NSR Query Results


Output year order : Descending
Format : Normal

NSR database version of April 27, 2024.

Search: Author = A.Rahmatinejad

Found 14 matches.

Back to query form



2024MU02      J.Radioanal.Nucl.Chem. 333, 1559 (2024)

R.S.Mukhin, A.V.Isaev, A.V.Andreev, M.L.Chelnokov, V.I.Chepigin, H.M.Devaraja, B.Gall, K.Hauschild, I.N.Izosimov, A.A.Kuznetsova, A.Lopez-Martens, O.N.Malyshev, A.G.Popeko, Yu.A.Popov, A.Rahmatinejad, B.Sailaubekov, T.M.Shneidman, E.A.Sokol, A.I.Svirikhin, M.S.Tezekbayeva, A.V.Yeremin

Analysis of the shape of multiplicity distributions of prompt neutrons emitted in spontaneous fission

RADIOACTIVITY 253,254,255,256,257,258,259,260,261,262Rf, 252,253,254,255,256,257,258,259,260,261,262Lr, 249,250,251,252,253,254,255,256,257,258,259,260,261No, 245,246,247,248,249,250,251,252,253,254,255,256,257,258,259Md, 243,244,245,246,247,248,249,250,251,252,253,254,255,256,257,258,259Fm(SF); analyzed available data; deduced the prompt neutron multiplicity distribution (PNMD) emitted is the spontaneous fission (SF), shape of the PNMD helps to achieve the information according the dynamic of the SF.

doi: 10.1007/s10967-023-09164-0
Citations: PlumX Metrics


2023IS03      Phys.Lett. B 843, 138008 (2023)

A.V.Isaev, R.S.Mukhin, A.V.Andreev, Z.Asfari, M.L.Chelnokov, V.I.Chepigin, H.M.Devaraja, O.Dorvaux, B.Gall, K.Hauschild, I.N.Izosimov, A.A.Kuznetsova, A.Lopez-Martens, O.N.Malyshev, A.G.Popeko, Yu.A.Popov, A.Rahmatinejad, B.Sailaubekov, T.M.Shneidman, E.A.Sokol, A.I.Svirikhin, M.S.Tezekbayeva, A.V.Yeremin, N.I.Zamyatin

Structure of the prompt neutron multiplicity distribution in the spontaneous fission of 256Rf

RADIOACTIVITY 256Rf(SF), (α) [from 208Pb(50Ti, X), E=237 MeV];measured fission products, En, In, TOF; deduced neutron multiplicity distribution, alpha decay branching ratio and T1/2. Prompt neutron multiplicity study in the superheavy element region. SHELS separator, U-400 cyclotron, the Flerov laboratory at JINR.

doi: 10.1016/j.physletb.2023.138008
Citations: PlumX Metrics

Data from this article have been entered in the XUNDL database. For more information, click here.


2022DE36      Phys.Atomic Nuclei 85, 805 (2022)

M.Demichev, S.Abou El Azm, A.Bezbakh, M.Gostkin, N.Jovancevic, D.Knezevic, V.Kobets, M.Krmar, U.Kruchonak, S.Mitrofanov, A.Nozdrin, S.Porokhovoy, A.Rahmatinejad, T.Shneidman, V.Stegaylov, Y.Teterev, A.Zhemchugov

Study of 209Bi(γ, xn) Reactions in Energy Region up To 100 MeV

NUCLEAR REACTIONS 209Bi(γ, xn), E<100 MeV; measured reaction products, Eγ, Iγ. 200,201,202,203,204,205,206,207Bi; deduced relative yields. Comparison with GEANT4 simulations. Electron accelerator LINAC-200, located at Laboratory of Nuclear Problems of JINR, Dubna.

doi: 10.1134/S1063778823010167
Citations: PlumX Metrics


2022IS05      Eur.Phys.J. A 58, 108 (2022)

