NSR Query Results


Output year order : Descending
Format : Normal

NSR database version of April 26, 2024.

Search: Author = M.Kowal

Found 51 matches.

Back to query form



2023JA12      Phys.Rev. C 108, 064309 (2023)

P.Jachimowicz, M.Kowal, J.Skalski

Candidates for three-quasiparticle K isomers in odd-even Md-Rg nuclei

doi: 10.1103/PhysRevC.108.064309
Citations: PlumX Metrics


2022CA11      Phys.Rev. C 105, L051601 (2022)

T.Cap, M.Kowal, K.Siwek-Wilczynska

Diffusion as a possible mechanism controlling the production of superheavy nuclei in cold fusion reactions

NUCLEAR REACTIONS 208Pb(48Ca, X), E(cm)=160-225 MeV; 208Pb(50Ti, X), E(cm)=180-245 MeV; 208Pb(54Cr, X), E(cm)=190-265; calculated fusion σ(E), averaged fusion probability. Discussed role of the difference in values of the rotational energies in the fusion saddle point and contact (sticking) configuration of the projectile-target system. Fusion-by-diffusion model (FbD). Injection point systematics obtained for the set of 1n cold fusion reactions on 207Pb, 208Pb, 209Bi targets. Comparison to experimental data.

doi: 10.1103/PhysRevC.105.L051601
Citations: PlumX Metrics


2022CA26      Eur.Phys.J. A 58, 231 (2022)

T.Cap, M.Kowal, K.Siwek-Wilczynska

The Fusion-by-Diffusion model as a tool to calculate cross sections for the production of superheavy nuclei

NUCLEAR REACTIONS 208Pb, 238U, 248Cm(48Ca, X), 208Pb(50Ti, X), E(cm)<230 MeV; analyzed available data; deduced the injection point systematics obtained for the set of cold and hot fusion reactions, the internal fusion barriers, averaged survival and fusion probabilities, fusion σ within the Fusion-by-Diffusion (FBD) model using the new nuclear data tables by Jachimowicz et al. (At Data Nucl Data Tables 138, 101393, 2021).

doi: 10.1140/epja/s10050-022-00891-8
Citations: PlumX Metrics


2022HO12      Phys.Rev. C 106, 014614 (2022)

J.Hong, G.G.Adamian, N.V.Antonenko, M.Kowal, P.Jachimowicz

Isthmus connecting mainland and island of stability of superheavy nuclei

NUCLEAR REACTIONS 245,248Cm, 242,244Pu, 238U, 232Th, 226Ra(48Ca, n), (48Ca, 2n), (48Ca, 3n), (48Ca, 4n), (48Ca, 5n), E*=10-70 MeV; calculated σ(E), excitation functions. Comparison to available experimental data.

doi: 10.1103/PhysRevC.106.014614
Citations: PlumX Metrics


2022HO13      Eur.Phys.J. A 58, 180 (2022)

J.Hong, G.G.Adamian, N.V.Antonenko, M.Kowal, P.Jachimowicz

Hot and cold fusion reactions leading to the same superheavy evaporation residue

NUCLEAR REACTIONS 233,235U(48Ca, X)277Cn, E not given; calculated σ; deduced the possibility of filling the gap between the isotopes of superheavy nuclei with Z=112 produced in cold and hot fusion reactions. Comparison with available data.

doi: 10.1140/epja/s10050-022-00826-3
Citations: PlumX Metrics


2022RA06      Phys.Rev. C 105, 044328 (2022)

A.Rahmatinejad, T.M.Shneidman, G.G.Adamian, N.V.Antonenko, P.Jachimowicz, M.Kowal

Energy dependent ratios of level-density parameters in superheavy nuclei

NUCLEAR STRUCTURE 282,283,284,285,286,287,288,289,290,291,292,293,294,295Mc, 283,284,285,286,287,288,289,290,291,292,293,294,295,296Lv, 279,280,281,282,283,284,285,286,287,288,289,290,291Nh, 291,292,293,294,295,296,297,298Ts, 291,292,293,294,295,296,297,298,299Og, 292Fl, 295,296,297,298,299,300119, 295,296,297,298,299,300,301,302120; calculated intrinsic nuclear level densities, energy-dependent level-density parameters, energy-dependent ratios of level-density parameters corresponding to the nuclei at the fission saddle point and to proton and α-particle emission residues at their ground state to those obtained for the daughter nuclei after neutron emission. Thermodynamic superfluid formalism using the single-particle energies obtained from the diagonalization of the deformed Woods-Saxon potential.

doi: 10.1103/PhysRevC.105.044328
Citations: PlumX Metrics


2021GO26      Eur.Phys.J. A 57, 321 (2021)

T.Goigoux, Ch.Theisen, B.Sulignano, M.Airiau, K.Auranen, H.Badran, R.Briselet, T.Calverley, D.Cox, F.Dechery, F.Defranchi Bisso, A.Drouart, Z.Favier, B.Gall, T.Grahn, P.T.Greenlees, K.Hauschild, A.Herzan, R.-D.Herzberg, U.Jakobsson, R.Julin, S.Juutinen, J.Konki, M.Leino, A.Lightfoot, A.Lopez-Martens, A.Mistry, P.Nieminen, J.Pakarinen, P.Papadakis, J.Partanen, P.Peura, P.Rahkila, E.Rey-Herme, J.Rubert, P.Ruotsalainen, M.Sandzelius, J.Saren, C.Scholey, J.Sorri, S.Stolze, J.Uusitalo, M.Vandebrouck, A.Ward, M.Zielinska, P.Jachimowicz, M.Kowal, J.Skalski

