NSR Query Results


Output year order : Descending
Format : Normal

NSR database version of April 27, 2024.

Search: Author = A.Sobiczewski

Found 119 matches.

    Showing 1 to 100.

   [Next]

Back to query form



2017OG01      Phys.Scr. 92, 023003 (2017)

Y.T.Oganessian, A.Sobiczewski, G.M.Ter-Akopian

Superheavy nuclei: from predictions to discovery

doi: 10.1088/1402-4896/aa53c1
Citations: PlumX Metrics


2017SO23      At.Data Nucl.Data Tables 119, 1 (2017)

A.Sobiczewski, Yu.A.Litvinov, M.Palczewski

Detailed illustration of the accuracy of currently used nuclear-mass models

NUCLEAR STRUCTURE Z<112; calculated rms radii, masses; deduced mass models accuracy.

doi: 10.1016/j.adt.2017.05.001
Citations: PlumX Metrics


2016SO09      J.Phys.(London) G43, 095106 (2016)

A.Sobiczewski

Theoretical description of the decay chain of the nucleus 294118

RADIOACTIVITY 294Og, 290Lv, 286Fl, 282Cn(α); calculated Q-values, T1/2. Comparison with experimental data.

doi: 10.1088/0954-3899/43/9/095106
Citations: PlumX Metrics


2016SO14      Phys.Rev. C 94, 051302 (2016)

A.Sobiczewski

Theoretical predictions for the nucleus 296118

RADIOACTIVITY 296Og, 292Lv, 288Fl, 284Cn, 280Ds, 276Hs, 272Sg, 268Rf(α); 294Og, 290Lv, 286Fl, 282Cn, 278Ds, 274Hs, 270Sg, 266Rf(α); calculated Q(α), half-lives for α and SF decays for the two decay chains starting with Z=118 isotopes, and compared with available experimental values. Calculations for nine variants using masses obtained from nine nuclear-mass models for the heaviest nuclei.

doi: 10.1103/PhysRevC.94.051302
Citations: PlumX Metrics


2015SO07      Acta Phys.Pol. B46, 551 (2015)

A.Sobiczewski

Theoretical Description of the Decay Chain of the Nucleus 289115

RADIOACTIVITY 289Mc, 285Nh, 281Rg, 277Mt, 273Bh, 269Db, 265Lr(α); analyzed available data; calculated Q-values, T1/2. Two nuclear-mass models (HN and WS3+).

doi: 10.5506/APhysPolB.46.551
Citations: PlumX Metrics


2015SO22      Phys.Scr. 90, 114018 (2015)

A.Sobiczewski

Analysis of the decay chain of the nucleus 293117

RADIOACTIVITY 293Ts, 289Mc, 285Nh, 281Rg, 277Mt, 273Bh(α); calculated Q-values, T1/2. Comparison with experimental data.

doi: 10.1088/0031-8949/90/11/114018
Citations: PlumX Metrics


2014SO01      Phys.Rev. C 89, 024311 (2014)

A.Sobiczewski, Y.A.Litvinov

Accuracy of theoretical descriptions of nuclear masses

ATOMIC MASSES Z>8, N>8; analyzed accuracy of current theoretical descriptions of nuclear masses by comparing AME-12 evaluated masses with theoretical values from ten different models of macroscopic-microscopic type, purely microscopic, and models of other natures (LSD, FRDM, TF, FRLDM, HFB21, GHFB, DZ, KTUY, WS3.6, WS3.3); deduced rms deviations, predictive power of various mass models; dependence of rms discrepancy on the region of nuclei.

doi: 10.1103/PhysRevC.89.024311
Citations: PlumX Metrics


2014SO05      Phys.Scr. 89, 054014 (2014)

A.Sobiczewski

Theoretical description of the decay chain of the nucleus 287115

RADIOACTIVITY 287Mc, 283Nh, 279Rg, 275Mt, 271Bh, 267Db, 263Lr(α); calculated Q-values, T1/2. Comparison with experimental data.

doi: 10.1088/0031-8949/89/5/054014
Citations: PlumX Metrics


2014SO10      Phys.Rev. C 90, 017302 (2014)

A.Sobiczewski, Y.A.Litvinov

Predictive power of nuclear-mass models

ATOMIC MASSES Z=8-28; Z=28-50; Z=50-82; Z>82; analyzed differences between theoretical predictions of ten different nuclear-mass models (LSD, FRDM, TF, FRLDM, HFB21, GHFB, DZ, KTUY, WS3.6 and WS3.3) and evaluated masses in AME-2003 and AME-2012 for 2134 nuclides. No evidence for a clear correlation between the two quantities.

doi: 10.1103/PhysRevC.90.017302
Citations: PlumX Metrics


2013SO13      Phys.Scr. T154, 014001 (2013)

A.Sobiczewski, Y.A.Litvinov

Quality of theoretical masses in various regions of the nuclear chart

ATOMIC MASSES N=50-82, Z>82, N>126; calculated masses rms, average discrepancy. HFB21 and FRDM models, comparison with available data.

doi: 10.1088/0031-8949/2013/T154/014001
Citations: PlumX Metrics


2012LI24      Int.J.Mod.Phys. E21, 1250038 (2012)

Yu.A.Litvinov, A.Sobiczewski, A.Parkhomenko, E.A.Cherepanov

Description of heavy-nuclei masses by macroscopic-microscopic models

doi: 10.1142/S0218301312500383
Citations: PlumX Metrics


2012MA55      Phys.Rev. C 86, 064607 (2012)

G.Mandaglio, G.Giardina, A.K.Nasirov, A.Sobiczewski

Investigation of the 48Ca+249-252Cf reactions synthesizing isotopes of the superheavy element 118

NUCLEAR REACTIONS 249,250,251,252Cf(48Ca, X), (48Ca, xn), E(cm)=197-235 MeV; calculated capture, quasifission, fusion, evaporation residue σ. Formation of evaporation residue nuclei from 297,298,299,300118 superheavy compound nuclei. Comparison with experimental data for 294118.