A.V.Isaev, R.S.Mukhin, A.V.Andreev, M.A.Bychkov, M.L.Chelnokov, V.I.Chepigin, H.M.Devaraja, O.Dorvaux, M.Forge, B.Gall, K.Hauschild, I.N.Izosimov, K.Kessaci, A.A.Kuznetsova, A.Lopez-Martens, O.N.Malyshev, A.G.Popeko, Yu.A.Popov, A.Rahmatinejad, B.Sailaubekov, T.M.Shneidman, E.A.Sokol, A.I.Svirikhin, D.A.Testov, M.S.Tezekbayeva, A.V.Yeremin, N.I.Zamyatin, K.Sh.Zhumadilov

Prompt neutron emission in the spontaneous fission of 246Fm

RADIOACTIVITY 246Fm(SF) [from 208Pb(40Ar, X), E=183 MeV]; measured decay products, En, In; deduced neutron yields, nubar, spontaneous fission branching ratio, T1/2. Tikhonov method of statistical regularisation. FLNR JINR using the SHELS separator and the SFiNx detection system, the U-400 cyclotron.

doi: 10.1140/epja/s10050-022-00761-3
Citations: PlumX Metrics

Data from this article have been entered in the EXFOR database. For more information, access X4 dataset41751. Data from this article have been entered in the XUNDL database. For more information, click here.


2022RA06      Phys.Rev. C 105, 044328 (2022)

A.Rahmatinejad, T.M.Shneidman, G.G.Adamian, N.V.Antonenko, P.Jachimowicz, M.Kowal

Energy dependent ratios of level-density parameters in superheavy nuclei

NUCLEAR STRUCTURE 282,283,284,285,286,287,288,289,290,291,292,293,294,295Mc, 283,284,285,286,287,288,289,290,291,292,293,294,295,296Lv, 279,280,281,282,283,284,285,286,287,288,289,290,291Nh, 291,292,293,294,295,296,297,298Ts, 291,292,293,294,295,296,297,298,299Og, 292Fl, 295,296,297,298,299,300119, 295,296,297,298,299,300,301,302120; calculated intrinsic nuclear level densities, energy-dependent level-density parameters, energy-dependent ratios of level-density parameters corresponding to the nuclei at the fission saddle point and to proton and α-particle emission residues at their ground state to those obtained for the daughter nuclei after neutron emission. Thermodynamic superfluid formalism using the single-particle energies obtained from the diagonalization of the deformed Woods-Saxon potential.

doi: 10.1103/PhysRevC.105.044328
Citations: PlumX Metrics


2022RA31      Phys.Part. and Nucl.Lett. 19, 470 (2022)

A.Rahmatinejad, T.M.Shneidman

Kinetic Energy Distribution in Multi-Step Neutron Emission from Superheavy Nuclei

NUCLEAR STRUCTURE 299Og, 302120; calculated probability of realization of x=2-8 neutron evaporation channels, average kinetic energies of intermediate neutrons evaporated using the superfluid formalism with the single-particle energies obtained from the Woods-Saxon potential diagonalization at the ground state.

doi: 10.1134/S1547477122050351
Citations: PlumX Metrics


2021NO07      Can.J.Phys. 99, 466 (2021)

O.Nouri, R.Razavi, A.Rahmatinejad, S.Mohammadi

Ratios of negative-to-positive parity level densities in Mo isotopes

NUCLEAR STRUCTURE 94,96,98Mo; calculated ratios of negative-to-positive parity level densities using a microscopic formalism based on the Bardeen-Cooper-Schrieffer (BCS) model.

doi: 10.1139/cjp-2020-0369
Citations: PlumX Metrics


2021RA04      Phys.Rev. C 103, 034309 (2021)

A.Rahmatinejad, A.N.Bezbakh, T.M.Shneidman, G.Adamian, N.V.Antonenko, P.Jachimowicz, M.Kowal

