NSR Query Results


Output year order : Descending
Format : Normal

NSR database version of April 26, 2024.

Search: Author = A.Dobrowolski

Found 44 matches.

Back to query form



2023BL04      Phys.Rev. C 108, 044618 (2023)

J.M.Blanco, A.Dobrowolski, A.Zdeb, J.Bartel

Spontaneous fission half-lives of actinides and superheavy elements

doi: 10.1103/PhysRevC.108.044618
Citations: PlumX Metrics


2023KO16      Phys.Rev. C 108, 024605 (2023)

P.V.Kostryukov, A.Dobrowolski

Influence of boundary conditions on the characteristics of nuclear fission

NUCLEAR REACTIONS 233,235U, 238,239,240,242,244Pu, 244,245,246,248Cm, 249,252,254,256Cf, 254,255,256,258,260Fm(n, F), E = thermal; calculated primary fragment mass distribution dependence on neck parameters. Calculations using quasiclassical statistical approach based on the Langevin formalism. Comparison to experimental results and to theoretical values obtained within Born-Oppenheimer approximation (BOA) method.

doi: 10.1103/PhysRevC.108.024605
Citations: PlumX Metrics


2023PO11      Acta Phys.Pol. B54, 9-A2 (2023)

K.Pomorski, A.Dobrowolski, B.Nerlo-Pomorska, M.Warda, A.Zdeb, J.Bartel, H.Molique, C.Schmitt, Z.G.Xiao, Y.J.Chen, L.L.Liu

Fission Fragment Mass and Kinetic Energy Yields of Fermium Isotopes

NUCLEAR STRUCTURE 246,248,250,252,254,256,258,260,262Fm; analyzed available data; deduced the post-fission neutron multiplicities, potential energy surfaces.

doi: 10.5506/APhysPolB.54.9-A2
Citations: PlumX Metrics


2023WA08      Phys.Rev. C 107, L041601 (2023)

Y.Wang, F.Guan, X.Diao, M.Wan, Y.Qin, Z.Qin, Q.Wu, D.Guo, D.Si, S.Xiao, B.Zhang, Y.Zhang, B.Tian, X.Wei, H.Yang, P.Ma, R.J.Hu, L.Duan, F.Duan, Q.Hu, J.Ma, S.Xu, Z.Bai, Y.Yang, J.Wang, W.Liu, W.Su, X.Wei, C.-W.Ma, X.Li, H.Wang, F.Wang, Y.Zhang, M.Warda, A.Dobrowolski, B.Nerlo-Pomorska, K.Pomorski, L.Ou, Z.Xiao

Observing the ping-pong modality of the isospin degree of freedom in cluster emission from heavy-ion reactions

NUCLEAR REACTIONS 208Pb(86Kr, X), E=25 MeV/nucleon; measured reaction products, A=3 isobars in coincidence with the intermediate mass fragments of A=6-11; deduced velocity spectra of 3H and 3He, yields ratios of 3H/3He correlate reversely to the neutron-to-proton ratio N/Z of the intermediate mass fragments. Comparison with ImQMD transport model. Yield ratio 3H/3He exhibits evident anticorrelation with the N/Z of the latter, suggesting the ping-pong modality of the N/Z of the emitted particles. Anti-correlation shows dependence on the slope of the symmetry energy at saturation density. Compact Spectrometer for Heavy IoN Experiment (CSHINE) at the final focal plane of the Radioactive Ion Beam Line at Lanzhou (RIBLL-I).

doi: 10.1103/PhysRevC.107.L041601
Citations: PlumX Metrics


2022PO03      Eur.Phys.J. A 58, 77 (2022)

K.Pomorski, A.Dobrowolski, B.Nerlo-Pomorska, M.Warda, J.Bartel, Z.Xiao, Y.Chen, L.Liu, J.-L.Tian, X.Diao