doi: 10.1103/PhysRevC.86.064607
Citations: PlumX Metrics


2012SI13      Phys.Rev. C 86, 014611 (2012)

K.Siwek-Wilczynska, T.Cap, M.Kowal, A.Sobiczewski, J.Wilczynski

Predictions of the fusion-by-diffusion model for the synthesis cross sections of Z=114-120 elements based on macroscopic-microscopic fission barriers

NUCLEAR REACTIONS 243Am, 244Pu, 245,248Cm, 249Bk, 249Cf, 252,254Es(48Ca, xn)287Fl/288Fl/289Fl/287Mc/288Mc/289Mc/289Lv/290Lv/291Lv/292Lv/293Lv/294Lv/292Ts/293Ts/294Ts/295Ts/293Og/294Og/295Og/295119/296119/297119/298119/299119/300119, E(cm)=185-235 MeV; 249,251Cf, 249Bk(50Ti, xn)295119/296119/297119/294120/295120/296120/297120/298120/299120, E(cm)=205-255 MeV; 248Cm(54Cr, xn)298120/299120/300120, E=220-260 MeV; calculated synthesis σ using fusion-by-diffusion (FBD) model. Predictions of σ for the formation of Z=119, 120 superheavy elements.

doi: 10.1103/PhysRevC.86.014611
Citations: PlumX Metrics


2012SO03      Rom.J.Phys. 57, 506 (2012)

A.Sobiczewski

Description and Predictions of the Properties of Superheavy Nuclei

RADIOACTIVITY 294Og, 290Lv, 286Fl, 282Cn, 278Ds, 274Hs, 270Sg, 266Rf(α); calculated T1/2, Q-values. 298,299120; deduced properties for Z=120 element.


2011JA02      Int.J.Mod.Phys. E20, 514 (2011)

P.Jachimowicz, P.Rozmej, M.Kowal, J.Skalski, A.Sobiczewski

Test of tetrahedral symmetry for heavy and superheavy nuclei

NUCLEAR STRUCTURE 226Th, 232No, 310124; calculated energy landscape, equilibrium values, tetrahedral and global minima.

doi: 10.1142/S0218301311017934
Citations: PlumX Metrics


2011NA31      Phys.Rev. C 84, 044612 (2011)

A.K.Nasirov, G.Mandaglio, G.Giardina, A.Sobiczewski, A.I.Muminov

Effects of the entrance channel and fission barrier in the synthesis of superheavy element Z=120

NUCLEAR REACTIONS 249Bk(48Ca, X)297Ts, E(cm)=193-222 MeV; 249Cf(50Ti, X)299120, E(cm)=217-251 MeV; 248Cm(54Cr, X)302120, E(cm)=226-263 MeV; calculated cross sections for capture, quasifission, fast fission, complete fusion, evaporation residues. Comparison with experimental data for 3n- and 4n channels in 249Bk(48Ca, X). Dinuclear system and advanced statistical model calculations.

doi: 10.1103/PhysRevC.84.044612
Citations: PlumX Metrics


2011SO06      Int.J.Mod.Phys. E20, 325 (2011)

A.Sobiczewski, P.Rozmej

Estimation of the inaccuracy of calculated masses and fission-barrier heights of heavy nuclei

NUCLEAR STRUCTURE 250Cf, 294Og; calculated potential-energy surfaces, masses, static fission barrier height.

doi: 10.1142/S0218301311017685
Citations: PlumX Metrics


2011SO17      Radiochim.Acta 99, 395 (2011)

A.Sobiczewski

Theoretical description of superheavy nuclei

doi: 10.1524/ract.2011.1859
Citations: PlumX Metrics


2010JA02      Int.J.Mod.Phys. E19, 768 (2010)

P.Jachimowicz, M.Kowal, P.Rozmej, J.Skalski, A.Sobiczewski

Role of the non-axial octupole deformation in the potential energy of heavy nuclei

NUCLEAR STRUCTURE 228,238Fm; calculated deformation energy; deduced effects of deformation on energy. Macroscopic-microscopic approach.

doi: 10.1142/S0218301310015205
Citations: PlumX Metrics


2010KO23      Phys.Rev. C 82, 014303 (2010)

M.Kowal, P.Jachimowicz, A.Sobiczewski

Fission barriers for even-even superheavy nuclei

NUCLEAR STRUCTURE A=232-318, Z=92-126 (even), N=134-192 (even); calculated fission barriers heights and their contour plots for even-even superheavy nuclei. 120320; calculated potential energy surface plot. Macroscopic-microscopic approach. Comparison with other theoretical calculations and with experimental data.

doi: 10.1103/PhysRevC.82.014303
Citations: PlumX Metrics


2010SO07      Int.J.Mod.Phys. E19, 493 (2010)

A.Sobiczewski, P.Jachimowicz, M.Kowal

Effect of non-axial deformations of higher multipolarity on the fission-barrier height of heaviest nuclei

NUCLEAR STRUCTURE 284,286,288,290,292,294,296,298,300,302,304,306,308,310,312122; calculated potential-energy surfaces, effects of oblate shape on ground state energy.

doi: 10.1142/S0218301310014893
Citations: PlumX Metrics


2010SO12      Acta Phys.Pol. B41, 157 (2010)

A.Sobiczewski

Predictions for Nuclei of a New Element 117

RADIOACTIVITY 293Ts, 289Mc, 285Nh, 281Rg, 277Mt, 273Bh, 269Db, 265Lr, 294Ts, 290Mc, 286Nh, 282Rg, 278Mt, 274Bh, 270Db, 266Lr(α), (SF); calculated T1/2 using own Q-values; deduced large production σ for 293,294Ts. Microscopic-macroscopic model.