First observation of high-K isomeric states in 249Md and 251Md

RADIOACTIVITY 249,251Md(IT) [from 203Tl(48Ca, 2n)249Md, E=219 MeV; 205Tl(48Ca, 2n)251Md, E=218 MeV]; measured decay products, Eα, Iα, Eβ, Iβ, Eγ, Iγ, β-α-coin.; deduced level energies, J, π, 3 quasi-particle high-K states, isomeric states T1/2. Comparison theoretical calculations. SAGE spectrometer, the K130 cyclotron at the Accelerator Laboratory of the University of Jyvaskyla.

doi: 10.1140/epja/s10050-021-00631-4
Citations: PlumX Metrics

Data from this article have been entered in the XUNDL database. For more information, click here.


2021HO08      Phys.Rev. C 103, L041601 (2021)

J.Hong, G.G.Adamian, N.V.Antonenko, P.Jachimowicz, M.Kowal

Rate of decline of the production cross section of superheavy nuclei with Z = 114-117 at high excitation energies

NUCLEAR REACTIONS 242,244Pu(48Ca, n), (48Ca, 2n), (48Ca, 3n), (48Ca, 4n), E*=10-65 MeV; 242,244Pu, 243Am, 248Cm, 249Bk(48Ca, 5n), (48Ca, 6n), (48Ca, 7n), (48Ca, 8n), (48Ca, 9n), E*=40-120 MeV; calculated σ(E) using microscopic-macroscopic (MM) method, and compared with available experimental data for superheavy nuclei (SHN).

NUCLEAR STRUCTURE 290Ts; calculated potential energy surface (PES) in (β20, β22) plane. 286,287,288,289,290,291,292,293,294,295,296,297,298Fl, 287,288,289,290,291,292,293,294,295,296,297,298,299Mc, 288,289,290,291,292,293,294,295,296,297,298,299,300Lv, 289,290,291,292,293,294,295,296,297,298,299,300,301Ts; calculated fission barriers and S(n) using microscopic-macroscopic (MM) method, and standard BCS method with blocking for nuclei with odd numbers of protons, neutrons, or both.

doi: 10.1103/PhysRevC.103.L041601
Citations: PlumX Metrics


2021JA01      At.Data Nucl.Data Tables 138, 101393 (2021)

P.Jachimowicz, M.Kowal, J.Skalski

Properties of heaviest nuclei with 98 ≤ Z ≤ 126 and 134 ≤ N ≤ 192

NUCLEAR STRUCTURE Z=96-126; calculated ground-state and saddle-point shapes and masses, ground-state mass excess, nucleon separation- and energies, total, macroscopic (normalized to the macroscopic energy at the spherical shape) and shell corrections energies, and deformations within the microscopic-macroscopic method with the deformed Woods-Saxon single-particle potential and the Yukawa-plus-exponential macroscopic energy taken as the smooth part.

doi: 10.1016/j.adt.2020.101393
Citations: PlumX Metrics


2021RA04      Phys.Rev. C 103, 034309 (2021)

A.Rahmatinejad, A.N.Bezbakh, T.M.Shneidman, G.Adamian, N.V.Antonenko, P.Jachimowicz, M.Kowal

Level-density parameters in superheavy nuclei

NUCLEAR STRUCTURE 296Lv; calculated potential energy contour in the (β20, β22) plane, proton and neutron single-particle spectra along the fission paths using the Woods-Saxon potential diagonalization. 292Fl, 296Lv, 300120; calculated energy dependencies of the ground-state and saddle-point level-density parameters. A=277-302; calculated mass number dependence of the asymptotic ground state and saddle-point level-density parameters. 282,283,284,285,286,287,288,289,290,291,292Fl; calculated ratios of the level density parameters at the saddle point and ground state. 236U, 240Pu; calculated dependence of fission probability on excitation energy for the fissioning nuclei. 293,294,295,296,297Ts, 295,296,297,298,299,300,301,302120; calculated ratios of the level density parameter of the mother nucleus at the saddle point to that of the daughter nucleus after neutron separation at the ground state. 278Cn, 294Og, 296,298120; calculated dependence of neutron emission probability on excitation energy. Level density parameter calculated by fitting the obtained results with the standard Fermi gas expression.

doi: 10.1103/PhysRevC.103.034309
Citations: PlumX Metrics


2020HO13      Phys.Lett. B 809, 135760 (2020)

J.Hong, G.G.Adamian, N.V.Antonenko, P.Jachimowicz, M.Kowal

Possibilities of direct production of superheavy nuclei with Z=112-118 in different evaporation channels

