NSR Query Results


Output year order : Descending
Format : Normal

NSR database version of April 27, 2024.

Search: Author = B.Nerlo-Pomorska

Found 100 matches.

Back to query form



2023PO07      Phys.Rev. C 107, 054616 (2023)

K.Pomorski, B.Nerlo-Pomorska, C.Schmitt, Z.G.Xiao, Y.J.Chen, L.L.Liu

Fourier-over-spheroid shape parametrization applied to nuclear fission dynamics

NUCLEAR REACTIONS 235U(n, F), E = thermal; calculated fission fragments mass and charge yields, total kinetic energy (TKE) of fission fragments, post-fission neutron multiplicities, fission fragment excitation energy. 3D Langevin code, based on the Fourier-over-spheroid (FoS) shape parametrization, the LSD+Yukawa folded macroscopic-microscopic potential energy landscape, a procedure to account for charge equilibration at scission, and a method to compute the excitation energy available in the primary fragments. Comparison to experimental data.

RADIOACTIVITY 246,248,250,252,254,256,258,260,262Fm(SF); calculated fission fragment mass yields distribution, total kinetic energy (TKE) of fission fragments, post-fission neutron multiplicities. Comparison to experimental data.

NUCLEAR STRUCTURE 236U, 252,254,256,258,260,262Fm; calculated potential energy surfaces. 240Pu; calculated energy at scission as a function of the heavy fragment charge number, Wigner distribution probability of the fission fragment charge number.

doi: 10.1103/PhysRevC.107.054616
Citations: PlumX Metrics


2023PO11      Acta Phys.Pol. B54, 9-A2 (2023)

K.Pomorski, A.Dobrowolski, B.Nerlo-Pomorska, M.Warda, A.Zdeb, J.Bartel, H.Molique, C.Schmitt, Z.G.Xiao, Y.J.Chen, L.L.Liu

Fission Fragment Mass and Kinetic Energy Yields of Fermium Isotopes

NUCLEAR STRUCTURE 246,248,250,252,254,256,258,260,262Fm; analyzed available data; deduced the post-fission neutron multiplicities, potential energy surfaces.

doi: 10.5506/APhysPolB.54.9-A2
Citations: PlumX Metrics


2023WA08      Phys.Rev. C 107, L041601 (2023)

Y.Wang, F.Guan, X.Diao, M.Wan, Y.Qin, Z.Qin, Q.Wu, D.Guo, D.Si, S.Xiao, B.Zhang, Y.Zhang, B.Tian, X.Wei, H.Yang, P.Ma, R.J.Hu, L.Duan, F.Duan, Q.Hu, J.Ma, S.Xu, Z.Bai, Y.Yang, J.Wang, W.Liu, W.Su, X.Wei, C.-W.Ma, X.Li, H.Wang, F.Wang, Y.Zhang, M.Warda, A.Dobrowolski, B.Nerlo-Pomorska, K.Pomorski, L.Ou, Z.Xiao

Observing the ping-pong modality of the isospin degree of freedom in cluster emission from heavy-ion reactions

NUCLEAR REACTIONS 208Pb(86Kr, X), E=25 MeV/nucleon; measured reaction products, A=3 isobars in coincidence with the intermediate mass fragments of A=6-11; deduced velocity spectra of 3H and 3He, yields ratios of 3H/3He correlate reversely to the neutron-to-proton ratio N/Z of the intermediate mass fragments. Comparison with ImQMD transport model. Yield ratio 3H/3He exhibits evident anticorrelation with the N/Z of the latter, suggesting the ping-pong modality of the N/Z of the emitted particles. Anti-correlation shows dependence on the slope of the symmetry energy at saturation density. Compact Spectrometer for Heavy IoN Experiment (CSHINE) at the final focal plane of the Radioactive Ion Beam Line at Lanzhou (RIBLL-I).

doi: 10.1103/PhysRevC.107.L041601
Citations: PlumX Metrics


2022PO03      Eur.Phys.J. A 58, 77 (2022)

K.Pomorski, A.Dobrowolski, B.Nerlo-Pomorska, M.Warda, J.Bartel, Z.Xiao, Y.Chen, L.Liu, J.-L.Tian, X.Diao

On the stability of superheavy nuclei

doi: 10.1140/epja/s10050-022-00737-3
Citations: PlumX Metrics


2021KO43      Chin.Phys.C 45, 124108 (2021)

P.V.Kostryukov, A.Dobrowolski, B.Nerlo-Pomorska, M.Warda, Z.Xia, Y.Chen, L.Liu, J.-L.Tian, K.Pomorski

Potential energy surfaces and fission fragment mass yields of even-even superheavy nuclei

NUCLEAR STRUCTURE 254,256,258,260,262Rf, 258,260,262,264,266Sg, 264,266,268,270,272Hs, 276,278,280,282,284Ds, 278,280,282,284,286Cn, 282,284,286,288,290Fl, 286,288,290,292,294Lv, 290,292,294,296,298Og, 294,296,298,300,302120; calculated potential energy surfaces. The Lublin-Strasbourg Drop (LSD) model.

doi: 10.1088/1674-1137/ac29a3
Citations: PlumX Metrics


2021PO06      Chin.Phys.C 45, 054109 (2021)

K.Pomorski, J.M.Blanco, P.V.Kostryukov, A.Dobrowolski, B.Nerlo-Pomorska, M.Warda, Z.-G.Xiao, Y.-J.Chen

Fission fragment mass yields of Th to Rf even-even nuclei

NUCLEAR STRUCTURE 216,218,220,222,224,226,228,230,232,234,236,238,240Th, 220,222,224,226,228,230,232,234,236,238,240,242,244,246U, 222,224,226,228,230,232,234,236,238,240,242,244,246,248,250Pu, 224,226,228,230,232,234,236,238,240,242,244,246,248,250,252Cm, 238,240,242,244,246,248,250,252,254,256,258,260Cf, 240,242,244,246,248,250,252,254,256,258,260,262Fm, 242,244,246,248,250,252,254,256,258,260,262,264No, 250,252,254,256,258,260,262,264,266,268,270,272,274,276Rf; calculated potential energy surfaces, fission barrier heights, fragment mass yields.

doi: 10.1088/1674-1137/abec69
Citations: PlumX Metrics


2020PO06      Eur.Phys.J. A 56, 107 (2020)

K.Pomorski, B.Nerlo-Pomorska, A.Dobrowolski, J.Bartel, C.M.Petrache

Shape isomers in Pt, Hg and Pb isotopes with N ≤ 126

doi: 10.1140/epja/s10050-020-00115-x
Citations: PlumX Metrics


2020PO09      Phys.Rev. C 101, 064602 (2020)

K.Pomorski, A.Dobrowolski, R.Han, B.Nerlo-Pomorska, M.Warda, Z.Xiao, Y.Chen, L.Liu, J.-L.Tian