2009JA06      Int.J.Mod.Phys. E18, 1088 (2009)

P.Jachimowicz, M.Kowal, P.Rozmej, J.Skalski, A.Sobiczewski

Non-axial octupole deformation of a heavy nucleus

doi: 10.1142/S0218301309013300
Citations: PlumX Metrics


2009KO20      Int.J.Mod.Phys. E18, 914 (2009)

M.Kowal, A.Sobiczewski

Effect of non-axial deformations on the fission barrier of heavy and superheavy nuclei

doi: 10.1142/S021830130901304X
Citations: PlumX Metrics


2009PA30      Int.J.Mod.Phys. E18, 1071 (2009)

A.Parkhomenko, S.Hofmann, A.Sobiczewski

Structure effects in the decay of superheavy nuclei

RADIOACTIVITY 269Ds(α); calculated level properties of α decay chain using macroscopic-microscopic approach. Derived characteristic quantities.

doi: 10.1142/S0218301309013270
Citations: PlumX Metrics


2009SO12      Int.J.Mod.Phys. E18, 869 (2009)

A.Sobiczewski, M.Kowal

Description of experimental fission barriers of heavy nuclei

NUCLEAR STRUCTURE 232,234,236,238,240U, 232,234,236,238,240,242,244,246Pu, 242,246,248,250Cm, 250,252Cf, 260,262,264,266,268,270,272,274,276,278,280,282,284,286,288,290,292,294,296Ds; calculated fission barriers, compared to other calculations and experiment.

doi: 10.1142/S0218301309012975
Citations: PlumX Metrics


2008KO06      Int.J.Mod.Phys. E17, 259 (2008)

M.Kowal, L.Shvedov, A.Sobiczewski

Saddle-point shell effects of heaviest nuclei

NUCLEAR STRUCTURE Z=96-126; N=136-194; calculated shell corrections at the saddle points and ground states of the considered nuclei. Contour maps using macroscopic-microscopic approach.

doi: 10.1142/S021830130800977X
Citations: PlumX Metrics


2008SH10      Int.J.Mod.Phys. E17, 265 (2008)

L.Shvedov, S.G.Rohozinski, M.Kowal, S.Belchikov, A.Sobiczewski

Deformations of multipolarity six at the saddle point of heaviest nuclei

NUCLEAR STRUCTURE Z=98-122; N=138-190; calculated deformation parameters and potential energies. Contour maps using Macroscopic-microscopic approach.

doi: 10.1142/S0218301308009781
Citations: PlumX Metrics


2008SO06      Int.J.Mod.Phys. E17, 168 (2008)

A.Sobiczewski, M.Kowal, L.Shvedov

Saddle-point shapes of heavy and superheavy nuclei

NUCLEAR STRUCTURE Z=98-126; N=138-194; calculated deformation parameters and shapes of nuclei at their saddle-points and ground states using 10 dimensions macroscopic-microscopic approach.

doi: 10.1142/S0218301308009665
Citations: PlumX Metrics


2007KO14      Int.J.Mod.Phys. E16, 425 (2007)

M.Kowal, A.Sobiczewski

Role of higher-multipolarity deformations in the potential energy of heaviest nuclei

NUCLEAR STRUCTURE 284Fl; calculated potential energy vs deformation. Six-dimensional deformation space.

doi: 10.1142/S0218301307005855
Citations: PlumX Metrics


2007SH20      Acta Phys.Pol. B38, 1583 (2007)

L.Shvedov, A.Sobiczewski

Non-Axial Hexadecapole Deformations of Heaviest Nuclei

NUCLEAR STRUCTURE 250Cf; calculated potential energy in 5-dimensional deformation space.


2007SO01      Prog.Part.Nucl.Phys. 58, 292 (2007)

A.Sobiczewski, K.Pomorski

Description of structure and properties of superheavy nuclei

doi: 10.10106/j.ppnp.2006.05.001
Citations: PlumX Metrics


2007SO05      Int.J.Mod.Phys. E16, 402 (2007)

A.Sobiczewski, L.Shvedov, M.Kowal

Test of approximation used in description of non-axial hexadecapole shapes of heaviest nuclei

NUCLEAR STRUCTURE 262Sg, 284Fl; calculated total energy vs deformation. Five-dimensional deformation space.

doi: 10.1142/S0218301307005831
Citations: PlumX Metrics


2007SO11      Acta Phys.Pol. B38, 1577 (2007)

A.Sobiczewski, M.Kowal, L.Shvedov

Search for Less Important Deformations in the Shapes of Heaviest Nuclei

NUCLEAR STRUCTURE 262Sg; calculated potential energy in 5-dimensional deformation space.


2007SO20      Iader.Fiz.Enerh. 8 no.3, 17 (2007); Nuc.phys.atom.energ. 8, no.3, 17 (2007)

A.Sobiczewski

Properties of heavy and superheavy nuclei

NUCLEAR STRUCTURE 241Am; calculated J, π for single particle states, dependence of the state energies on the quadrupole deformation. 250Cf, 294Lv; calculated potential energy at equilibrium and at the saddle point, spontaneous fission barrier. 278Cn; calculated spontaneous fission barrier. 255No, 259Rf, 263Sg, 267Hs, 271Ds; calculated single particle levels, J, π.Comparison with experimental data.