NUCLEAR REACTIONS 242,244Pu, 243Am, 245,248Cm, 249Bk, 249,252Cf(48Ca, X), E not given; analyzed available data. 276,277,278,279,280,281,282,283,284,285,286,287,288Cn, 280,281,282,283,284,285,286,287,288,289,290,291,292Fl, 286,287,288,289,290,291,292,293,294,295,296Lv, 291,292,293,294,295,296,297,298,299Og, 279,280,281,282,283,284,285,286,287,288,289,290,291Nh, 285,286,287,288,289,290,291,292,293,294,295Mc, 291,292,293,294,295,296,297,298Ts; deduced theoretical barriers and energy thresholds n the evaporation channels with emission of proton and alpha-particle.

doi: 10.1016/j.physletb.2020.135760
Citations: PlumX Metrics


2020JA01      Phys.Rev. C 101, 014311 (2020)

P.Jachimowicz, M.Kowal, J.Skalski

Static fission properties of actinide nuclei

NUCLEAR STRUCTURE 226,227,228Ac, 227,228,229,230,231,232,233,234Th, 230,231,232,233,234Pa, 231,232,233,234,235,236,237,238,239,240U, 233,234,235,236,237,238,239Np, 235,236,237,238,239,240,241,242,243,244,245,246Pu, 239,240,241,242,243,244,245,246,247Am, 241,242,243,244,245,246,247,248,249,250Cm, 244,245,246,247,248,249,250Bk, 250,251,252,253Cf; calculated masses of the ground states, first- and second-fission barriers heights, excitation energies of superdeformed (SD) isomeric minima, quadrupole deformation for SD minimum, energy surface contours in (β20, β30) plane for 227Ac, 227,228,229,231,233Th, 235U, 251Cf. Microscopic-macroscopic Woods-Saxon model with State-of-the-art methods. Comparison with experimental data. Discussed the "thorium anomaly".

doi: 10.1103/PhysRevC.101.014311
Citations: PlumX Metrics


2019SI19      Phys.Rev. C 99, 054603 (2019)

K.Siwek-Wilczynska, T.Cap, M.Kowal

Exploring the production of new superheavy nuclei with proton and α-particle evaporation channels

NUCLEAR REACTIONS 249Bk(50Ti, 2n), (50Ti, 3n), (50Ti, 4n)295119/296119/297119, E(cm)=206-244 MeV; 254Es(48Ca, 2n), (48Ca, 3n), (48Ca, 4n), (48Ca, 5n)297119/298119/299119/300119, E(cm)=196-234 MeV; 248Cm(51V, 3n), (51V, 4n), (51V, 5n), (51V, 6n)293119/294119/295119/296119, E(cm)=216-264 MeV; 248Cm(54Cr, 2n), (54Cr, 3n), (54Cr, 4n)298120/299120/300120, E(cm)=220-260 MeV; 242Pu(48Ca, np), (48Ca, 2np), (48Ca, 3np)286Nh/287Nh/288Nh, E(cm)=190-222 MeV; 244Pu(48Ca, np), (48Ca, 2np), (48Ca, 3np)288Nh/289Nh/290Nh, E(cm)=190-220 MeV; 248Cm(48Ca, np), (48Ca, 2np), (48Ca, 3np)292Mc/293Mc/294Mc, E(cm)=190-222 MeV; 249Bk(48Ca, np), (48Ca, 2np), (48Ca, 3np)293Lv/294Lv/295Lv, E(cm)=190-222 MeV; 249,250,251,252Cf(48Ca, xnp)295Ts/296Ts/297Ts, E(cm)=200-228 MeV; 244Pu(48Ca, nα), (48Ca, 2nα), (48Ca, 3nα)285Cn/286Cn/287Cn, E(cm)=186-214 MeV; 248Cm(48Ca, nα), (48Ca, 2nα), (48Ca, 3nα)289Fl/290Fl/291Fl, E(cm)=190-224 MeV; 249Bk(48Ca, nα), (48Ca, 2nα), (48Ca, 3nα)290Mc/291Mc/292Mc, E(cm)=196-226 MeV; 251Cf(48Ca, nα), (48Ca, 2nα), (48Ca, 3nα)292Lv/293Lv/294Lv, E(cm)=196-226 MeV; calculated production σ(E) for superheavy nuclides using fusion-by-diffusion model (FDB). Z=114-118; systematics of experimental values of the injection point distance parameter sinj as a function of the kinetic energy excess above the mean barrier.

doi: 10.1103/PhysRevC.99.054603
Citations: PlumX Metrics


2018BR12      Acta Phys.Pol. B49, 621 (2018)

W.Brodzinski, M.Kowal, J.Skalski, P.Jachimowicz

Fission of SHN and Its Hindrance: Odd Nuclei and Isomers

NUCLEAR REACTIONS 132Ba(58Ni, 58Ni'), E-175 MeV; measured Coulomb excitation Eγ, Iγ, γγ-coin of 132Ba using Gamma Detector Array (GDA); deduced Doppler-shift-corrected γ-ray energy spectrum in coincidence with scattered 58Ni detected in PPAC, γ-ray spectrum in coinc with Ba recoils detected in PPAC, B(E2) values between specified 132Ba states using GSI Object Oriented On-line Off-line (GO4) software package; compared with earlier Coulomb excitation measurements.

doi: 10.5506/aphyspolb.49.621
Citations: PlumX Metrics


2018JA11      Phys.Rev. C 98, 014320 (2018)

P.Jachimowicz, M.Kowal, J.Skalski

Hindered α decays of heaviest high-K isomers

NUCLEAR STRUCTURE 254,256,258,260,262,264,266,268,270,272,274Sg, 256,258,260,262,264,266,268,270,272,274,276Hs, 258,260,262,264,266,268,270,272,274,276,278Ds, 260,262,264,266,268,270,272,274,276,278,280Cn; calculated excitation energy of two-proton, two-neutron, and two-proton plus two-neutron configuration using microscopic-macroscopic approach with the deformed Woods-Saxon potential.