Mass yields of fission fragments of Pt to Ra isotopes

RADIOACTIVITY 172,174,176,178,180,182,184,186,188,190,192,194,196,198,200,202Pt, 172,174,176,178,180,182,184,186,188,190,192,194,196,198,200,202Hg, 174,176,178,180,182,184,186,188,190,192,194,196,198,200,202,204Pb, 176,178,180,182,184,186,188,190,192,194,196,198,200,202,204,206Po, 196,198,200,202,204,206,208,210,212,214,216,218,220,222,224,226Rn, 198,200,202,204,206,208,210,212,214,216,218,220,222,224,226,228Ra, 236,238,240,242,244,246Pu(SF); calculated fission fragment mass distributions using collective three-dimensional model with Fourier nuclear shape parametrization and coupling fission, neck and mass asymmetry modes. 184Hg; calculated potential energy surfaces in (q2, q3) and (q3, q4) planes by macroscopic-microscopic model based on the Lublin-Strasbourg drop macroscopic energy and Yukawa-folded single-particle potential. Comparison with experimental fission fragment mass yields for 180,182,184Hg, 194,196Po, 202,204,206,208Rn, and 210,212,214,216,218Ra.

doi: 10.1103/PhysRevC.101.064602
Citations: PlumX Metrics


2019PO10      Acta Phys.Pol. B50, 535 (2019)

K.Pomorski, B.Nerlo-Pomorska, J.Bartel, C.Schmitt

On the Properies of Super-heavy Even-Even Nuclei Around 294Og

NUCLEAR STRUCTURE 288,290,292Lv, 290,292,294Og, 296,298,300120; calculated potential energy surfaces. Four-dimensional Fourier parametrization of nuclear shapes, combined with the macroscopic-microscopic approach of the potential energy based on the Lublin-Strasbourg drop and microscopic shell and pairing corrections.

doi: 10.5506/aphyspolb.50.535
Citations: PlumX Metrics


2018PO05      Phys.Rev. C 97, 034319 (2018)

K.Pomorski, B.Nerlo-Pomorska, J.Bartel, C.Schmitt

Stability of superheavy nuclei

NUCLEAR STRUCTURE 280Ds, 276Cn, 268,270,272Hs, 264,266,268Sg, 258,260,262,264Rf, 254,256,258Fm, 252Cf; calculated deformation energy surfaces in (q2, q3), (q3, q4), (q2, η) and (q4, η) planes. Z=94-126, N-Z=42-72; calculated values of the collective coordinates η, q2, q3 and q4 at equilibrium deformation, ground-state microscopic contribution to the potential energy, fission barrier heights. Comparison to available experimental data. Four-dimensional Fourier parametrization of nuclear shapes, combined with the macroscopic-microscopic approach of the potential energy based on the Lublin-Strasbourg drop and microscopic shell and pairing corrections.

RADIOACTIVITY 230,232,234,236,238,240,242,244,246,248,250,252,254,256,258Pu, 232,234,236,238,240,242,244,246,248,250,252,254,256,258,260,262Cm, 238,240,242,244,246,248,250,252,254,256,258,260,262,264,266Cf, 242,244,246,248,250,252,254,256,258,260,262,264,266,268,270Fm, 246,248,250,252,254,256,258,260,262,264,266,268,270,272,274No, 250,252,254,256,258,260,262,264,266,268,270,272,274,276,278Rf, 254,256,258,260,262,264,266,268,270,272,274,276,278,280,282Sg, 258,260,262,264,266,268,270,272,274,276,278,280,282,284,286Hs, 262,264,266,268,270,272,274,276,278,280,282,284,286,288,290Ds, 266,268,270,272,274,276,278,280,282,284,286,288,290,292,294Cn, 270,272,274,276,278,280,282,284,286,288,290,292,294,296,298Fl, 274,276,278,280,282,284,286,288,290,292,294,296,298,300,302Lv, 278,280,282,284,286,288,290,292,294,296,298,300,302,304,306Og, 282,284,286,288,290,292,294,296,298,300,302,304,306,308,310120, 286,288,290,292,294,296,298,300,302,304,306,308,310,312,314122, 290,292,294,296,298,300,302,304,306,308,310,312,314,316,318124(α); calculated Q(α) and α-decay half-lives using Gamow-type WKB approach, and compared with available experimental data.

doi: 10.1103/PhysRevC.97.034319
Citations: PlumX Metrics


2017NE02      Acta Phys.Pol. B48, 451 (2017)

B.Nerlo-Pomorska, K.Pomorski, J.Bartel, C.Schmitt

Potential Energy Surfaces of Thorium Isotopes in the 4D Fourier Parametrisation

NUCLEAR STRUCTURE 218,220,222,224,226,230Th; calculated potential energy surface, deformation. 210,212,214,216,218,220,222,224,226,230,232,234,236,238Th; calculated gs and superdeformed quadrupole moment. Fourier shape parameterization. Detailed studies in progress. Quadrupole moments compared with available data.

doi: 10.5506/APhysPolB.48.451
Citations: PlumX Metrics


2017NE03      Eur.Phys.J. A 53, 67 (2017)

B.Nerlo-Pomorska, K.Pomorski, J.Bartel, C.Schmitt

On possible shape isomers in the Pt-Ra region of nuclei

NUCLEAR STRUCTURE 176,178,180,182,184,186,188,190,192Pt, 178,180,182,184,186,188,190,192,194Hg, 180,182,184,186,188,190,192,194,196,198,200,202,204,206,208Pb, 194,196,198,200,202,204,206,208,210Po, 196,198,200,202,204,206,208,210,212Rn, 208,210,212,214,216,218,220,222,224,226,228,230,232,234,236Ra; calculated deformation, potential surface, gs energy, shape isomeric minima, electric quadrupole moment using macroscopic-microscopic model based on Lublin-Strasbourg Drop model; deduced possibility of isomers, rapidly converging shape parameterization. Compared with available data.

doi: 10.1140/epja/i2017-12259-8
Citations: PlumX Metrics


2017PO05      Acta Phys.Pol. B48, 541 (2017)

K.Pomorski, J.Bartel, B.Nerlo-Pomorska

On Jacobi and Poincare Shape Transitions in Rotating Nuclei

NUCLEAR STRUCTURE 46Ti, 120Cd; calculated potential energy surface, mass excess, deformation for different angular momenta of rotating nuclei using LSD (Lublin-Strasbourg Drop) model iwith two additional deformation degrees of freedom of higher multipolarity and without microscopic corrections; deduced no sign of Poincare shape transition.

doi: 10.5506/APhysPolB.48.541
Citations: PlumX Metrics


2017PO06      Eur.Phys.J. A 53, 59 (2017)

K.Pomorski, F.A.Ivanyuk, B.Nerlo-Pomorska

Mass distribution of fission fragments within the Born-Oppenheimer approximation

NUCLEAR STRUCTURE 236U; calculated potential energy surface, deformation of fissioning nucleus, neck radius, fission probability using approximate solution of collective Hamiltonian describing the fission process. Compared to data.