RADIOACTIVITY 259Rf, 263Sg, 267Hs, 271Ds(α);calculated Q values, T1/2. Comparison with experimental data.

doi: 10.15407/jnpae
Citations: PlumX Metrics


2006PA12      Int.J.Mod.Phys. E15, 457 (2006)

A.Parkhomenko, A.Sobiczewski

Single-particle effects in decay chains of odd-A superheavy nuclei

RADIOACTIVITY 271Ds, 267Hs, 263Sg, 259Rf(α); calculated Qα, T1/2, single-particle effects. Macroscopic-microscopic approach, comparison with data.

doi: 10.1142/S0218301306004363
Citations: PlumX Metrics


2006SO08      Phys.Atomic Nuclei 69, 1155 (2006)

A.Sobiczewski, A.Parkhomenko

Description of α-Decay Half-Lives of Heaviest Nuclei

NUCLEAR STRUCTURE Z=84-111; A=128-161; analyzed α-decay T1/2, Qα; deduced parameters. Five-parameter phenomenological formula.

doi: 10.1134/S106377880607009X
Citations: PlumX Metrics


2006SO15      Phys.Scr. T125, 68 (2006)

A.Sobiczewski, M.Kowal

Multi-dimensional fission barriers for heavy and superheavy nuclei

NUCLEAR STRUCTURE 278Cn; calculated static fission barrier. 250Cf; calculated potential energy surfaces. Large deformation space, non-axial deformation effects considered.

doi: 10.1088/0031-8949/2006/T125/015
Citations: PlumX Metrics


2005MU09      Acta Phys.Pol. B36, 1359 (2005)

I.Muntian, A.Sobiczewski

Mechanism of a decrease of the fission-barrier height of a heavy nucleus by non-axial shapes

NUCLEAR STRUCTURE 250Cf; calculated energy surfaces, deformation effects in fission barrier.


2005MU10      Int.J.Mod.Phys. E14, 417 (2005)

I.Muntian, A.Sobiczewski

Role of higher multipolarity deformations in the fission-barrier height of spherical superheavy nucleus

NUCLEAR STRUCTURE 294Lv; calculated potential energy surfaces, fission barrier height, role of high-multipolarity deformation. Yukawa-plus-exponential model, Strutinsky shell correction.

doi: 10.1142/S0218301305003211
Citations: PlumX Metrics


2005PA28      Acta Phys.Pol. B36, 1363 (2005)

A.Parkhomenko, A.Sobiczewski

Description of α-spectroscopic data of odd-A superheavy nuclei

RADIOACTIVITY 271Ds, 267Hs, 263Sg, 259Rf(α); calculated Qα. Macroscopic-microscopic approach, comparisons with data.

NUCLEAR STRUCTURE 245Cm; calculated neutron single-particle spectra.


2005PA29      Int.J.Mod.Phys. E14, 421 (2005)

A.Parkhomenko, A.Sobiczewski

Sensitivity of one-quasiparticle spectra of heaviest nuclei to various factors

NUCLEAR STRUCTURE 241Am; calculated single-proton energy levels vs deformation and pairing parameters.

doi: 10.1142/S0218301305003223
Citations: PlumX Metrics


2005PA72      Acta Phys.Pol. B36, 3095 (2005)

A.Parkhomenko, A.Sobiczewski

Phenomenological formula for α-decay half-lives of heaviest nuclei

NUCLEAR STRUCTURE Z=84-116; analyzed α-decay T1/2; deduced parameters. Phenomenological formula.


2005PA73      Acta Phys.Pol. B36, 3115 (2005)

A.Parkhomenko, A.Sobiczewski

Neutron one-quasiparticle states of heaviest nuclei

NUCLEAR STRUCTURE 235Th, 237,239U, 239,241,243,245,247,249Pu, 241,243,245,247,249,251,253Cm, 243,245,247,249,251,253,255,257Cf, 245,247,249,251,253,255,257,259,261Fm, 247,249,251,253,255,257,259,261,263No, 251,253,255,257,259,261,263,265Rf, 253,255,257,259,261,263,265,267Sg, 261,263,265,267,269Hs, 267,269,271Ds; calculated neutron single-quasiparticle energies. Macroscopic-microscopic approach.


2005SO07      Int.J.Mod.Phys. E14, 409 (2005)

A.Sobiczewski, I.Muntian

Role of higher multipolarity deformations in the height of fission barrier of a deformed heavy nucleus

NUCLEAR STRUCTURE 250Cf; calculated potential energy surfaces, fission barrier height, role of high-multipolarity deformation. Yukawa-plus-exponential model, Strutinsky shell correction.

doi: 10.1142/S021830130500320X
Citations: PlumX Metrics


2004MU07      Phys.Lett. B 586, 254 (2004)

I.Muntian, A.Sobiczewski

Superdeformed ground state of superheavy nuclei?

NUCLEAR STRUCTURE 292Og; calculated potential energy surfaces, ground-state deformation. Macroscopic-microscopic approach.

doi: 10.1016/j.physletb.2004.02.032
Citations: PlumX Metrics


2004MU27      Acta Phys.Hung.N.S. 19, 139 (2004)

I.Muntian, Z.Patyk, A.Sobiczewski

Properties of Heaviest Nuclei within Macro-Micro Approach

NUCLEAR STRUCTURE 257,259Rf, 258,260Db, 261,263,265Sg, 262,264Bh, 265,267,269Hs, 266,268Mt, 269,271,273Ds, 272Rg, 277Cn, 284,286,288,290,292,294,296,298,300,302Lv, 286,288,290,292,294,296,298,300,302,304118, 288,290,292,294,296,298,300,302,304,306120; calculated masses. Macroscopic-microscopic models.

doi: 10.1556/APH.19.2004.1-2.20
Citations: PlumX Metrics


2004PA31      Acta Phys.Hung.N.S. 19, 145 (2004)

O.Parkhomenko, I.Muntian, Z.Patyk, A.Sobiczewski

Neutron Separation Energy for Heavy and Superheavy Nuclei

NUCLEAR STRUCTURE 251,252,253,254,255,256,257Fm, 256,257,258,255,256,257No; calculated neutron separation energies. Macroscopic-microscopic models.

doi: 10.1556/APH.19.2004.1-2.21
Citations: PlumX Metrics


2004PA40      Acta Phys.Pol. B35, 2447 (2004)

A.Parkhomenko, A.Sobiczewski

Proton one-quasiparticle states of heaviest nuclei

NUCLEAR STRUCTURE 229,231,233,235,237,239,241,243Np; 235,237,239,241,243,245,247,249Am, 237,239,241,243,245,247,249,251Bk, 243,245,247,249,251,253,255Es, 243,245,247,249,251,253,255,257,259,261Md, 249,251,253,255,257,259,261Lr, 253,255,257,259,261,263Db, 259,261,263,265,267,269,271Bh, 263,265,267,269,271,273,275Mt, 271,273,275,277,279,281,283Rg, 277,279,281,283,285,287,289Nh, 283,285,287,289,291,293Mc, 287,289,291,293,295Ts; calculated deformation parameters, pairing gap, single-particle energy levels, configurations. Macroscopic-microscopic approach.