RADIOACTIVITY 260,262,264,266,268,270,272,274,276,278Ds(α); calculated Q(α) values, half-lives of α emitters, α-hindrance factors for decays of ground states and high-K isomers. 262,264,266,268,270,272,274,276,278,280Cn(α); calculated hindrance factors for α transitions between states of the same high-K values; deduced strong hindrance against decay for four-quasiparticle states with high Kπ, and that α-decay hindrances results mainly from the proton 2-qp component. Microscopic-macroscopic approach with the deformed Woods-Saxon potential.

doi: 10.1103/PhysRevC.98.014320
Citations: PlumX Metrics


2017JA01      Phys.Rev. C 95, 014303 (2017)

P.Jachimowicz, M.Kowal, J.Skalski

Adiabatic fission barriers in superheavy nuclei

NUCLEAR STRUCTURE 252Lr, 270Db, 276Mt, 280Cn, 297119, 285122; calculated potential energy surfaces (PES) in (β20, β22) plane. Z=109, A=266-269; Z=110, A=267-272; Z=111, A=268-277; Z=112, A=269-279; Z=113, A=268-281; Z=114, A=269-282; Z=115, A=272-285; Z=116, A=271-285; Z=117, A=274-286; Z=118, A=281-286; Z=119, A=284-290; Z=120, A=285-289; Z=121, A=286-291; Z=122, A=286-291; Z=123, A=289-290; Z=124, A=289-291; calculated mass-asymmetry (reflection-asymmetry) effect on the fission saddle from the minimization (MIN) and from the imaginary water flow method (IWF). Z=119, A=274-281, 289, 291, 293, 294, 295; Z=120, A=276-283; Z=121, A=278-283; Z=122, A=280-286, 291, 292; Z=123, A=282-287, 291, 292; Z=124, A=284-294; Z=125, A=286-295; Z=126, A=288-298; calculated lowering of the saddle by the nonaxial hexadecapole deformation. Z=98, A=232-290; Z=99, A=234-291; Z=100, A=236-292; Z=101, A=238-293; Z=102, A=240-294; Z=103, A=242-295; Z=104, A=244-296; Z=105, A=246-297; Z=106, A=248-298; Z=107, A=250-299; Z=108, A=252-300; Z=109, A=254-301; Z=110, A=256-302; Z=111, A=258-303; Z=112, A=260-304; Z=113, A=262-305; Z=114, A=264-306; Z=115, A=266-307; Z=116, A=268-308; Z=117, A=270-309; Z=118, A=272-310; Z=119, A=274-311; Z=120, A=276-312; Z=121, A=278-313; Z=122, A=280-314; Z=123, A=282-315; Z=124, A=284-316; Z=125, A=286-317; Z=126, A=288-318; calculated fission-barrier heights and isotopic dependence of fission barriers for 1305 heavy and superheavy nuclei. Macroscopic-microscopic method with Woods-Saxon model.

doi: 10.1103/PhysRevC.95.014303
Citations: PlumX Metrics


2017JA06      Phys.Rev. C 95, 034329 (2017)

P.Jachimowicz, M.Kowal, J.Skalski

Effect of non-axial octupole shapes in heavy and superheavy nuclei

NUCLEAR STRUCTURE Z=82-126, N=96-192; calculated tetrahedral deformation β32 for about 3000 heavy and superheavy nuclei, energy minima with a nonzero tetrahedral distortion; deduced evidence for combined oblate-plus-β33 g.s. deformation in a restricted region of superheavy nuclei, but no evidence for stable tetrahedral shapes, 219Po, 296123, 305124; calculated energy landscapes in (β20, β22), (β20, β30), and (β20, β32) planes. Microscopic-macroscopic model based on deformed Woods-Saxon potential.

doi: 10.1103/PhysRevC.95.034329
Citations: PlumX Metrics


2015BA54      Nucl.Phys. A944, 442 (2015)

A.Baran, M.Kowal, P.-G.Reinhard, L.M.Robledo, A.Staszczak, M.Warda

Fission barriers and probabilities of spontaneous fission for elements with Z ≥ 100

NUCLEAR STRUCTURE 258Fm, 262No, 266Rf, 270Sg, 274Hs, 278Ds, 282Cn, 286Fl, 290,292,294,296,298,300,302,304Lv; calculated fission barriers vs quadrupole moment; revised previous paper by different quadrupole moment definition. 266Hs; calculated fission barriers vs quadrupole moment using MM model, Skyrme HFB approach, Gogny HF model.

doi: 10.1016/j.nuclphysa.2015.06.002
Citations: PlumX Metrics


2015JA05      Phys.Rev. C 92, 044306 (2015)

P.Jachimowicz, M.Kowal, J.Skalski

Candidates for long-lived high-K ground states in superheavy nuclei

RADIOACTIVITY Z=102-118, N=145-175(α); 250,252Md, 252,254,256,257,260Lr, 258Db, 269Sg, 264,270Bh, 271Hs, 266,267,268,269,270,271,272,273,274,275,276,278Mt, 273Ds, 272,274,280Rg(α); calculated apparent Qα values, T1/2 for Mt isotopes; predicted high-K ground states in superheavy (SH) nuclei. Macroscopic-microscopic model based on the deformed Woods-Saxon single-particle potential.