NUCLEAR REACTIONS 235U(n, f), E=thermal; calculated fission fragment yields using approximate solution of collective Hamiltonian describing the fission process. Compared to data.

doi: 10.1140/epja/i2017-12250-5
Citations: PlumX Metrics


2017PO08      Phys.Scr. 92, 064006 (2017)

K.Pomorski, B.Nerlo-Pomorska, J.Bartel

Fourier expansion of deformed nuclear shapes expressed as the deviation from a spheroid

NUCLEAR STRUCTURE 238U; analyzed available data; deduced a Fourier decomposition of nuclear shapes to cover a very wide range of nuclear deformations up to the scission point.

doi: 10.1088/1402-4896/aa7002
Citations: PlumX Metrics


2017SC05      Phys.Rev. C 95, 034612 (2017)

C.Schmitt, K.Pomorski, B.Nerlo-Pomorska, J.Bartel

Performance of the Fourier shape parametrization for the fission process

RADIOACTIVITY Z=78-94(SF); 178,180,184,192Hg, 194,196,202,210Po, 228Ra, 218,222,226,228,230,232,234,236Th, 238,240,242,246Pu(SF); calculated potential energy contours and fission paths, fission valleys, and exotic ground and metastable states for 100 even-even nuclei from Pt to Pu. Macroscopic-microscopic approach, employing a four-dimensional (4D) nuclear shape parametrization based on Fourier expansion, and realistic potential-energy prescription.

doi: 10.1103/PhysRevC.95.034612
Citations: PlumX Metrics


2016NE05      Acta Phys.Pol. B47, 943 (2016)

B.Nerlo-Pomorska, K.Pomorski, J.Bartel

On the Possibility to Observe New Shape Isomers in the Po-Th Region

NUCLEAR STRUCTURE 188,192,196,200,204,208,212,216,220Po; calculated deformation-energy landscapes, rotational energies, charge quadrupole moments.

doi: 10.5506/APhysPolB.47.943
Citations: PlumX Metrics


2016PO04      52, 144 (2016)

K.Pomorski, B.Nerlo-Pomorska

Remarks on the nuclear shell-correction method

NUCLEAR STRUCTURE 88Sr; calculated smoothed single-particle level density for neutrons and protons using 3D harmonic oscillator and HFB with Gogny force, shell energy corrections using traditional Strutinsky approach and using smoothing over the particle number. Z=36-42; calculated neutron and proton sp levels, J using HFB with Gogny force.

doi: 10.1140/epja/i2016-16144-8
Citations: PlumX Metrics


2015BA48      Phys.Scr. 90, 114004 (2015)

J.Bartel, K.Pomorski, B.Nerlo-Pomorska, C.Schmitt

Fission properties of Po isotopes in different macroscopic-microscopic models

RADIOACTIVITY 212Po, Po(SF); calculated fission-barrier heights of nuclei in the Po isotopic chain. Yukawa-folded single-particle potential, the Lublin-Strasbourg drop (LSD) model.

doi: 10.1088/0031-8949/90/11/114004
Citations: PlumX Metrics


2015NE15      Phys.Scr. 90, 114010 (2015)

B.Nerlo-Pomorska, K.Pomorski, C.Schmitt, J.Bartel

Potential energy surfaces of Polonium isotopes

NUCLEAR STRUCTURE 188,192,196,200,204,208,212,216,220Po; calculated total deformation energy, potential energy surfaces. Lublin-Strasbourg drop model and the Yukawa-folded single-particle energies.

doi: 10.1088/0031-8949/90/11/114010
Citations: PlumX Metrics


2015PO05      Phys.Rev. C 91, 054605 (2015)

K.Pomorski, B.Nerlo-Pomorska, P.Quentin

b decay of 252Cf in the transition from the exit point to scission

RADIOACTIVITY 252Cf(SF), (β-); calculated branching ratio for rare Fermi β- decay for 252Cf during the spontaneous fission process up to the scission point, nuclear dissipation. Classical dynamical approach.

NUCLEAR STRUCTURE 252Cf; calculated potential energy surface contours, Proton and neutron single-particle levels in the ground state and at the scission point. Macroscopic-microscopic calculations.

doi: 10.1103/PhysRevC.91.054605
Citations: PlumX Metrics


2014BA10      Phys.Scr. 89, 054003 (2014)

J.Bartel, B.Nerlo-Pomorska, K.Pomorski, C.Schmitt

The potential energy surface of 240Pu around scission

NUCLEAR STRUCTURE 240Pu; analyzed potential energy surface within the macroscopic-microscopic approach; deduced effect of strong neutron shell corrections on mass distributions.

doi: 10.1088/0031-8949/89/5/054003
Citations: PlumX Metrics


2014NE03      Phys.Scr. 89, 054004 (2014)

B.Nerlo-Pomorska, K.Pomorski, P.Quentin, J.Bartel

Rotational bands in well deformed heavy nuclei

NUCLEAR STRUCTURE 230,232Th, 234,236,238U, 240,242Pu, 246Cm, 252No; calculated energy levels, J, π, rotational bands. Comparison with experimental data.

doi: 10.1088/0031-8949/89/5/054004
Citations: PlumX Metrics


2014NE17      Phys.Scr. 89, 054031 (2014)

B.Nerlo-Pomorska, K.Pomorski, C.Schmitt, J.Bartel

Low-energy fission within the Lublin-Strasbourg drop and Yukawa folded model

NUCLEAR STRUCTURE 180,198Hg, 234U, 240Pu, 260Fm; calculated fission potential energy surface. 222,228Th; calculated potential energy for symmetric and asymmetric fission paths. Macroscopic (Lublin-Strasbourg drop) - microscopic (BCS with Yukawa force) method.

doi: 10.1088/0031-8949/89/5/054031
Citations: PlumX Metrics


2013NE05      Phys.Scr. T154, 014026 (2013)

B.Nerlo-Pomorska, K.Pomorski, C.Schmitt

Potential energy landscapes of Th isotopes within the Lublin Strasbourg drop + Yukawa-folded model

NUCLEAR STRUCTURE 220,226Th, 208Pb; calculated potential energy surfaces in a four-dimensional deformation space. Lublin Strasbourg drop model, Yukawa-folded potential.

doi: 10.1088/0031-8949/2013/T154/014026
Citations: PlumX Metrics


2013NE06      Phys.Scr. T154, 014028 (2013)

B.Nerlo-Pomorska, K.Pomorski

Masses and rotational energies of the heaviest nuclei

NUCLEAR STRUCTURE Z=88-112; calculated ground-state masses of even-even nuclei, pairing strengths, 226Ra, 248Cm, 278Cn. Lublin Strasbourg drop mass formula for the macroscopic part and the Yukawa-folded single-particle potential.

doi: 10.1088/0031-8949/2013/T154/014028
Citations: PlumX Metrics


2012BA22      Int.J.Mod.Phys. E21, 1250023 (2012)

J.Bartel, K.Pomorski, B.Nerlo-Pomorska

Light-Particle Emission From Fissioning Hot Rotating Nuclei

RADIOACTIVITY 160Yb(n), (p), (α); calculated energy spectra of neutrons, protons and alpha particles, En, In, Ep, Ip, Eα, Iα. 208Pb; deduced nuclear potential.

doi: 10.1142/S0218301312500231
Citations: PlumX Metrics


2012NE04      Int.J.Mod.Phys. E21, 1250050 (2012)