2004SO09      Nucl.Phys. A734, 176 (2004)

A.Sobiczewski, I.Muntian

Mechanism behind the relation between shell structure and stability of heaviest nuclei

NUCLEAR STRUCTURE Rf, Ds; Z=114; Z=120; calculated fission barriers, shell effects. Macroscopic-microscopic model.

doi: 10.1016/j.nuclphysa.2004.01.028
Citations: PlumX Metrics


2003MU15      Yad.Fiz. 66, 1051 (2003); Phys.Atomic Nuclei 66, 1015 (2003)

I.Muntian, Z.Patyk, A.Sobiczewski

Calculated Masses of Heaviest Nuclei

NUCLEAR STRUCTURE Z=110-119; calculated masses, deformation parameters, Qα. Z=84-108; calculated masses.

doi: 10.1134/1.1586412
Citations: PlumX Metrics


2003MU26      Acta Phys.Pol. B34, 2073 (2003)

I.Muntian, S.Hofmann, Z.Patyk, A.Sobiczewski

Properties of heaviest nuclei

NUCLEAR STRUCTURE Z=102-109; calculated deformation parameters, Qα. Microscopic-macroscopic approach, comparisons with data.


2003MU27      Acta Phys.Pol. B34, 2141 (2003)

I.Muntian, Z.Patyk, A.Sobiczewski

Fission properties of superheavy nuclei

NUCLEAR STRUCTURE Z=96-120; calculated fission barrier heights.


2003PA55      Acta Phys.Pol. B34, 2153 (2003)

O.Parkhomenko, I.Muntian, Z.Patyk, A.Sobiczewski

Nucleon separation energies for heaviest nuclei

NUCLEAR STRUCTURE Z=82-120; calculated neutron separation energies. Microscopic-macroscopic approach.


2003PA59      Acta Phys.Hung.N.S. 18, 361 (2003)

Z.Patyk, I.Muntian, A.Sobiczewski

Systematics of Spontaneous-Fission Barrier Heights

NUCLEAR STRUCTURE 294Og; calculated fission barrier energy vs deformation. Z=96-118; calculated fission barrier heights. Macroscopic-microscopic approach.

doi: 10.1556/APH.18.2003.2-4.42
Citations: PlumX Metrics


2002MU22      J.Nucl.Radiochem.Sci. 3, No 1, 169 (2002)

I.Muntian, Z.Patyk, A.Sobiczewski

Collective Properties and Structure of Heavy and Superheavy Nuclei

NUCLEAR STRUCTURE Z=82-118; calculated shell-correction energies, deformation parameters. 208Pb, 270Hs, 298Fl; calculated neutron single-particle energies. 252,254No, 266Sg, 270Hs; calculated 2+ states energies, deformation effects.


2001DI26      Hyperfine Interactions 132, 495 (2001)

J.Dilling, D.Ackermann, F.P.Hessberger, S.Hofmann, H.-J.Kluge, G.Marx, G.Munzenberg, Z.Patyk, W.Quint, D.Rodriguez, C.Scheidenberger, J.Schonfelder, G.Sikler, A.Sobiczewski, C.Toader, C.Weber

A Physics Case for SHIPTRAP: Measuring the masses of transuranium elements


2001MU06      Phys.Lett. 500B, 241 (2001)

I.Muntian, Z.Patyk, A.Sobiczewski

Are Superheavy Nuclei Around 270Hs Really Deformed ?

NUCLEAR STRUCTURE Z=94-114; A=240-282; calculated ground-state deformation. 252,254,256,258,260,262,264,266,268,270Rf, 256,258,260,262,264,266,268,270,272,274Sg, 262,264,266,268,270,272,274,276,278Hs; calculated 2+ state level energies, Qα, α-decay branching ratios. Macroscopic-microscopic approach.

doi: 10.1016/S0370-2693(01)00090-9
Citations: PlumX Metrics


2001MU10      Acta Phys.Pol. B32, 629 (2001)

I.Muntian, A.Sobiczewski

Collective Properties of ' Deformed ' Superheavy Nuclei

NUCLEAR STRUCTURE 248,250,252,254,256,258,260,262,264,266No, 252,254,256,258,260,262,264,266,268,270Rf, 256,258,260,262,264,266,268,270,272,274Sg, 262,264,266,268,270,272,274,276,278Hs, 266,268,270,272,274,276,278Ds, 270,272,274,276,278Cn; calculated 2+ state energies, deformations, Qα, α-decay branching ratios.


2001MU11      Acta Phys.Pol. B32, 691 (2001)

I.Muntian, Z.Patyk, A.Sobiczewski

Sensitivity of Calculated Properties of Superheavy Nuclei to Various Changes

NUCLEAR STRUCTURE 256,258,260,262,264,266,268,270,272,274Sg, 262,264,266,268,270,272,274,276,278Hs, 266,268,270,272,274,276,278,280,282Ds, 274,276,278,280,282,284,286Cn, 282,284,286,288,290Fl, 286,288,290,292,294Lv, 290,292,294,296,298Og, 294,296,298,300,302120; calculated ground-state mass, deformation, neutron separation energy, Qα, T1/2. Macroscopic-microscopic approach.