NUCLEAR STRUCTURE 250,252Md, 252,254,256,257,260Lr, 258Db, 269Sg, 264,270Bh, 271Hs, 266,267,268,269,270,271,272,273,274,275,276,278Mt, 273Ds, 272,274,280Rg; predicted high-K ground states in superheavy (SH) nuclei On the basis of systematic calculations for 1364 heavy and superheavy (SH) nuclei. 272Mt; predicted especially promising candidate for long-lived high-K ground state from multidimensional hypercube configuration-constrained calculations of the potential energy surfaces (PESs). Macroscopic-microscopic model based on deformed Woods-Saxon single-particle potential and Yukawa plus exponential macroscopic energy with seven mass-and axially-symmetric deformations, β20, β30, β40, β50, β60, β70 and β80.

doi: 10.1103/PhysRevC.92.044306
Citations: PlumX Metrics


2015RU09      Phys.Rev. C 92, 034328 (2015)

E.Ruchowska, H.Mach, M.Kowal, J.Skalski, W.A.Plociennik, B.Fogelberg

Search for octupole correlations in 147Nd

RADIOACTIVITY 147Pr(β-)[from 236U(n, F), E=thermal followed by mass separation of A=147 fragments]; measured Eγ, Iγ, γγ-coin, half-life of 147Pr ground state, level half-lives by βγγ(t) at OSIRIS-Studsvik facility. 147Nd; deduced levels, J, π, B(E2), B(M1), B(E1), B(M2), bands, electric dipole moment, single-quasiparticle configurations with nonzero octupole deformation. Calculated potential energy surfaces in (β2, β3) plane, and electric dipole moments.

doi: 10.1103/PhysRevC.92.034328
Citations: PlumX Metrics

Data from this article have been entered in the XUNDL database. For more information, click here.


2014JA03      Phys.Rev. C 89, 024304 (2014)

P.Jachimowicz, M.Kowal, J.Skalski

Qa values in superheavy nuclei from the deformed Woods-Saxon model

RADIOACTIVITY 246,247,248,249,250,251,252,253,254,255,256,257,258Md, 251,252,253,254,255,256,257No, 252,253,254,255,256,257,258,260Lr, 255,256,257,258,259,260,261,263Rf, 256,257,258,259,260,261,262,263Db, 259,260,261,262,263,264,265,266,267,268,269,271Sg, 260,261,262,263,264,265,266,267,268,269,270,271,272,273,274Bh, 263,264,265,266,267,268,269,270,271,272,273,274,275Hs, 266,267,268,269,270,271,272,273,274,275,276,278Mt, 267,268,269,270,271,272,273,279Ds, 272,273,274,275,276,277,278,279,280,281,282Rg, 277,278,279,280,281,282,283,284,285Cn, 278,279,280,281,282,283,284,285,286Nh, 286,287,288,289Fl, 287,288,289,290Mc, 290,291,292,293Lv, 293,294Ts, 294Og, 297119(α); calculated Qα, deformation parameters, ground-state configurations, α-decay hindrance. 270Db, 274Bh, 278Mt, 282Rg, 286Nh, 290Mc, 294Ts(α); calculated half-lives. Microscopic-macroscopic model based on deformed Woods-Saxon potential, with pairing treated either by blocking or by adding the BCS energy. Comparison with experimental data, and with other theoretical calculations.

doi: 10.1103/PhysRevC.89.024304
Citations: PlumX Metrics


2013CA19      Phys.Rev. C 88, 037603 (2013)

T.Cap, K.Siwek-Wilczynska, M.Kowal, J.Wilczynski

Calculations of the cross sections for the synthesis of new 293-296118 isotopes in 249-252Cf(48Ca, xn) reactions

NUCLEAR REACTIONS 249,250,251,252Cf(48Ca, 2n), (48Ca, 3n), (48Ca, 4n), (48Ca, 5n)292Og/293Og/294Og/295Og/296Og, 297Og/298Og, E(cm)=194-230 MeV; calculated evaporation residue σ(E), weighted σ(E) for 293,294,295,296Og based on isotopic abundance of Cf. Fusion-by-diffusion (FBD) model.

doi: 10.1103/PhysRevC.88.037603
Citations: PlumX Metrics


2013JA03      Phys.Rev. C 87, 044308 (2013)