On the stability of superheavy nuclei

doi: 10.1140/epja/s10050-022-00737-3
Citations: PlumX Metrics


2021KO43      Chin.Phys.C 45, 124108 (2021)

P.V.Kostryukov, A.Dobrowolski, B.Nerlo-Pomorska, M.Warda, Z.Xia, Y.Chen, L.Liu, J.-L.Tian, K.Pomorski

Potential energy surfaces and fission fragment mass yields of even-even superheavy nuclei

NUCLEAR STRUCTURE 254,256,258,260,262Rf, 258,260,262,264,266Sg, 264,266,268,270,272Hs, 276,278,280,282,284Ds, 278,280,282,284,286Cn, 282,284,286,288,290Fl, 286,288,290,292,294Lv, 290,292,294,296,298Og, 294,296,298,300,302120; calculated potential energy surfaces. The Lublin-Strasbourg Drop (LSD) model.

doi: 10.1088/1674-1137/ac29a3
Citations: PlumX Metrics


2021PO06      Chin.Phys.C 45, 054109 (2021)

K.Pomorski, J.M.Blanco, P.V.Kostryukov, A.Dobrowolski, B.Nerlo-Pomorska, M.Warda, Z.-G.Xiao, Y.-J.Chen

Fission fragment mass yields of Th to Rf even-even nuclei

NUCLEAR STRUCTURE 216,218,220,222,224,226,228,230,232,234,236,238,240Th, 220,222,224,226,228,230,232,234,236,238,240,242,244,246U, 222,224,226,228,230,232,234,236,238,240,242,244,246,248,250Pu, 224,226,228,230,232,234,236,238,240,242,244,246,248,250,252Cm, 238,240,242,244,246,248,250,252,254,256,258,260Cf, 240,242,244,246,248,250,252,254,256,258,260,262Fm, 242,244,246,248,250,252,254,256,258,260,262,264No, 250,252,254,256,258,260,262,264,266,268,270,272,274,276Rf; calculated potential energy surfaces, fission barrier heights, fragment mass yields.

doi: 10.1088/1674-1137/abec69
Citations: PlumX Metrics


2020PO06      Eur.Phys.J. A 56, 107 (2020)

K.Pomorski, B.Nerlo-Pomorska, A.Dobrowolski, J.Bartel, C.M.Petrache

Shape isomers in Pt, Hg and Pb isotopes with N ≤ 126

doi: 10.1140/epja/s10050-020-00115-x
Citations: PlumX Metrics


2020PO09      Phys.Rev. C 101, 064602 (2020)

K.Pomorski, A.Dobrowolski, R.Han, B.Nerlo-Pomorska, M.Warda, Z.Xiao, Y.Chen, L.Liu, J.-L.Tian

Mass yields of fission fragments of Pt to Ra isotopes

RADIOACTIVITY 172,174,176,178,180,182,184,186,188,190,192,194,196,198,200,202Pt, 172,174,176,178,180,182,184,186,188,190,192,194,196,198,200,202Hg, 174,176,178,180,182,184,186,188,190,192,194,196,198,200,202,204Pb, 176,178,180,182,184,186,188,190,192,194,196,198,200,202,204,206Po, 196,198,200,202,204,206,208,210,212,214,216,218,220,222,224,226Rn, 198,200,202,204,206,208,210,212,214,216,218,220,222,224,226,228Ra, 236,238,240,242,244,246Pu(SF); calculated fission fragment mass distributions using collective three-dimensional model with Fourier nuclear shape parametrization and coupling fission, neck and mass asymmetry modes. 184Hg; calculated potential energy surfaces in (q2, q3) and (q3, q4) planes by macroscopic-microscopic model based on the Lublin-Strasbourg drop macroscopic energy and Yukawa-folded single-particle potential. Comparison with experimental fission fragment mass yields for 180,182,184Hg, 194,196Po, 202,204,206,208Rn, and 210,212,214,216,218Ra.