2001SO03      Phys.Rev. C63, 034306 (2001)

A.Sobiczewski, I.Muntian, Z.Patyk

Problem of ' Deformed ' Superheavy Nuclei

NUCLEAR STRUCTURE Z=88-112; A=134-278; calculated deformation, 2+ state energies, α-branching ratios for even-even nuclides. 254No, 270Hs; calculated single-particle levels, J, π. Cranking approximation.

doi: 10.1103/PhysRevC.63.034306
Citations: PlumX Metrics


2001SO15      Yad.Fiz. 64, No 6, 1180 (2001); Phys.Atomic Nuclei 64, 1105 (2001)

A.Sobiczewski, I.Muntian, Z.Patyk

Calculated Properties of Superheavy Nuclei

NUCLEAR STRUCTURE Z=82-126; calculated deformation parameters, first 2+ level energies, α-decay branching ratios.

doi: 10.1134/1.1383625
Citations: PlumX Metrics


1999GH02      Nucl.Phys. A651, 237 (1999)

R.A.Gherghescu, J.Skalski, Z.Patyk, A.Sobiczewski

Non-Axial Shapes in Spontaneous Fission of Superheavy Nuclei

NUCLEAR STRUCTURE 282Hs, 298Fl, 294,300120, 300,308122; calculated energy surfaces; deduced fission trajectories, role of non-axial paths.

doi: 10.1016/S0375-9474(99)00126-8
Citations: PlumX Metrics


1999MU16      Phys.Rev. C60, 041302 (1999)

I.Muntian, Z.Patyk, A.Sobiczewski

Rotational Properties of Deformed Superheavy Nuclei

NUCLEAR STRUCTURE Z=95-115; calculated 2+ level energies, deformation, pairing features. Cranked mean-field approach.

doi: 10.1103/PhysRevC.60.041302
Citations: PlumX Metrics


1999PA06      Phys.Rev. C59, 704 (1999)

Z.Patyk, A.Baran, J.F.Berger, J.Decharge, J.Dobaczewski, P.Ring, A.Sobiczewski

Masses and Radii of Spherical Nuclei Calculated in Various Microscopic Approaches

NUCLEAR STRUCTURE Ca, Sr, Sn, Sm, Pb, Th; calculated masses, radii. Several models compared.

doi: 10.1103/PhysRevC.59.704
Citations: PlumX Metrics


1999SO12      Acta Phys.Slovaca 49, 83 (1999)

A.Sobiczewski, I.Muntian, Z.Patyk

Stability and Properties of Superheavy Nuclei

NUCLEAR STRUCTURE 208Pb, 270Hs, 298Fl; calculated single-particle levels, J, π. Z=110-118; calculated even-even isotopes T1/2 for α-decay, spontaneous fission. Macroscopic-microscopic approach.


1998PA34      Acta Phys.Hung.N.S. 7, 13 (1998)

Z.Patyk, J.Skalski, R.A.Gherghescu, A.Sobiczewski

Shell Structure and Shapes of Superheavy Nuclei

NUCLEAR STRUCTURE Z=82-120; calculated shell correction energies, deformation parameters. 270Hs; calculated single-particle energies. 292Og, 294,298120; calculated fission deformation trajectories.


1998SO20      Acta Phys.Pol. B29, 2191 (1998)

A.Sobiczewski

Structure of Heaviest Nuclei


1997GH02      Acta Phys.Pol. B28, 31 (1997)

R.A.Gherghescu, Z.Patyk, A.Sobiczewski

On the Fission Half-Lives of Spherical Superheavy Nuclei

NUCLEAR STRUCTURE Z=114; calculated fission barriers, fission, α-decay T1/2 for even-N isotopes. Dynamical approach.


1997PA31      Nucl.Phys. A626, 307c (1997)

Z.Patyk, A.Sobiczewski

Present Status of the Microscopic Calculations of Nuclear Masses and Perspectives

ATOMIC MASSES Cs, Pb; compiled, reviewed mass calculations.

doi: 10.1016/S0375-9474(97)00551-4
Citations: PlumX Metrics


1997PA32      Nucl.Phys. A626, 337c (1997)

Z.Patyk, R.Smolanczuk, A.Sobiczewski

Masses and Shapes of Heaviest Nuclei

NUCLEAR STRUCTURE Z=82-120; calculated masses; deduced shell, deformation effects.

doi: 10.1016/S0375-9474(97)00555-1
Citations: PlumX Metrics


1997SO11      Acta Phys.Pol. B28, 21 (1997)

A.Sobiczewski

Properties and Synthesis of Heaviest Nuclei

NUCLEAR STRUCTURE Z=82-120; reviewed, analyzed mass, fission, α-decay T1/2 data and theory.


1996PA18      Acta Phys.Pol. B27, 457 (1996)

Z.Patyk, A.Baran, J.F.Berger, J.Decharge, J.Dobaczewski, R.Smolanczuk, A.Sobiczewski

On the Quality of Microscopic Descriptions of Nuclear Mass

NUCLEAR STRUCTURE 202,204,206,208,210,212,214Pb; calculated mass, difference with respect to data. Several microscopic approaches compared.


1996SO13      Acta Phys.Pol. B27, 1011 (1996)

A.Sobiczewski, R.Smolanczuk

On Masses of Heaviest Nuclei

NUCLEAR STRUCTURE Z=82-116; N=130-154; calculated masses of heaviest nuclei. Macroscopic-microscopic approximation.


1995SM05      Phys.Rev. C52, 1871 (1995)

R.Smolanczuk, J.Skalski, A.Sobiczewski

Spontaneous-Fission Half-Lives of Deformed Superheavy Nuclei

NUCLEAR STRUCTURE Z=104-114; A=246-288; calculated equilibrium deformation, SF-decay T1/2. Dynamical approach, multi-dimensional deformation space.

doi: 10.1103/PhysRevC.52.1871
Citations: PlumX Metrics


1994SO21      Fiz.Elem.Chastits At.Yadra 25, 295 (1994); Sov.J.Part.Nucl 25, 119 (1994)

A.Sobiczewski

Progress in Theoretical Understanding of Properties of the Heaviest Nuclei

NUCLEAR STRUCTURE Z=92-114; compiled, reviewed calculations on ground state properties; deduced shell effects role.