P.Jachimowicz, M.Kowal, J.Skalski

Eight-dimensional calculations of the third barrier in 232Th

NUCLEAR STRUCTURE 232Th, 232U; calculated potential energy surfaces, ground state mass excess, first barrier height BI, second barrier height BII and energy of the second minimum EII, third fission barrier height BIII and energy of the third minimum EIII or hyperdeformation. Eight-dimensional hypercube and macroscopic-microscopic model calculations. Comparison with experimental data. Previous experimental report on Hyperdeformation in 232Th needs to be confirmed.

doi: 10.1103/PhysRevC.87.044308
Citations: PlumX Metrics


2013SI16      Phys.Scr. T154, 014005 (2013)

K.Siwek-Wilczynska, T.Cap, M.Kowal, J.Wilczynski

Calculations of synthesis cross sections of Z = 104 113 superheavy nuclei in the fusion-by-diffusion model with the Warsaw macro micro-model fission barriers

NUCLEAR REACTIONS 208Pb(50Ti, n)257Rf, 209Bi(54Cr, n)262Bh, 208Pb(59Co, n)266Mt, E(cm)<250 MeV; calculated σ. FBD model, fusion-by-diffusion model with the Warsaw macro-micro-model fission barriers, comparison with available data.

doi: 10.1088/0031-8949/2013/T154/014005
Citations: PlumX Metrics


2012JA08      Phys.Rev. C 85, 034305 (2012)

P.Jachimowicz, M.Kowal, J.Skalski

Secondary fission barriers in even-even actinide nuclei

NUCLEAR STRUCTURE 226,228,230,232,234,236Th, 230,232,234,236,238,240,242U, 234,236,238,240,242,244,246,248Pu, 240,242,244,246,248,250,252Cm, 248,250,252,254Cf; calculated mass excess, microscopic and macroscopic energies, deformation parameters, second fission barriers, surface contours, second minima excitation energies. macroscopic-microscopic model in six-dimensional deformation space for even-even actinides. Comparison with experimental data.

doi: 10.1103/PhysRevC.85.034305
Citations: PlumX Metrics


2012KO21      Phys.Rev. C 85, 061302 (2012)

M.Kowal, J.Skalski

Examination of the existence of third, hyperdeformed minima in actinide nuclei

NUCLEAR STRUCTURE 230,232Th, 232,234U; calculated energy surface maps as function of deformation parameters β1 to β8, shape parameterization, quadrupole moments using the Woods-Saxon microscopic-macroscopic model; deduced third hyperdeformed minima, and third barriers in actinides.

doi: 10.1103/PhysRevC.85.061302
Citations: PlumX Metrics


2012SI13      Phys.Rev. C 86, 014611 (2012)

K.Siwek-Wilczynska, T.Cap, M.Kowal, A.Sobiczewski, J.Wilczynski

Predictions of the fusion-by-diffusion model for the synthesis cross sections of Z=114-120 elements based on macroscopic-microscopic fission barriers

NUCLEAR REACTIONS 243Am, 244Pu, 245,248Cm, 249Bk, 249Cf, 252,254Es(48Ca, xn)287Fl/288Fl/289Fl/287Mc/288Mc/289Mc/289Lv/290Lv/291Lv/292Lv/293Lv/294Lv/292Ts/293Ts/294Ts/295Ts/293Og/294Og/295Og/295119/296119/297119/298119/299119/300119, E(cm)=185-235 MeV; 249,251Cf, 249Bk(50Ti, xn)295119/296119/297119/294120/295120/296120/297120/298120/299120, E(cm)=205-255 MeV; 248Cm(54Cr, xn)298120/299120/300120, E=220-260 MeV; calculated synthesis σ using fusion-by-diffusion (FBD) model. Predictions of σ for the formation of Z=119, 120 superheavy elements.

doi: 10.1103/PhysRevC.86.014611
Citations: PlumX Metrics


2011JA02      Int.J.Mod.Phys. E20, 514 (2011)

P.Jachimowicz, P.Rozmej, M.Kowal, J.Skalski, A.Sobiczewski

Test of tetrahedral symmetry for heavy and superheavy nuclei

NUCLEAR STRUCTURE 226Th, 232No, 310124; calculated energy landscape, equilibrium values, tetrahedral and global minima.

doi: 10.1142/S0218301311017934
Citations: PlumX Metrics


2011JA03      Phys.Rev. C 83, 054302 (2011)

P.Jachimowicz, M.Kowal, J.Skalski

Superdeformed oblate superheavy nuclei

NUCLEAR STRUCTURE 276,278,280,282,284,286,288,290,292,294,296,298,300,302,304,306,308,310120; calculated energy versus quadrupole deformation, half-lives, Qα, single-particle energies, α decay hindrance for superdeformed oblate superheavy nuclei. 288122; calculated energy surface contour. Z=98-126, N=132-192; calculated ground state quadrupole deformation. Microscopic-macroscopic calculations in 12D deformation space, confirmed by Skyrme Hartree-Fock calculations with SLy6 force.

doi: 10.1103/PhysRevC.83.054302
Citations: PlumX Metrics


2010JA01      Int.J.Mod.Phys. E19, 508 (2010)

P.Jachimowicz, M.Kowal, J.Skalski

Competing minima and non-axial saddles in superheavy nuclei

NUCLEAR STRUCTURE Z=116-126, N=176-184; calculated energy landscapes of superheavy nuclei. Woods-Saxon model.