doi: 10.1103/PhysRevC.101.064602
Citations: PlumX Metrics


2020WU10      Phys.Lett. B 811, 135865 (2020)

Q.Wu, F.Guan, X.Diao, Y.Wang, Y.Zhang, Z.Li, X.Wu, A.Dobrowolski, K.Pomorski, Z.Xiao

Symmetry energy effect on emissions of light particles in coincidence with fast fission

NUCLEAR REACTIONS 197Au(40Ar, F), E=30 MeV/nucleon; measured reaction products; deduced the yield ratio of the coalescence-invariant neutrons (CIN) to the coalescence-invariant protons (CIP) in the fission events, significant dependence on the symmetry energy varying with density. Comparison with the Improved Quantum Molecular Dynamics Model (ImQMD) calculations.

doi: 10.1016/j.physletb.2020.135865
Citations: PlumX Metrics


2018DO03      Phys.Rev. C 97, 024321 (2018)

A.Dobrowolski, K.Mazurek, A.Gozdz

Rotational bands in the quadrupole-octupole collective model

NUCLEAR STRUCTURE 156Dy; calculated levels, J, π, rotational bands, potential energy surfaces in (α20, α22), (α20, α30), (α20, α31), (α20, α32), (α20, α33) quadrupole and quadrupole-octupole planes, B(E2), B(E1), B(E2)/B(E1) ratios and Eγ values for transitions in ground-state and octupole bands. Quadrupole-octupole collective model with negative-parity one phonon-model bands based on four octupole deformations α30, α31, α32 and α33. Comparison with experimental data.

doi: 10.1103/PhysRevC.97.024321
Citations: PlumX Metrics


2017DO03      Acta Phys.Pol. B48, 565 (2017)

A.Dobrowolski, A.Gozdz, K.Mazurek

Influence of Dipole Deformations on Electric Transitions in 156Gd Nucleus

NUCLEAR STRUCTURE 156Gd; calculated nuclear energy surface vs axial octupole and axial dipole gs deformation parameters, influence of the center-of-mass motion generated by octupole deformation connected with induced dipole deformations of 156Gd in its gs, B(E1) for specific transitions using quadrupole-octupole collective approach in presence of rotational motion. B(E1) values compared to data.

doi: 10.5506/APhysPolB.48.565
Citations: PlumX Metrics


2017ZD01      Phys.Rev. C 95, 054608 (2017)

A.Zdeb, A.Dobrowolski, M.Warda

Fission dynamics of 252Cf

RADIOACTIVITY 252Cf(SF); calculated potential energy surface of 252Cf, tunneling probability, fission fragment mass distributions, mass yields from ground state to excited states, statistical mixing of eigenstates and fission fragment mass distributions. Time-dependent generator coordinate method with the gaussian overlap approximation (TDGCM+GOA) approach.

doi: 10.1103/PhysRevC.95.054608
Citations: PlumX Metrics


2016DO09      Phys.Rev. C 94, 054322 (2016)

A.Dobrowolski, K.Mazurek, A.Gozdz

Consistent quadrupole-octupole collective model

NUCLEAR STRUCTURE 156Gd; calculated potential energy surfaces (PES), total energy in octupole planes, quadrupole versus octupole energy contours, profiles of total energy and mass tensor for ground state, levels, J, π, B(E2), B(E1). Collective Hamiltonian, and macroscopic-microscopic Strutinsky-like method with particle-number-projected BCS approach in vibrational, rotational, and nine-dimensional collective space. Comparison with experimental data.

doi: 10.1103/PhysRevC.94.054322
Citations: PlumX Metrics


2014SZ05      Phys.Scr. 89, 054033 (2014)

A.Szulerecka, A.Dobrowolski, A.Gozdz

Generalized projection operators for intrinsic rotation groups and nuclear collective models

doi: 10.1088/0031-8949/89/5/054033
Citations: PlumX Metrics


2013DO03      Acta Phys.Pol. B44, 333 (2013)