1994SO31      J.Alloys and Compounds 213/214, 38 (1994)

A.Sobiczewski, R.Smolanczuk, J.Skalski

Properties and decay of actinide and transactinide nuclei

NUCLEAR STRUCTURE Z=92-106; analyzed α-decay and fission T1/2, shell effects. 270Hs; calculated single-particle level energies.

doi: 10.1016/0925-8388(94)90878-8
Citations: PlumX Metrics


1993SM03      Acta Phys.Pol. B24, 457 (1993)

R.Smolanczuk, J.Skalski, H.V.Klapdor-Kleingrothaus, A.Sobiczewski

Importance of Sufficiently Large Deformation Space Admitted in the Analysis of Spontaneous Fission

RADIOACTIVITY 260Sg(SF); calculated T1/2. Fission trajectory, action integral minimization, large deformation space.


1992CW01      Z.Phys. A342, 203 (1992)

S.Cwiok, A.Sobiczewski

Potential Energy and Fission Barriers of Superheavy Nuclei Calculated in Multidimensional Deformation Space

NUCLEAR STRUCTURE 276Cn, 298Fl; calculated potential energy contours vs deformations β2, β4; Z=112-130; N=152-210; calculated β20, β40, β60 equilibrium deformations contour, fission barriers. Macroscopic-microscopic method, multi-dimensional deformation space.


1991PA02      Phys.Lett. 256B, 307 (1991)

Z.Patyk, A.Sobiczewski

Main Deformed Shells of Heavy Nuclei Studied in a Multidimensional Space

NUCLEAR STRUCTURE 252Fm, 270Hs; calculated nucleon single particle spectra. Multi-dimensional space, deformations.

doi: 10.1016/0370-2693(91)91766-O
Citations: PlumX Metrics


1991PA11      Nucl.Phys. A533, 132 (1991)

Z.Patyk, A.Sobiczewski

Ground-State Properties of the Heaviest Nuclei Analyzed in a Multidimensional Deformation Space

NUCLEAR STRUCTURE A=228-280; calculated equilibrium deformation, mass, α-decay Q, log(T1/2). Multi-dimensional deformation space.

doi: 10.1016/0375-9474(91)90823-O
Citations: PlumX Metrics


1989CW01      Nucl.Phys. A491, 281 (1989)

S.Cwiok, P.Rozmej, A.Sobiczewski, Z.Patyk

Two Fission Modes of the Heavy Fermium Isotopes

NUCLEAR STRUCTURE 254,258Fm, 272Hs; calculated fission barrier shapes, potential energy surfaces; deduced deformations role.

doi: 10.1016/0375-9474(89)90703-3
Citations: PlumX Metrics


1989PA02      Nucl.Phys. A491, 267 (1989)

Z.Patyk, A.Sobiczewski, P.Armbruster, K.-H.Schmidt

Shell Effects in the Properties of the Heaviest Nuclei

NUCLEAR STRUCTURE N=130-158; analyzed masses, α-decay T1/2, Eα, SF-barrier, T1/2 data; deduced shell effects role.

doi: 10.1016/0375-9474(89)90702-1
Citations: PlumX Metrics


1989PA22      Nucl.Phys. A502, 591c (1989)

Z.Patyk, J.Skalski, A.Sobiczewski, S.Cwiok

Potential Energy and Spontaneous-Fission Half-Lives for Heavy and Superheavy Nuclei

NUCLEAR STRUCTURE Z=100-130; N=140-210; calculated potential energies, SF T1/2. Macroscopic-microscopic method.

doi: 10.1016/0375-9474(89)90691-X
Citations: PlumX Metrics


1989SO03      Phys.Lett. 224B, 1 (1989)

A.Sobiczewski, Z.Patyk, S.Cwiok

Deformed Superheavy Nuclei

NUCLEAR STRUCTURE N=150-190; Z=100-130; calculated equilibrium deformation, deformation energy, total T1/2 contours. Deformed superheavy nuclei.

doi: 10.1016/0370-2693(89)91038-1
Citations: PlumX Metrics


1988RO05      Phys.Lett. 203B, 197 (1988)

P.Rozmej, S.Cwiok, A.Sobiczewski

Is Octupole Deformation Sufficient to Describe the Properties of ' Octupolly ' Unstable Nuclei ( Question )

NUCLEAR STRUCTURE 216,218,220,222,224,226,228Ra; calculated deformation energy, equilibrium deformation.

doi: 10.1016/0370-2693(88)90537-0
Citations: PlumX Metrics


1988SO08      Nucl.Phys. A485, 16 (1988)

A.Sobiczewski, Z.Patyk, S.Cwiok, P.Rozmej

Study of the Potential Energy of ' Octupole '-Deformed Nuclei in a Multidimensional Deformation Space

NUCLEAR STRUCTURE 218,220,222,224,226Ra; calculated potential energy surfaces. 216,218,220,222,224,226Rn, 216,218,220,222,224,226,228Ra, 218,220,222,224,226,228Th, 220,222,224,226,228U, 222,224,226,228Pu, 224,226,228Cm, 226,228,230Cf, 138,140,142,144,146,148Xe, 140,142,144,146,148,150,152Ba, 144,142,146,148,150Ce, 144,146,148Nd; calculated equilibrium deformation, energy. Multi-dimensional deformation space, macroscopic-microscopic method.

doi: 10.1016/0375-9474(88)90519-2
Citations: PlumX Metrics


1987BE42      Nucl.Phys. A473, 77 (1987)

R.Bengtsson, I.Ragnarsson, S.Aberg, A.Gyurkovich, A.Sobiczewski, K.Pomorski

Properties of Nuclei at the Third-Minimum Deformation

NUCLEAR STRUCTURE 226,230,232,236Th, 228Rn, 236Pu; calculated potential energy surfaces vs deformation. Macroscopic-microscopic method.

doi: 10.1016/0375-9474(87)90156-4
Citations: PlumX Metrics


1987BO12      Acta Phys.Pol. B18, 47 (1987)

K.Boning, Z.Patyk, A.Sobiczewski, B.Nerlo-Pomorska, K.Pomorski

Role of a Consistency Condition in Macroscopic-Microscopic Calculations of the Collective Potential Energy

NUCLEAR STRUCTURE 224Ra; calculated oscillator energies, density, potential deformation difference, ratio, microscopic, macroscopic multipole moments ratio, scaled, nonscaled energies.