B.Nerlo-Pomorska, K.Pomorski, J.Bartel

Dynamical coupling of rotation with the pairing field in heavy nuclei

NUCLEAR STRUCTURE 230,232,234,236,238,240U, 242,246,248Cm, 248,250,252,254No; calculated level energies, J, π, rotational bands. Macroscopic-macroscopic model with the Lublin-Strasbourg Drop, the Yukawa-folded single-particle potential, comparison with available data.

doi: 10.1142/S0218301312500504
Citations: PlumX Metrics


2011NE05      Int.J.Mod.Phys. E20, 539 (2011)

B.Nerlo-Pomorska, K.Pomorski, A.Dobrowolski

Rotational states in heaviest isotopes

NUCLEAR STRUCTURE 248,252,254,256Fm, 254No; calculated deformation energy, pairing strength, rotational energies, masses. Comparison with experimental data.

doi: 10.1142/S0218301311017971
Citations: PlumX Metrics


2011NE09      Phys.Rev. C 84, 044310 (2011)

B.Nerlo-Pomorska, K.Pomorski, J.Bartel

Rotational states and masses of heavy and superheavy nuclei

NUCLEAR STRUCTURE Z=88-112, N=136-170; calculated nuclear masses, rotational bands, single particle levels, potential energy surfaces, deformation energies. 238Cm; calculated energy and moment of inertia contour plots on c, h plane. 238Cm, 236U; calculated Cross section of the potential energies as function of the mass-asymmetry deformation parameter. 230,232U, 236,244Pu, 242,246,248Cm, 248,250Fm, 252,254No; calculated rotational bands. Lublin-Strasbourg drop (LSD), Strutinsky shell-correction method, Yukawa-folded (YF) mean-field potential, BCS approach for pairing correlations. Comparison with experimental data.

doi: 10.1103/PhysRevC.84.044310
Citations: PlumX Metrics


2011PO05      Int.J.Mod.Phys. E20, 316 (2011)

K.Pomorski, B.Nerlo-Pomorska, J.Bartel

Microscopic energy corrections at the scission configuration

RADIOACTIVITY 236U(SF); calculated shell energy, single-particle potential, fission fragments, microscopic fission barrier.

doi: 10.1142/S0218301311017673
Citations: PlumX Metrics


2010DO07      Int.J.Mod.Phys. E19, 699 (2010)

A.Dobrowolski, B.Nerlo-Pomorska, K.Pomorski, J.Bartel

Rotational bands in heavy and superheavy nuclei within the Lublin Strasbourg Drop + Yukawa folded Model

NUCLEAR STRUCTURE 254No; calculated deformation energy, shell correction, moment of inertia, rotational energies.

doi: 10.1142/S0218301310015126
Citations: PlumX Metrics


2009BA33      Int.J.Mod.Phys. E18, 986 (2009)

J.Bartel, B.Nerlo-Pomorska, K.Pomorski

Jacobi bifurcation in hot rotating nuclei with a LSD + Yukawa folded approach

NUCLEAR STRUCTURE 88Mo; calculated deformation energy surfaces for excited nuclei.

doi: 10.1142/S0218301309013130
Citations: PlumX Metrics


2009DO07      Acta Phys.Pol. B40, 705 (2009)

A.Dobrowolski, B.Nerlo-Pomorska, K.Pomorski, J.Bartel

Fission Barrier Heights of Medium Heavy and Heavy Nuclei


2009NE01      Int.J.Mod.Phys. E18, 123 (2009)

B.Nerlo-Pomorska, K.Pomorski, F.Ivanyuk

Remarks on the nuclear shell-correction method

NUCLEAR STRUCTURE 40Ca, 132Sn; calculated single particle energies, shell corrections.

doi: 10.1142/S0218301309012070
Citations: PlumX Metrics


2009NE08      Int.J.Mod.Phys. E18, 1099 (2009)

B.Nerlo-Pomorska, K.Pomorski

Simple tool to search quasi-magic structures in deformed nuclei

NUCLEAR STRUCTURE 264Hs; calculated level energies, deformation, quasi-magic structures.

doi: 10.1142/S0218301309013324
Citations: PlumX Metrics


2008NE02      Acta Phys.Pol. B39, 417 (2008)

B.Nerlo-Pomorska, K.Pomorski, J.Bartel, A.Dobrowolski

Nuclear Level Density Parameter


2007NE02      Int.J.Mod.Phys. E16, 328 (2007)

B.Nerlo-Pomorska, K.Pomorski

On the average pairing energy in nuclei

NUCLEAR STRUCTURE 232,234Th, 240,246Pu, 236U, 246Cm; calculated pairing energy vs deformation.

doi: 10.1142/S0218301307005764
Citations: PlumX Metrics


2007NE03      Int.J.Mod.Phys. E16, 474 (2007)

B.Nerlo-Pomorska, K.Pomorski, M.Zwierzchowska

Predictions of nuclear masses in different models

ATOMIC MASSES Z=8-112; analyzed masses. Comparison of Lublin-Strasbourg drop and Thomas-Fermi approaches.

doi: 10.1142/S0218301307005909
Citations: PlumX Metrics


2007PO02      Int.J.Mod.Phys. E16, 566 (2007)

K.Pomorski, B.Nerlo-Pomorska, J.Bartel

Nuclear level density parameter with Yukawa folded potential

NUCLEAR STRUCTURE O, Ca, Sr, Sn, Sm, Pb, Th; calculated level density parameters. 40Ca, 50Cr, 100Ru, 150Sm, 200Hg, 250Cf; calculated level density parameters vs deformation. Yukawa folded potential.

doi: 10.1142/S0218301307006009
Citations: PlumX Metrics


2006BA12      Int.J.Mod.Phys. E15, 478 (2006)

J.Bartel, K.Pomorski, B.Nerlo-Pomorska

Nuclear level density at finite temperatures

NUCLEAR STRUCTURE Z=8-82; A=16-224; calculated single-particle level densities vs temperature. Selfconsistent mean-field approach.

doi: 10.1142/S0218301306004399
Citations: PlumX Metrics


2006NE02      Int.J.Mod.Phys. E15, 471 (2006)

B.Nerlo-Pomorska, K.Pomorski

Pairing energy obtained by folding in the nucleon number space

doi: 10.1142/S0218301306004387
Citations: PlumX Metrics


2006NE07      Phys.Rev. C 74, 034327 (2006)

B.Nerlo-Pomorska, K.Pomorski, J.Bartel

Shell energy and the level-density parameter of hot nuclei

NUCLEAR STRUCTURE 40Ca, 50Cr, 100Ru, 150Sm, 200Hg, 250Cf; calculated level density parameters, shell-correction energy vs temperature. Macroscopic-microscopic approach.

doi: 10.1103/PhysRevC.74.034327
Citations: PlumX Metrics


2006NE09      Phys.Scr. T125, 210 (2006)

B.Nerlo-Pomorska

Macroscopic part of nuclear energy in different self-consistent models

doi: 10.1088/0031-8949/2006/T125/055
Citations: PlumX Metrics


2006PO17      Phys.Scr. T125, 21 (2006)