A.Dobrowolski, A.Szulerecka, A.Gozdz

Electric Transitions in Hypothetical Tetrahedral/Octahedral Bands

NUCLEAR STRUCTURE 156Gd; calculated B(E1), B(E2). Comparison with experimental data.

doi: 10.5506/APhysPolB.44.333
Citations: PlumX Metrics


2013DO10      Phys.Scr. T154, 014024 (2013)

A.Dobrowolski, A.Gozdz, A.Szulerecka

Electric transitions within the symmetrized tetrahedral and octahedral states

doi: 10.1088/0031-8949/2013/T154/014024
Citations: PlumX Metrics


2013DO11      Phys.Scr. T154, 014030 (2013)

A.Dobrowolski, K.Pomorski, J.Bartel

Estimates of the light-particle transmission coefficients from hot, deformed and rotating nuclei

NUCLEAR STRUCTURE A=152-240; calculated average transmission coefficient for neutrons, protons and α-particles from deformed and excited nuclei.

doi: 10.1088/0031-8949/2013/T154/014030
Citations: PlumX Metrics


2013UH01      Nucl.Phys. A913, 127 (2013)

H.Uhrenholt, S.Aberg, A.Dobrowolski, Th.Dossing, T.Ichikawa, P.Moller

Combinatorial nuclear level-density model

NUCLEAR STRUCTURE 60Co, 68Zn, 76,78,80,82,84,86Sr, 94Nb, 97,98Mo, 107,109,111,112,113,114,115,117Cd, 127Te, 148Pm, 148,149Sm, 155Eu, 161,162Dy, 166,167Er, 169,170,171,172,173,174,175,177Yb, 194Ir, 237U, 239Pu; calculated level density, angular momentum distribution, parity ratio, pairing gap. 90Zr, 90Nb; calculated J, π level density. A=20-255; calculated level density at neutron separation energy, vibrational enhancement. Combinatorial (microcanonical) model with folded Yukawa, pairing, rotational and vibrational states. Compared with available data.

doi: 10.1016/j.nuclphysa.2013.06.002
Citations: PlumX Metrics


2011DO04      Int.J.Mod.Phys. E20, 500 (2011)

A.Dobrowolski, A.Gozdz, K.Mazurek, J.Dudek

Tetrahedral symmetry in nuclei: New predictions based on the collective model

NUCLEAR STRUCTURE 156Dy; calculated potential energy surfaces, probability density distributions.

doi: 10.1142/S0218301311017910
Citations: PlumX Metrics


2011GO01      Acta Phys.Pol. B42, 459 (2011)

A.Gozdz, A.Szulerecka, A.Dobrowolski, J.Dudek

Nuclear Collective Models and Partial Symmetries

NUCLEAR STRUCTURE 156Gd, 156Dy; calculated quadrupole moments, B(E1), B(E2).


2011GO06      Int.J.Mod.Phys. E20, 199 (2011)

A.Gozdz, A.Szulerecka, A.Dobrowolski, J.Dudek

Symmetries in the intrinsic nuclear frames

doi: 10.1142/S0218301311017521
Citations: PlumX Metrics


2011GO08      Int.J.Mod.Phys. E20, 565 (2011)

A.Gozdz, A.Szulerecka, A.Dobrowolski

The tetrahedral-octahedral bases for the generalized rotor

doi: 10.1142/S0218301311018010
Citations: PlumX Metrics


2011NE05      Int.J.Mod.Phys. E20, 539 (2011)

B.Nerlo-Pomorska, K.Pomorski, A.Dobrowolski

Rotational states in heaviest isotopes

NUCLEAR STRUCTURE 248,252,254,256Fm, 254No; calculated deformation energy, pairing strength, rotational energies, masses. Comparison with experimental data.

doi: 10.1142/S0218301311017971
Citations: PlumX Metrics


2010DO06      Int.J.Mod.Phys. E19, 685 (2010)