1987SO03      Phys.Lett. 186B, 6 (1987)

A.Sobiczewski, Z.Patyk, S.Cwiok

Do the Superheavy Nuclei Really Form an Island ( Question )

RADIOACTIVITY Z=104-110(SF), (α); calculated fission barrier heights, T1/2. Liquid-drop energy, shell correction.

doi: 10.1016/0370-2693(87)90502-8
Citations: PlumX Metrics


1987SO11      Acta Phys.Pol. B18, 393 (1987)

A.Sobiczewski, K.Boning

On the Properties of the Lowest Collective States of Nuclei around Radium

NUCLEAR STRUCTURE 224Ra; calculated potential energy, levels, B(λ).


1986BO37      Z.Phys. A325, 479 (1986)

K.Boning, Z.Patyk, A.Sobiczewski, S.Cwiok

Theoretical Half-Lives for the Heaviest Nuclei

RADIOACTIVITY Z=100-110(SF), (α); calculated SF-decay, α-decay T1/2.


1985BO21      Acta Phys.Pol. B16, 393 (1985)

K.Boning, A.Sobiczewski, K.Pomorski

On the Effective Pairing-Interaction Strength in Nuclei

NUCLEAR STRUCTURE A=150-250; calculated pairing interaction strength; deduced dependence on n, p number. Uniform level distribution model, harmonic oscillator basis.


1985BO43      Phys.Lett. 161B, 231 (1985)

K.Boning, A.Sobiczewski, B.Nerlo-Pomorska, K.Pomorski

Coupled Octupole and Quadrupole Vibrations of Nuclei around Radium

NUCLEAR STRUCTURE 226Th; calculated levels, potential energy vs quadrupole, octupole deformations, B(λ); deduced octupole instability.

doi: 10.1016/0370-2693(85)90751-8
Citations: PlumX Metrics


1983BO15      Acta Phys.Pol. B14, 287 (1983)

K.Boning, A.Sobiczewski

Role of the Deformation of Multipolarity Six in the Dynamic Description of Spontaneous Fission

RADIOACTIVITY 230,232,234,236,238,240,242,244,246,248,250,252U, 232,234,236,238,240,242,244,246,248,250,252,254Pu, 234,236,238,240,242,244,246,248,250,252,254,256Cm, 236,238,240,242,244,246,248,250,252,254,256,258Cf, 238,240,242,244,246,248,250,252,254,256,258,260Fm, 240,242,244,246,248,250,252,254,256,258,260,262No; calculated corrections to SF T1/2; deduced six multipolarity deformation role. Dynamical model.

NUCLEAR STRUCTURE 240,242U, 240,242,244,246Pu, 242,244,246,248,250Cm, 242,244,246,248,250,252,254Cf, 244,246,248,250,252,254,256,258Fm, 252,254,256,258,260No; calculated equilibrium monopole, quadrupole, hexadecapole deformations, total deformations, total deformation energy, static electric moment. Dynamic model.


1982GY01      Nucl.Phys. A383, 77 (1982)

A.Gyurkovich, A.Sobiczewski, S.G.Rohozinski

Dependence of Calculated Collective Nuclear Properties on the Form of the Potential Energy and Inertia Tensor

NUCLEAR STRUCTURE 148,152Sm, 166Er; calculated potential energy vs deformation, levels, E2, M1, E0 moments. Collective Hamiltonian.

doi: 10.1016/0375-9474(82)90077-X
Citations: PlumX Metrics


1981BA14      Nucl.Phys. A361, 83 (1981)

A.Baran, K.Pomorski, A.Lukasiak, A.Sobiczewski

A Dynamic Analysis of Spontaneous-Fission Half-Lives

RADIOACTIVITY, Fission A=232-268; calculated T1/2(SF), barrier heights. Dynamical macroscopic, microscopic method.

doi: 10.1016/0375-9474(81)90471-1
Citations: PlumX Metrics


1981GY03      Phys.Lett. 105B, 95 (1981)

A.Gyurkovich, A.Sobiczewski, B.Nerlo-Pomorska, K.Pomorski

On the Stable Octupole Deformation of Nuclei

NUCLEAR STRUCTURE 218,220,222Rn, 220,222,224Ra, 224,226,228Th, 228,230,232U, 234,236,238Pu; calculated potential energy; deduced quadrupole, octupole equilibrium deformations. Macroscopic-Microscopic method.

doi: 10.1016/0370-2693(81)90997-7
Citations: PlumX Metrics


1978PO01      Acta Phys.Pol. B9, 61 (1978)

K.Pomorski, A.Sobiczewski

Properties of Fission Isomers

NUCLEAR STRUCTURE 226Ra, 230,232Th, 234,236,238U, 236,238,240,242,244Pu, 240,242,244,246,248,250Cm; calculated fission isomer properties: moment of inertia, pairing energy gap, g. Nilsson potential.


1977PO06      Nucl.Phys. A283, 394 (1977)

K.Pomorski, T.Kaniowska, A.Sobiczewski, S.G.Rohozinski

Study of the Inertial Functions for Rare-Earth Nuclei

NUCLEAR STRUCTURE 150,152Sm, 166Er; calculated inertial functions.

doi: 10.1016/0375-9474(77)90547-4
Citations: PlumX Metrics


Back to query form    [Next]