doi: 10.1142/S0218301310014911
Citations: PlumX Metrics


2010JA02      Int.J.Mod.Phys. E19, 768 (2010)

P.Jachimowicz, M.Kowal, P.Rozmej, J.Skalski, A.Sobiczewski

Role of the non-axial octupole deformation in the potential energy of heavy nuclei

NUCLEAR STRUCTURE 228,238Fm; calculated deformation energy; deduced effects of deformation on energy. Macroscopic-microscopic approach.

doi: 10.1142/S0218301310015205
Citations: PlumX Metrics


2010KO23      Phys.Rev. C 82, 014303 (2010)

M.Kowal, P.Jachimowicz, A.Sobiczewski

Fission barriers for even-even superheavy nuclei

NUCLEAR STRUCTURE A=232-318, Z=92-126 (even), N=134-192 (even); calculated fission barriers heights and their contour plots for even-even superheavy nuclei. 120320; calculated potential energy surface plot. Macroscopic-microscopic approach. Comparison with other theoretical calculations and with experimental data.

doi: 10.1103/PhysRevC.82.014303
Citations: PlumX Metrics


2010KO36      Phys.Rev. C 82, 054303 (2010)

M.Kowal, J.Skalski

Low-energy shape oscillations of negative parity in the main and shape-isomeric minima in actinides

NUCLEAR STRUCTURE 240Pu; calculated fission barrier and cranking mass contour plots as function of various deformation parameters. 230,232,234,236Th, 230,232,234,236,238,240U, 234,236,238,240,242,244,246Pu, 234,236,238,240,242,244,246,250Cm, 238,240,242,244,246,248,250,252,254Cf; calculated stiffness coefficients at the first and second minima, energies of negative-parity shape oscillations in the first and second minima for K=0, 1 and 2, and transition electric dipole (E1) moments. Single-particle Hamiltonian with the deformed Woods-Saxon potential defined in terms of the nuclear surface and variety of shape deformations. Comparison with experimental data.

doi: 10.1103/PhysRevC.82.054303
Citations: PlumX Metrics


2010SO07      Int.J.Mod.Phys. E19, 493 (2010)

A.Sobiczewski, P.Jachimowicz, M.Kowal

Effect of non-axial deformations of higher multipolarity on the fission-barrier height of heaviest nuclei

NUCLEAR STRUCTURE 284,286,288,290,292,294,296,298,300,302,304,306,308,310,312122; calculated potential-energy surfaces, effects of oblate shape on ground state energy.

doi: 10.1142/S0218301310014893
Citations: PlumX Metrics


2009JA06      Int.J.Mod.Phys. E18, 1088 (2009)

P.Jachimowicz, M.Kowal, P.Rozmej, J.Skalski, A.Sobiczewski

Non-axial octupole deformation of a heavy nucleus

doi: 10.1142/S0218301309013300
Citations: PlumX Metrics


2009KO20      Int.J.Mod.Phys. E18, 914 (2009)

M.Kowal, A.Sobiczewski

Effect of non-axial deformations on the fission barrier of heavy and superheavy nuclei

doi: 10.1142/S021830130901304X
Citations: PlumX Metrics


2009SO12      Int.J.Mod.Phys. E18, 869 (2009)

A.Sobiczewski, M.Kowal

Description of experimental fission barriers of heavy nuclei

NUCLEAR STRUCTURE 232,234,236,238,240U, 232,234,236,238,240,242,244,246Pu, 242,246,248,250Cm, 250,252Cf, 260,262,264,266,268,270,272,274,276,278,280,282,284,286,288,290,292,294,296Ds; calculated fission barriers, compared to other calculations and experiment.

doi: 10.1142/S0218301309012975
Citations: PlumX Metrics


2008KO06      Int.J.Mod.Phys. E17, 259 (2008)

M.Kowal, L.Shvedov, A.Sobiczewski

Saddle-point shell effects of heaviest nuclei

NUCLEAR STRUCTURE Z=96-126; N=136-194; calculated shell corrections at the saddle points and ground states of the considered nuclei. Contour maps using macroscopic-microscopic approach.

doi: 10.1142/S021830130800977X
Citations: PlumX Metrics


2008SH10      Int.J.Mod.Phys. E17, 265 (2008)

L.Shvedov, S.G.Rohozinski, M.Kowal, S.Belchikov, A.Sobiczewski

Deformations of multipolarity six at the saddle point of heaviest nuclei

NUCLEAR STRUCTURE Z=98-122; N=138-190; calculated deformation parameters and potential energies. Contour maps using Macroscopic-microscopic approach.

doi: 10.1142/S0218301308009781
Citations: PlumX Metrics


2008SO06      Int.J.Mod.Phys. E17, 168 (2008)

A.Sobiczewski, M.Kowal, L.Shvedov

Saddle-point shapes of heavy and superheavy nuclei

NUCLEAR STRUCTURE Z=98-126; N=138-194; calculated deformation parameters and shapes of nuclei at their saddle-points and ground states using 10 dimensions macroscopic-microscopic approach.

doi: 10.1142/S0218301308009665
Citations: PlumX Metrics


2007KO14      Int.J.Mod.Phys. E16, 425 (2007)