A.Dobrowolski, A.Gozdz, J.Dudek

On a selection rule for electric transition in axially-symmetric nuclei

doi: 10.1142/S0218301310015102
Citations: PlumX Metrics


2010DO07      Int.J.Mod.Phys. E19, 699 (2010)

A.Dobrowolski, B.Nerlo-Pomorska, K.Pomorski, J.Bartel

Rotational bands in heavy and superheavy nuclei within the Lublin Strasbourg Drop + Yukawa folded Model

NUCLEAR STRUCTURE 254No; calculated deformation energy, shell correction, moment of inertia, rotational energies.

doi: 10.1142/S0218301310015126
Citations: PlumX Metrics


2010GO04      Int.J.Mod.Phys. E19, 621 (2010)

A.Gozdz, A.Dobrowolski, J.Dudek, K.Mazurek

Modeling the electromagnetic transitions in tetrahedral-symmetric nuclei

NUCLEAR STRUCTURE 156Dy; calculated collective excitations, static quadrupole moment, B(E2).

doi: 10.1142/S0218301310015035
Citations: PlumX Metrics


2010MO08      Int.J.Mod.Phys. E19, 633 (2010)

H.Molique, J.Dudek, D.Curien, A.Gozdz, A.Dobrowolski

Nuclear rotational-band interaction-mechanism revisited

doi: 10.1142/S0218301310015047
Citations: PlumX Metrics


2009DO07      Acta Phys.Pol. B40, 705 (2009)

A.Dobrowolski, B.Nerlo-Pomorska, K.Pomorski, J.Bartel

Fission Barrier Heights of Medium Heavy and Heavy Nuclei


2009DU04      Acta Phys.Pol. B40, 713 (2009)

J.Dudek, K.Mazurek, D.Curien, A.Dobrowolski, A.Gozdz, D.Hartley, A.Maj, L.Riedinger, N.Schunck

Theory of Nuclear Stability Using Point GROUP Symmetries: Outline and Illustrations


2009GO21      Int.J.Mod.Phys. E18, 1028 (2009)

A.Gozdz, M.Miskiewicz, J.Dudek, A.Dobrowolski

Collective Hamiltonians with tetrahedral symmetry: formalism and general features

doi: 10.1142/S0218301309013191
Citations: PlumX Metrics


2008DO07      Int.J.Mod.Phys. E17, 81 (2008)

A.Dobrowolski, H.Goutte, J.-F.Berger

Collective-dynamics effects in fission of 256, 258Fm isotopes

NUCLEAR REACTIONS 256,258Fm(n, F), E not given; calculated fragment mass distribution using Hartree-Fock-Bogoliubov method.

doi: 10.1142/S0218301308009574
Citations: PlumX Metrics


2008NE02      Acta Phys.Pol. B39, 417 (2008)

B.Nerlo-Pomorska, K.Pomorski, J.Bartel, A.Dobrowolski

Nuclear Level Density Parameter


2007BA18      Int.J.Mod.Phys. E16, 459 (2007)

J.Bartel, A.Dobrowolski, K.Pomorski

Saddle-point masses of even-even actinide nuclei

NUCLEAR STRUCTURE 232,234Th, 234,236,238,240U, 236,238,240,242,244,246Pu, 242,244,246,248,250Cm, 250Cf; calculated fission barrier energies, inner and outer saddle point masses. Modified funny-hills shape parameterization.

doi: 10.1142/S0218301307005892
Citations: PlumX Metrics


2007DO03      Phys.Rev. C 75, 024613 (2007)

A.Dobrowolski, K.Pomorski, J.Bartel

Fission barriers in a macroscopic-microscopic model

NUCLEAR STRUCTURE 232,234Th, 236,238U, 236,240Pu, 272Ds, 298Fl; calculated fission barriers. Macroscopic-microscopic model, four-dimensional shape parameterization.