K.Pomorski, B.Nerlo-Pomorska

Shell and pairing energies obtained by folding in N space

NUCLEAR STRUCTURE 208Pb; N=20-200; calculated shell and pairing energies vs deformation. Modified Strutinsky method.

doi: 10.1088/0031-8949/2006/T125/005
Citations: PlumX Metrics


2005DU11      Int.J.Mod.Phys. E14, 383 (2005)

J.Dudek, K.Mazurek, B.Nerlo-Pomorska

Search for the tri-axial hexadecapole-deformation effects in trans-actinide nuclei

NUCLEAR STRUCTURE 238U, 250,252Cf, 256,258Fm; calculated energy vs deformation, tri-axial hexadecapole-deformation effects. Macroscopic-microscopic method, comparison with Hartree-Fock-Bogoliubov approach.

doi: 10.1142/S0218301305003168
Citations: PlumX Metrics


2005MA30      Acta Phys.Pol. B36, 1355 (2005)

K.Mazurek, J.Dudek, B.Nerlo-Pomorska

Non-axial quadrupole and hexadecapole deformations in Cf-Ds nuclear region

NUCLEAR STRUCTURE 254,256,258Fm, 256,258,260No, 258,260,262Rf; calculated deformation energy along fission path. Lublin-Strasbourg drop model.


2005NE08      Acta Phys.Pol. B36, 1377 (2005)

B.Nerlo-Pomorska, J.Sykut, J.Bartel

Temperature dependence of the nuclear shell energies

NUCLEAR STRUCTURE 216Th; calculated shell correction energies. Ca, Sr, Sn, Sm, Pb, Th; calculated level-density parameters.


2005NE09      Int.J.Mod.Phys. E14, 505 (2005)

B.Nerlo-Pomorska, K.Pomorski, J.Sykut, J.Bartel

Temperature dependence of the nuclear energy in relativistic mean-field theory

NUCLEAR STRUCTURE A=16-224; analyzed level densities, temperature-dependent shell corrections.

doi: 10.1142/S021830130500334X
Citations: PlumX Metrics


2004DU04      Int.J.Mod.Phys. E13, 117 (2004)

J.Dudek, K.Mazurek, B.Nerlo-Pomorska

Competition between axial and non-axial octupole deformations in heavy nuclei

NUCLEAR STRUCTURE 224Rn, 226Ra; calculated energy vs deformation. Macroscopic-microscopic method.

doi: 10.1142/S0218301304001825
Citations: PlumX Metrics


2004DU15      Acta Phys.Pol. B35, 1263 (2004)

J.Dudek, K.Mazurek, B.Nerlo-Pomorska

Potential Energy Surfaces Calculated Using Macroscopic-Microscopic Method with the LSD Model

NUCLEAR STRUCTURE 250Cf; calculated potential energy surfaces, fission barrier features. Lubin Strasbourg Drop model.


2004NE01      Int.J.Mod.Phys. E13, 75 (2004)

B.Nerlo-Pomorska, J.Sykut

A new parameter set for the relativistic mean field theory

NUCLEAR STRUCTURE 40,42,44,48Ca, 46,48,50Ti, 52Cr, 58Ni, 90Zr, 116,124Sn, 208Pb; calculated radii. Ca, Sr, Sn, Sm, Pb, Th; calculated radii, masses for even-even isotopes. Relativistic mean-field theory, comparison with data.

doi: 10.1142/S0218301304001758
Citations: PlumX Metrics


2004NE05      Acta Phys.Pol. B35, 1299 (2004)

B.Nerlo-Pomorska, J.Sykut

Macroscopic Properties of Nuclei within Self-Consistent and Liquid Drop Models

NUCLEAR STRUCTURE A=40-220; analyzed binding energies; deduced parameters. Lublin-Strasbourg Drop model.


2004NE14      Int.J.Mod.Phys. E13, 1147 (2004)

B.Nerlo-Pomorska, K.Pomorski, J.Sykut, J.Bartel

Temperature dependence of nuclear structure in the relativistic mean-field theory with a new parameter set

NUCLEAR STRUCTURE A=16-220; calculated masses, binding energies, level density vs temperature. Relativistic mean-field theory.

doi: 10.1142/S0218301304002636
Citations: PlumX Metrics


2003DU24      Acta Phys.Pol. B34, 2247 (2003)

J.Dudek, K.Mazurek, B.Nerlo-Pomorska

Interaction strengths for the Fock-space formulation of the nuclear pairing problem

NUCLEAR STRUCTURE Z=20-100; analyzed data; deduced pairing strength parameters.


2003NE18      Acta Phys.Pol. B34, 1777 (2003)

B.Nerlo-Pomorska, K.Mazurek, M.Kleban

Limits of nuclear stability

NUCLEAR STRUCTURE Ca, Sr, Sn, Sm, Pb, Th; calculated binding energies, shell corrections, related features; deduced stability limits. Comparison of liquid-drop model, HFB approach.


2002KL03      Phys.Rev. C65, 024309 (2002)

M.Kleban, B.Nerlo-Pomorska, J.F.Berger, J.Decharge, M.Girod, S.Hilaire

Global Properties of Spherical Nuclei Obtained from Hartree-Fock-Bogoliubov Calculations with the Gogny Force

NUCLEAR STRUCTURE Z=30-100; A=50-240; calculated single-particle levels, shell corrections, radii. 142Nd, 144Sm, 146Gd, 148Dy, 150Er, 152Yb, 154Hf, 156W, 158Os, 160Pt, 162Hg, 164Pb; calculated neutron and proton shell corrections. Self-consistent HFB calculations, Gogny force.

doi: 10.1103/PhysRevC.65.024309
Citations: PlumX Metrics


2002KL04      Acta Phys.Pol. B33, 383 (2002)

M.Kleban, B.Nerlo-Pomorska, K.Pomorski, J.F.Berger, J.Decharge

The Ground State Properties of Spherical Nuclei Calculated by Hartree-Fock-Bogoliubov Procedure with the Gogny D1S Force

NUCLEAR STRUCTURE A=40-220; calculated binding energies, neutron and charge radii. HFB method, Gogny force.


2002NE17      Phys.Rev. C 66, 051302 (2002)

B.Nerlo-Pomorska, K.Pomorski, J.Bartel, K.Dietrich

Nuclear level densities within the relativistic mean-field theory

NUCLEAR STRUCTURE A=30-210; calculated level density parameters. 118Sn; calculated mean-field energy vs temperature. Relativistic mean-field approach.

doi: 10.1103/PhysRevC.66.051302
Citations: PlumX Metrics


2002NE21      Phys.Rev. C 66, 064305 (2002)

B.Nerlo-Pomorska, K.Mazurek

Macroscopic properties of nuclei according to relativistic mean field theory

NUCLEAR STRUCTURE 40,42,44,48Ca, 46,48,50Ti, 52Cr, 58,64Ni, 90Zr, 118,124Sn, 208Pb; calculated neutron radii. Z=20-90; calculated binding energies, radii. Relativistic mean field, self-consistent approach.

doi: 10.1103/PhysRevC.66.064305
Citations: PlumX Metrics


2001KL06      Acta Phys.Pol. B32, 1119 (2001)

M.Kleban, B.Nerlo-Pomorska, K.Pomorski, J.F.Berger, J.Decharge

Shell Corrections of Spherical Nuclei Calculated by Hartree-Fock Procedure with the Gogny Force

NUCLEAR STRUCTURE Ca, Sr, Sn, Sm; calculated Gogny shell corrections, radii.