M.Kowal, A.Sobiczewski

Role of higher-multipolarity deformations in the potential energy of heaviest nuclei

NUCLEAR STRUCTURE 284Fl; calculated potential energy vs deformation. Six-dimensional deformation space.

doi: 10.1142/S0218301307005855
Citations: PlumX Metrics


2007SO05      Int.J.Mod.Phys. E16, 402 (2007)

A.Sobiczewski, L.Shvedov, M.Kowal

Test of approximation used in description of non-axial hexadecapole shapes of heaviest nuclei

NUCLEAR STRUCTURE 262Sg, 284Fl; calculated total energy vs deformation. Five-dimensional deformation space.

doi: 10.1142/S0218301307005831
Citations: PlumX Metrics


2007SO11      Acta Phys.Pol. B38, 1577 (2007)

A.Sobiczewski, M.Kowal, L.Shvedov

Search for Less Important Deformations in the Shapes of Heaviest Nuclei

NUCLEAR STRUCTURE 262Sg; calculated potential energy in 5-dimensional deformation space.


2006SO15      Phys.Scr. T125, 68 (2006)

A.Sobiczewski, M.Kowal

Multi-dimensional fission barriers for heavy and superheavy nuclei

NUCLEAR STRUCTURE 278Cn; calculated static fission barrier. 250Cf; calculated potential energy surfaces. Large deformation space, non-axial deformation effects considered.

doi: 10.1088/0031-8949/2006/T125/015
Citations: PlumX Metrics


2005BA47      Int.J.Mod.Phys. E14, 365 (2005)

A.Baran, M.Kowal, Z.Lojewski, K.Sieja

Properties of superheavy nuclei in various macroscopic-microscopic models

NUCLEAR STRUCTURE Z=108-122; calculated neutron and proton separation energies, radii, quadrupole moments. Z=112-118; calculated spontaneous fission and α-decay T1/2 for even-even isotopes. Macroscopic-microscopic models.

doi: 10.1142/S0218301305003132
Citations: PlumX Metrics


2005BA95      Phys.Rev. C 72, 044310 (2005)

A.Baran, Z.Lojewski, K.Sieja, M.Kowal

Global properties of even-even superheavy nuclei in macroscopic-microscopic models

NUCLEAR STRUCTURE Z=100-122; A=242-314; calculated quadrupole moments, radii, pair gap energies, Qα, fission and α-decay T1/2 for even-even nuclides. Macroscopic-microscopic approach, several models compared.

doi: 10.1103/PhysRevC.72.044310
Citations: PlumX Metrics


2005KO14      Int.J.Mod.Phys. E14, 327 (2005)

M.Kowal, Z.Lojewski

Influence of the entrance channel effects on the formation process of superheavy elements

NUCLEAR REACTIONS 238U(48Ca, X), E ≈ 170-200 MeV; calculated fusion σ, barrier distribution, dependence on target deformation. 186W(16O, X), 154Sm(48Ca, X), E*=48, 53 MeV; calculated fusion spin distributions.

doi: 10.1142/S0218301305003077
Citations: PlumX Metrics


2004KO14      Int.J.Mod.Phys. E13, 361 (2004)

M.Kowal, Z.Lojewski

Importance of deformation and orientation of nuclear shapes for the synthesis of super-heavy elements

NUCLEAR REACTIONS 238U, 244Pu, 248Cm, 252Cf(48Ca, X), E not given; calculated fusion barrier features vs deformation, orientation.

doi: 10.1142/S0218301304002193
Citations: PlumX Metrics


2003DO22      Acta Phys.Pol. B34, 2457 (2003)

A.Dobrowolski, M.Kowal, K.Pomorski

Fusion barriers derived from the Hartree-Fock functional with Skyrme interactions

NUCLEAR REACTIONS 238U(50Ti, X), 208Pb(76Ge, X), E not given; calculated fusion barrier features. Other reactions leading to Z=114 discussed.


2003KO75      Acta Phys.Pol. B34, 2411 (2003)

M.Kowal, Z.Lojewski

The alpha-deformed superheavy nucleus interaction potential

NUCLEAR STRUCTURE 278Fl; calculated α-parent interaction potential vs deformation, α-emission barrier features.


2000PO23      Nucl.Phys. A679, 25 (2000)

K.Pomorski, B.Nerlo-Pomorska, A.Surowiec, M.Kowal, J.Bartel, K.Dietrich, J.Richert, C.Schmitt, B.Benoit, E.de Goes Brennand, L.Donadille, C.Badimon

Light-Particle Emission from the Fissioning Nuclei 126Ba, 188Pt and 266, 272, 278110: Theoretical predictions and experimental results

NUCLEAR REACTIONS 98Mo(28Si, X), E=166, 187, 204 MeV; 107Ag(19F, X), E=128, 148 MeV; 154Sm(34S, X), E=160, 203 MeV; 172Yb(16O, X), E=138 MeV; 208Pb(58Ni, X), (64Ni, X), 232Th(40Ca, X), 238U(40Ar, X), E=66-186 MeV; calculated fusion, fission σ(L), prefission particle multiplicities; deduced entrance channel effects. Comparisons with data.

doi: 10.1016/S0375-9474(00)00327-4
Citations: PlumX Metrics


Back to query form