doi: 10.1103/PhysRevC.75.024613
Citations: PlumX Metrics


2007DO06      Int.J.Mod.Phys. E16, 431 (2007)

A.Dobrowolski, H.Goutte, J.-F.Berger

Microscopic determinations of fission barriers (mean-field and beyond)

NUCLEAR STRUCTURE 226Th, 238U; calculated potential energy vs deformation, fission barrier features.

doi: 10.1142/S0218301307005867
Citations: PlumX Metrics


2006DO05      Int.J.Mod.Phys. E15, 432 (2006)

A.Dobrowolski, K.Pomorski, J.Bartel

Importance of mass asymmetry and nonaxiality for the description of fission barriers

NUCLEAR STRUCTURE 232,234Th, 236,240U, 236,246Pu, 248Cm, 250Cf; calculated fission barrier heights, role of mass asymmetry and non-axial deformation.

doi: 10.1142/S0218301306004314
Citations: PlumX Metrics


2006DO27      Phys.Scr. T125, 189 (2006)

A.Dobrowolski, K.Pomorski, J.Bartel

Influence of different proton and neutron deformations on fission barriers

NUCLEAR STRUCTURE 240Pu, 298Fl; calculated total energy vs deformation.

doi: 10.1088/0031-8949/2006/T125/044
Citations: PlumX Metrics


2005DO08      Acta Phys.Pol. B36, 1373 (2005)

A.Dobrowolski, K.Pomorski, J.Bartel

Dependence of fusion barrier heights on the difference of proton and neutron radii

NUCLEAR REACTIONS 208Pb(16O, X), E not given; calculated fusion barrier heights, dependence on neutron and proton radii. Semiclassical extended Thomas-Fermi approach, Skyrme interaction.


2005DO10      Int.J.Mod.Phys. E14, 457 (2005)

A.Dobrowolski, J.Bartel, K.Pomorski

Influence of different proton and neutron deformations on nuclear energies

NUCLEAR STRUCTURE 232,238U, 240Pu, 270Hs, 272Ds; calculated energy vs deformation. Yukawa-folded model, shell corrections.

doi: 10.1142/S0218301305003272
Citations: PlumX Metrics


2004DO01      Int.J.Mod.Phys. E13, 309 (2004)

A.Dobrowolski, K.Pomorski, J.Bartel

Mean-field description of heavy-ion collisions

doi: 10.1142/S0218301304002107
Citations: PlumX Metrics


2003DO20      Nucl.Phys. A729, 713 (2003)

A.Dobrowolski, K.Pomorski, J.Bartel

Mean-field description of fusion barriers with Skyrme's interaction

NUCLEAR REACTIONS 238U(50Ti, X), 232Th(48Ca, X), E not given; calculated fusion barrier distributions. Z=108-114; calculated fusion barrier heights for reactions leading to superheavy isotopes. Extended Thomas-Fermi method, Skyrme interaction.

doi: 10.1016/j.nuclphysa.2003.09.008
Citations: PlumX Metrics


2003DO22      Acta Phys.Pol. B34, 2457 (2003)

A.Dobrowolski, M.Kowal, K.Pomorski

Fusion barriers derived from the Hartree-Fock functional with Skyrme interactions

NUCLEAR REACTIONS 238U(50Ti, X), 208Pb(76Ge, X), E not given; calculated fusion barrier features. Other reactions leading to Z=114 discussed.


2002DO03      Phys.Rev. C65, 041306 (2002)

A.Dobrowolski, K.Pomorski, J.Bartel

Liquid Drop Model with Different Neutron versus Proton Deformations

NUCLEAR STRUCTURE 98Zr, 146Nd, 150,158,166Dy, 208Pb; calculated binding energies vs neutron-proton deformation difference. Liquid drop model.

doi: 10.1103/PhysRevC.65.041306
Citations: PlumX Metrics


Back to query form