2001LO24      Acta Phys.Pol. B32, 2981 (2001)

Z.Lojewski, B.Nerlo-Pomorska, J.Dudek

Microscopic Calculation of the Nucleonic Levels and Mean Square Radii of Atomic Nuclei with the New Woods-Saxon Potential Parameters

NUCLEAR STRUCTURE 40,48Ca, 56Ni, 90Zr, 132Sn, 208Pb; calculated single-particle level energies. Z=36-88; calculated radii. Woods-Saxon potential, new parameters.


2001MA23      Acta Phys.Pol. B32, 783 (2001)

K.Mazurek, B.Nerlo-Pomorska

Nilsson Single Particle Potential Parameters Reproducing the Ground State and K-Isomers Radii


2001NE05      Acta Phys.Pol. B32, 925 (2001)

B.Nerlo-Pomorska, K.Pomorski, J.F.Berger

The Neutron and Proton Density Distributions within the HFB Calculation with the Gogny Force

NUCLEAR STRUCTURE 232Th; calculated neutron, proton densities, deformations. Hartree-Fock-Bogoliubov calculations.


2000NE05      Eur.Phys.J. A 8, 19 (2000)

B.Nerlo-Pomorska, K.Pomorski, J.F.Berger, J.Decharge

The Neutron Halo in Heavy Nuclei Calculated with the Gogny Force

NUCLEAR STRUCTURE 48Ca, 58Ni, 96Zr, 96,104Ru, 100Mo, 106,116Cd, 112,124Sn, 128,130Te, 144,154Sm, 148Nd, 160Gd, 176Yb, 232Th, 238U; calculated binding energies, one- and two-neutron separation energies, deformation, halo features, density distributions. Hartree-Fock-Bogoliubov method, Gogny force. Comparisons with data.

doi: 10.1007/s100530050004
Citations: PlumX Metrics


2000PO23      Nucl.Phys. A679, 25 (2000)

K.Pomorski, B.Nerlo-Pomorska, A.Surowiec, M.Kowal, J.Bartel, K.Dietrich, J.Richert, C.Schmitt, B.Benoit, E.de Goes Brennand, L.Donadille, C.Badimon

Light-Particle Emission from the Fissioning Nuclei 126Ba, 188Pt and 266, 272, 278110: Theoretical predictions and experimental results

NUCLEAR REACTIONS 98Mo(28Si, X), E=166, 187, 204 MeV; 107Ag(19F, X), E=128, 148 MeV; 154Sm(34S, X), E=160, 203 MeV; 172Yb(16O, X), E=138 MeV; 208Pb(58Ni, X), (64Ni, X), 232Th(40Ca, X), 238U(40Ar, X), E=66-186 MeV; calculated fusion, fission σ(L), prefission particle multiplicities; deduced entrance channel effects. Comparisons with data.

doi: 10.1016/S0375-9474(00)00327-4
Citations: PlumX Metrics


1998WA17      Nucl.Phys. A635, 484 (1998)

M.Warda, B.Nerlo-Pomorska, K.Pomorski

Isospin Dependence of Proton and Neutron Radii within Relativistic Mean Field Theory

NUCLEAR STRUCTURE A=40-208; analyzed neutron, proton radii of beta-stable even-even nuclei; deduced phenomenological formula. Several isotope, isotone chains also discussed. Relativistic mean-field theory.

doi: 10.1016/S0375-9474(98)00188-2
Citations: PlumX Metrics


1997PO10      Acta Phys.Pol. B28, 413 (1997)

K.Pomorski, B.Nerlo-Pomorska

Light Particles Emission from Hot, Rotating, Compound Nuclei

NUCLEAR STRUCTURE 150,160Yb, 144,154Gd; calculated neutron, proton, alpha emission widths, prescission multiplicities; deduced deformation dependence. Hot, rotating nuclei.


1997PO13      Nucl.Phys. A624, 349 (1997)

K.Pomorski, P.Ring, G.A.Lalazissis, A.Baran, Z.Lojewski, B.Nerlo-Pomorska, M.Warda

Ground State Properties of the β Stable Nuclei in Various Mean Field Theories

NUCLEAR STRUCTURE A=16-256; calculated even-even stable nucleus proton, neutron separation energies, charge radii, other ground state properties. Several models compared. Comparisons with data.

doi: 10.1016/S0375-9474(97)00367-9
Citations: PlumX Metrics


1996NE03      Acta Phys.Pol. B27, 537 (1996)

B.Nerlo-Pomorska, K.Pomorski, J.Puszyk

The Isotopic Shifts of the Mean Square Radii of Odd Nuclei

NUCLEAR STRUCTURE N=36-74; N=46-80; N=50-80; calculated charge mean square vs neutron number for Rb, Ag, Sn isotopes. BCS theory, Nilsson single particle potential.


1995BA45      J.Phys.(London) G21, 657 (1995)

A.Baran, J.L.Egido, B.Nerlo-Pomorska, K.Pomorski, P.Ring, L.M.Robledo

Mean-Field Calculations of Proton and Neutron Distributions in Sr, Xe and Ba Isotopes

NUCLEAR STRUCTURE 78,80,82,84,86,88,90,92,94,96,98,100,102Sr, 114,116,118,120,122,124,126,128,130,132,134,136,138,140,142,144,146Xe, 120,122,124,126,130,132,134,136,138,140,142,144,146,148Ba; calculated rms radii, n-, p- radii, quadrupole deformations differences, electric quadrupole moments. Mean field approach.

doi: 10.1088/0954-3899/21/5/010
Citations: PlumX Metrics


1995LO01      Phys.Rev. C51, 601 (1995)

Z.Lojewski, B.Nerlo-Pomorska, K.Pomorski, J.Dudek

Mean Square Radii of Nuclei Calculated with the Woods-Saxon Potential

NUCLEAR STRUCTURE Z=46-60; Z=60-70; calculated mean square charge radii. Woods-Saxon potential.

doi: 10.1103/PhysRevC.51.601
Citations: PlumX Metrics


1995NE12      At.Data Nucl.Data Tables 60, 287 (1995)

B.Nerlo-Pomorska, B.Mach

Nuclear Charge Radii and Electric Quadrupole Moments of Even-Even Isotopes

NUCLEAR STRUCTURE Z=20-98; calculated isotope shifts, charge mean-square radii, electric quadrupole moments. Dynamical microscopic model, even-even nuclei.

doi: 10.1006/adnd.1995.1008
Citations: PlumX Metrics


1994LO12      Acta Phys.Pol. B25, 1147 (1994)

Z.Lojewski, B.Nerlo-Pomorska, K.Pomorski

Influence of the Quadrupole Pairing Interaction on the Mean-Square Radii of Nuclei

NUCLEAR STRUCTURE 76,78,80,82,84,86,88,90,92,94,96,98,100,102,104,106,108,110,112Sr; calculated equilibrium deformations, rms charge radii isotope shifts; deduced quadrupole pairing forces role. Microscopic static calculations, Ba, Xe, Nd, Pt isotopes studied.