Level-density parameters in superheavy nuclei

NUCLEAR STRUCTURE 296Lv; calculated potential energy contour in the (β20, β22) plane, proton and neutron single-particle spectra along the fission paths using the Woods-Saxon potential diagonalization. 292Fl, 296Lv, 300120; calculated energy dependencies of the ground-state and saddle-point level-density parameters. A=277-302; calculated mass number dependence of the asymptotic ground state and saddle-point level-density parameters. 282,283,284,285,286,287,288,289,290,291,292Fl; calculated ratios of the level density parameters at the saddle point and ground state. 236U, 240Pu; calculated dependence of fission probability on excitation energy for the fissioning nuclei. 293,294,295,296,297Ts, 295,296,297,298,299,300,301,302120; calculated ratios of the level density parameter of the mother nucleus at the saddle point to that of the daughter nucleus after neutron separation at the ground state. 278Cn, 294Og, 296,298120; calculated dependence of neutron emission probability on excitation energy. Level density parameter calculated by fitting the obtained results with the standard Fermi gas expression.

doi: 10.1103/PhysRevC.103.034309
Citations: PlumX Metrics


2020RA07      Phys.Rev. C 101, 054315 (2020)

A.Rahmatinejad, T.M.Shneidman, N.V.Antonenko, A.N.Bezbakh, G.G.Adamian, L.A.Malov

Collective enhancements in the level densities of Dy and Mo isotopes

NUCLEAR STRUCTURE 94,96,98Mo, 160,162,164Dy; calculated β2 and β4 deformation parameters, shell corrections, pairing energies, neutron-, and proton-pairing gaps in the ground states, intrinsic level densities, energy dependent level densities, critical temperatures and corresponding critical energies, spin cut-off parameters, number of collective levels, and collective enhancement factors using the superfluid model with single-particle energies from the quasiparticle-phonon model (QPM) and Woods-Saxon potential. Comparison with experimental densities.

doi: 10.1103/PhysRevC.101.054315
Citations: PlumX Metrics


2018RA10      Nucl.Phys. A976, 61 (2018)

R.Razavi, A.Rashed Mohassel, A.Rahmatinejad, A.Jabarpour

Systematic of critical temperature of nuclear pairing transition

NUCLEAR STRUCTURE A=2-253; calculated critical temperature of nuclear pairing transitions for 440 nuclei using microscopic model; compiled gs pairing energy gap; deduced pairing energy formula, parameters. Compared to data.

doi: 10.1016/j.nuclphysa.2018.05.001
Citations: PlumX Metrics


2016RA15      Int.J.Mod.Phys. E25, 1650030 (2016)

A.Rahmatinejad, T.Kakavand, R.Razavi

Breaking of Cooper pairs in 108Pd

NUCLEAR STRUCTURE 108Pd; calculated level density, entropy, spin cutoff parameter ratio within the canonical ensemble framework and the BCS model.

doi: 10.1142/S0218301316500300
Citations: PlumX Metrics


2016RA22      Int.J.Mod.Phys. E25, 1650050 (2016)

A.Rahmatinejad, R.Razavi, T.Kakavand

Studying temperature dependence of pairing gap parameter in a nucleus as a small superconducting system

NUCLEAR STRUCTURE 45Ti; calculated temperature dependence of proton pairing gap parameter and heat capacity, excitation energy and entropy as a function of temperature. Bardeen-Cooper-Schrieffer (BCS) theory.

doi: 10.1142/S0218301316500506
Citations: PlumX Metrics


2015RA08      Nucl.Phys. A939, 46 (2015)

A.Rahmatinejad, R.Razavi, T.Kakavand

Thermal quantities of 46Ti

NUCLEAR STRUCTURE 46Ti; calculated neutron gap vs temperature, heat vs temperature, temperature vr E*, entropy vs temperature using canonical and microcanonical ensembles.

doi: 10.1016/j.nuclphysa.2015.03.010
Citations: PlumX Metrics


2015RA13      Nucl.Phys. A941, 145 (2015)

A.Rahmatinejad, R.Razavi, T.Kakavand

Role of neutron and proton system in spin cut off parameter and entropy of 89, 90Y

NUCLEAR STRUCTURE 89,90Y; calculated level density, pairing energy, entropy vs temperature, spin cut-off vs temperature for neutron and proton system using BCS model. Compared with available data.

doi: 10.1016/j.nuclphysa.2015.06.013
Citations: PlumX Metrics


Back to query form