter radii, neutron skin thickness. 37Mg; calculated levels, J, π, neutron single-particle energies. Antisymmetrized molecular dynamics (AMD) with folding model and deformed Woods-Saxon model. Comparison with experimental data.

doi: 10.1103/PhysRevC.89.044610
Citations: PlumX Metrics


2013DU01      Acta Phys.Pol. B44, 305 (2013)

J.Dudek, D.Curien, A.Gozdz, Y.R.Shimizu, S.Tagami

Exotic Geometrical Symmetries in Nuclei: From Group Theory to Experiments

COMPILATION 156Gd; compiled experimental B(E2)/B(E1) ratios.

doi: 10.5506/APhysPolB.44.305
Citations: PlumX Metrics


2013SA41      Phys.Rev. C 88, 037602 (2013)

S.Sasabe, T.Matsumoto, S.Tagami, N.Furutachi, K.Minomo, Y.R.Shimizu, M.Yahiro

Reaction mechanism in odd-even staggering of reaction cross sections

NUCLEAR REACTIONS 12C(14C, X), (15C, X), (16C, X), E=83 MeV/nucleon; calculated matter radii, reaction σ, absorption probability, odd-even staggering parameter for reaction σ. Microscopic continuum discretized coupled-channels (CDCC) method, including projectile-breakup and nuclear-medium effects. Black-sphere scattering (BSS), and pairing anti-halo effects. Comparison with experimental data.

doi: 10.1103/PhysRevC.88.037602
Citations: PlumX Metrics


2013TA15      Phys.Rev. C 87, 054306 (2013)

S.Tagami, Y.R.Shimizu, J.Dudek

Microscopic study of tetrahedrally symmetric nuclei by an angular-momentum and parity projection method

NUCLEAR STRUCTURE 110Zr, 160Yb, 226Th; calculated levels, J, π, rotational energy spectra, tetrahedral and quadrupole deformed states, moments of inertia, neutron and proton pairing gaps. Microscopic Woods-Saxon mean-field and residual-interaction Hamiltonians with angular-momentum and parity projection method for deformed nuclei with tetrahedral doubly closed shell configurations. Comparison with experimental data.

doi: 10.1103/PhysRevC.87.054306
Citations: PlumX Metrics


2012SU09      Phys.Rev. C 85, 064613 (2012)

T.Sumi, K.Minomo, S.Tagami, M.Kimura, T.Matsumoto, K.Ogata, Y.R.Shimizu, M.Yahiro

Deformation of Ne isotopes in the region of the island of inversion

NUCLEAR REACTIONS 12C(28Ne, 28Ne), (29Ne, 29Ne), (30Ne, 30Ne), (31Ne, 31Ne), (32Ne, 32Ne), E=240 MeV/nucleon; calculated σ. 12C(12C, 12C), E=74.25, 135 MeV/nucleon; calculated σ(E, θ). Double folding model with Melbourne g-matrix interaction and the nuclear densities calculated by antisymmetrized molecular dynamics (AMD). Effects of pairing correlation. Comparison with experimental data.

NUCLEAR STRUCTURE 20,21,22,23,24,25,26,27,28,29,30,31,32Ne; calculated ground state J, π, deformation parameters β2, β4 and γ, S(n), total binding energy, matter rms radii, neutron and proton rms radii and density profiles, pairing effects on total binding energy. AMD, spherical Gogny-HF and -HFB calculations. 31Ne; halo nucleus.

doi: 10.1103/PhysRevC.85.064613
Citations: PlumX Metrics


2012TA16      Prog.Theor.Phys.(Kyoto), Suppl. 196, 334 (2012)

S.Tagami, Y.R.Shimizu, J.Dudek

Efficient Method for Quantum Number Projection and Its Application to Tetrahedral Nuclear States

NUCLEAR STRUCTURE 108,110Zr; calculated energy spectra of tetrahedral deformation, moment of inertia, energy levels, J, π. HFB type mean field calculations.

doi: 10.1143/PTPS.196.334
Citations: PlumX Metrics


Back to query form