1994NE06      Z.Phys. A348, 169 (1994)

B.Nerlo-Pomorska, K.Pomorski

Simple Formula for Nuclear Charge Radius

NUCLEAR STRUCTURE A ≤ 250; analyzed mean square radii, isotope shifts data, even-even nuclei. Mass, neutron excess dependent charge radius formula.

doi: 10.1007/BF01291913
Citations: PlumX Metrics


1994NE09      Acta Phys.Pol. B25, 725 (1994)

B.Nerlo-Pomorska, K.Pomorski

Nuclear Radius

NUCLEAR STRUCTURE N=36-154; calculated even-even Sr, Ce, actinide, other isotopes rms charge radii. Isotope shifts data comparison.


1993NE02      Z.Phys. A344, 359 (1993)

B.Nerlo-Pomorska, K.Pomorski

Isospin Dependence of Nuclear Radius

NUCLEAR STRUCTURE Z=38-78; N=36-92; N=68-124; calculated mean square radii; deduced isotopic dependence.

doi: 10.1007/BF01283190
Citations: PlumX Metrics


1993NE03      Acta Phys.Pol. B24, 441 (1993)

B.Nerlo-Pomorska, K.Pomorski, B.Mach

The Mean Square Radii and Quadrupole Moments of Even-Even Isotopes with 38 ≤ Z ≤ 74, N ≤ 74

NUCLEAR STRUCTURE Z=38-74; Z ≤ N ≤ 74; calculated deformation energies, mean square radii, quadrupole moments. Generator coordinate method, Sr-W nuclei.


1993NE06      Nucl.Phys. A562, 180 (1993)

B.Nerlo-Pomorska, K.Pomorski, B.S.Mach

Mean Square Radii and Quadrupole Moments of Even-Even Isotopes with 38 ≤ Z ≤ 60, N ≤ 74

NUCLEAR STRUCTURE Z=38-60; N ≤ 74; calculated rms radii, quadrupole moments, deformation energies. Microscopic model, even-even Sr-Nd isotopes.

doi: 10.1016/0375-9474(93)90194-3
Citations: PlumX Metrics


1988RO02      Phys.Lett. 201B, 409 (1988)

L.M.Robledo, J.L.Egido, B.Nerlo-Pomorska, K.Pomorski

A Quantum Parity-Conserving Study on Octupole Deformation in the Light-Actinide Region

NUCLEAR STRUCTURE 222Ra; calculated mass parameters, B(λ), moments of inertia. Hartree-Fock plus BCS.

doi: 10.1016/0370-2693(88)90592-8
Citations: PlumX Metrics


1987BO12      Acta Phys.Pol. B18, 47 (1987)

K.Boning, Z.Patyk, A.Sobiczewski, B.Nerlo-Pomorska, K.Pomorski

Role of a Consistency Condition in Macroscopic-Microscopic Calculations of the Collective Potential Energy

NUCLEAR STRUCTURE 224Ra; calculated oscillator energies, density, potential deformation difference, ratio, microscopic, macroscopic multipole moments ratio, scaled, nonscaled energies.


1987NE03      Nucl.Phys. A462, 252 (1987)

B.Nerlo-Pomorska, K.Pomorski, M.Brack, E.Werner

Multipole Moments of Rare-Earth Nuclei in the Generator Coordinate Method

NUCLEAR STRUCTURE 166Er; calculated potential energy surface, charge monopole, electric quadrupole, hexadecapole moments, overlap width mass parameters; 148,150,152,154,156,158,160,162,164,166Nd, 150,152,154,156,158,160,162,164,166,168Sm, 152,154,156,158,160,162,164,166,168,170Gd, 160,162,164,166,168,170,172,174,176,178Hf, 158,160,162,164,166,168,170,172,174,176Yb, 156,158,160,162,164,166,168,170,172,174Er, 154,156,158,160,162,164,168,170,172Dy; calculated charge rms radii, hexadecapole electric moments. Generator coordinate method, gaussian overlap approximation.

doi: 10.1016/0375-9474(87)90547-1
Citations: PlumX Metrics


1987NE07      Z.Phys. A328, 11 (1987)

B.Nerlo-Pomorska

Deformation Energies of Rare-Earth Nuclei in Generator Coordinate Method

NUCLEAR STRUCTURE 144,146,148,150,152,154,156,158,160,162,164Ce, 144,146,148,152,154,156,158,160,162,164,166Nd, 148,150,152,154,156,158,160,162,164,166,168Sm, 150,152,154,156,158,160,162,164,166,168Gd, 152,154,156,158,160,162,164,166,168,170,172Dy, 154,156,158,160,162,164,166,168,170,172,174,176Er, 156,158,160,162,164,166,168,170,172,174,176Yb, 158,160,162,164,166,168,170,172,174,176,178Hf; calculated deformation. Mean field Nilsson hamiltonian.


1985BO43      Phys.Lett. 161B, 231 (1985)

K.Boning, A.Sobiczewski, B.Nerlo-Pomorska, K.Pomorski

Coupled Octupole and Quadrupole Vibrations of Nuclei around Radium

NUCLEAR STRUCTURE 226Th; calculated levels, potential energy vs quadrupole, octupole deformations, B(λ); deduced octupole instability.

doi: 10.1016/0370-2693(85)90751-8
Citations: PlumX Metrics


1983NE02      Z.Phys. A309, 341 (1983)

B.Nerlo-Pomorska, K.Pomorski

The Dynamical Effects in the Ground State of Nuclei

NUCLEAR STRUCTURE 228,230,232,234,236,238,240,242,244U, 150Nd; calculated potential energy surfaces. 150Nd, 152,154Sm; calculated quadrupole, hexadecapole moments. Dynamical effects, shell correction, collective model.

doi: 10.1007/BF01413837
Citations: PlumX Metrics


1983RO14      Nucl.Phys. A405, 252 (1983)

P.Rozmej, B.Nerlo-Pomorska, K.Pomorski

Equilibrium Deformations for the Ra-Th Region of Nuclei

NUCLEAR STRUCTURE 220,222,224Rn, 220,222,224Ra, 222,224,236Th, 224,236,238U, 226,240Pu; calculated potential equilibrium deformation. 220,222,224,226,228,230,232Rn, 220,222,224,226,228,230,232Ra, 222,224,226,228,230,232,234,236Th, 224,226,228,230,232,234,236,238U, 226,228,230,232,234,236,240Pu; calculated deformation energies, electric, static quadrupole, hexadecapole moments. Density-dependent shell correction method.

doi: 10.1016/0375-9474(83)90571-7
Citations: PlumX Metrics


1981GY03      Phys.Lett. 105B, 95 (1981)

A.Gyurkovich, A.Sobiczewski, B.Nerlo-Pomorska, K.Pomorski

On the Stable Octupole Deformation of Nuclei

NUCLEAR STRUCTURE 218,220,222Rn, 220,222,224Ra, 224,226,228Th, 228,230,232U, 234,236,238Pu; calculated potential energy; deduced quadrupole, octupole equilibrium deformations. Macroscopic-Microscopic method.

doi: 10.1016/0370-2693(81)90997-7
Citations: PlumX Metrics


1979NE08      Z.Phys. A293, 9 (1979)

B.Nerlo-Pomorska

Microscopic Quadrupole and Hexadecapole Moments of Rare Earth Nuclei

NUCLEAR STRUCTURE 168,170,172,174,176,178,180,182,184Yb, 168,170,172,174,176,178,180,182,184,186Hf, 166,168,170,172,174,176,178,180,182,184,186,188,190W, 170,172,174,176,178,180,182,184,186,188,190,192,194Os, 176,178,180,182,184,186,188,190,192,194,196Pt, 180,182,184,186,188,190Hg; calculated multipole moments, stiffness parameters, deformation energies. Microscopic model, self-consistency condition.

doi: 10.1007/BF01414779
Citations: PlumX Metrics


1978IG01      Phys.Lett. 76B, 543 (1978)

A.V.Ignatiuk, I.N.Mikhailov, R.G.Nazmitdinov, B.Nerlo-Pomorska, E.Pomorski

Equilibrium Properties of Fast-Rotating Heated Nuclei

NUCLEAR STRUCTURE 128Ba, 166Er, 208Pb; calculated equilibrium deformation in excited, heated rotating nuclei.

doi: 10.1016/0370-2693(78)90849-3
Citations: PlumX Metrics


1978JA18      Phys.Lett. 79B, 347 (1978)

D.Janssen, I.N.Mikhailov, R.G.Nazmitdinov, B.Nerlo-Pomorska, K.Pomorski, R.K.Safarov

Calculations of Low-Lying Collective Excitation Energies in 168Yb at High Angular Momenta

NUCLEAR STRUCTURE 168Yb; calculated energies of low-lying collective states using microscopic model; deduced relationship of lowest I-odd states to γ-vibration states, to one-phonon precessional excitation for large I.

doi: 10.1016/0370-2693(78)90379-9
Citations: PlumX Metrics


1978NE05      Z.Phys. A287, 337 (1978)

B.Nerlo-Pomorska, J.Ludziejewski

The Deformation of the Ground and Excited States in the Ag and Sn Nuclei

NUCLEAR STRUCTURE 102,104,106Cd, 110,112,114,116,118,120Sn, 100,102Pd, 101,103,105Ag; calculated potential energy.

doi: 10.1007/BF01481714
Citations: PlumX Metrics


1978NE13      Nukleonika 23, 119 (1978)

B.Nerlo-Pomorska

Effect of a Simple Consistency Condition on the Multipole Moments of Actinides

NUCLEAR MOMENTS 230,232,234,236,238,240U, 234,236,238,240,242,244,246Pu, 240,242,244,246,248,252Cm, 250,252,254Cf; calculated static electric quadrupole, hexadecapole moments. Strutinsky shell-correction method, macroscopic, microscopic density distribution equality condition.


1977NE15      Nukleonika 22, 289 (1977)

B.Nerlo-Pomorska, K.Pomorski

Effect of a Simple Consistency Condition in the Fission Barrier Calculations

NUCLEAR STRUCTURE 240Pu; calculated density parameters, liquid drop, total energies, shell, pairing correction energies; deduced effect on fission barriers. Macroscopic, microscopic method, self-consistency condition.


1977PO12      Z.Phys. A283, 383 (1977)

K.Pomorski, B.Nerlo-Pomorska

High Spin Behavior of Nuclei with Proton Number 40-60

NUCLEAR STRUCTURE 114,116,118,120,122,134Te, 126Ba, 116,118,120,122,124,126Xe, 90Zr, 94Mo, 100Ru, 108Cd, 112,116Sn, 124,126,130Ce, 128,134,140Nd; calculated potential energy surfaces.

doi: 10.1007/BF01409519
Citations: PlumX Metrics


1977RO30      Nucl.Phys. A292, 66 (1977)

S.G.Rohozinski, J.Dobaczewski, B.Nerlo-Pomorska, K.Pomorski, J.Srebrny

Microscopic Dynamic Calculations of Collective States in Xenon and Barium Isotopes

NUCLEAR STRUCTURE 118,120,122,124,126,128,130Xe, 122,124,126,128,130,132,134Ba; calculated levels, shape parameters, μ, quadrupole moment.

doi: 10.1016/0375-9474(77)90358-X
Citations: PlumX Metrics


1977RO31      Nukleonika 22, 293 (1977)

S.G.Rohozinski, J.Dobaczewski, J.Srebrny, B.Nerlo-Pomorska, K.Pomorski

Solution of the Schrodinger Equation with the Bohr Hamiltonian for the Even-Even Barium and Xenon Nuclei

NUCLEAR STRUCTURE 122Xe; calculated energy levels, potential energy surfaces, B(E2). Schrodinger equation, generalized Bohr Hamiltonian.


1976AN10      Nucl.Phys. A268, 205 (1976)

G.Andersson, S.E.Larsson, G.Leander, P.Moller, S.G.Nilsson, I.Ragnarsson, S.Aberg, R.Bengtsson, J.Dudek, B.Nerlo-Pomorska, K.Pomorski, Z.Szymanski

Nuclear Shell Structure at Very High Angular Momentum

NUCLEAR STRUCTURE 24Mg, 114,116,118Te, 122,124,126Xe, 122,124,126,128,130,138Ba, 150Gd, 150,154Sm, 158,160,164,166,168Yb, 178W, 182,178,186,190Os, 204Pb, 160Er, 298Fl; calculated potential energy surfaces, shell structure.

doi: 10.1016/0375-9474(76)90461-9
Citations: PlumX Metrics


1976NE02      Nucl.Phys. A259, 481 (1976)

B.Nerlo-Pomorska

Static Electric Quadrupole and Hexadecapole Moments of Nuclei

NUCLEAR STRUCTURE A=148-244; calculated quadrupole moment.

doi: 10.1016/0375-9474(76)90083-X
Citations: PlumX Metrics


1974RA24      Nucl.Phys. A233, 329 (1974)

I.Ragnarsson, A.Sobiczewski, R.K.Sheline, S.E.Larsson, B.Nerlo-Pomorska

Comparison of Potential-Energy Surfaces and Moments of Inertia with Experimental Spectroscopic Trends for Non-Spherical Z = 50-82 Nuclei

NUCLEAR STRUCTURE Z=50-82; calculated ground state potential energy surfaces.

doi: 10.1016/0375-9474(74)90460-6
Citations: PlumX Metrics


1973PO06      Nucl.Phys. A205, 433 (1973)

K.Pomorski, B.Nerlo-Pomorska, I.Ragnarsson, R.K.Sheline, A.Sobiczewski

Ground State Moments of Inertia of Deformed Nuclei Around Barium

NUCLEAR STRUCTURE A=116-144; calculated deformation energies, moments of inertia using cranking model.

doi: 10.1016/0375-9474(73)90698-2
Citations: PlumX Metrics


Back to query form