NSR Query Results


Output year order : Descending
Format : Normal

NSR database version of April 27, 2024.

Search: Author = M.Vorabbi

Found 17 matches.

Back to query form



2024VO02      Phys.Rev. C 109, 034613 (2024)

M.Vorabbi, C.Barbieri, V.Soma, P.Finelli, C.Giusti

Microscopic optical potentials for medium-mass isotopes derived at the first order of Watson multiple-scattering theory

doi: 10.1103/PhysRevC.109.034613
Citations: PlumX Metrics


2023HE08      J.Phys.(London) G50, 060501 (2023)

C.Hebborn, F.M.Nunes, G.Potel, W.H.Dickhoff, J.W.Holt, M.C.Atkinson, R.B.Baker, C.Barbieri, G.Blanchon, M.Burrows, R.Capote, P.Danielewicz, M.Dupuis, C.Elster, J.E.Escher, L.Hlophe, A.Idini, H.Jayatissa, B.P.Kay, K.Kravvaris, J.J.Manfredi, A.Mercenne, B.Morillon, G.Perdikakis, C.D.Pruitt, G.H.Sargsyan, I.J.Thompson, M.Vorabbi, T.R.Whitehead

Optical potentials for the rare-isotope beam era

doi: 10.1088/1361-6471/acc348
Citations: PlumX Metrics


2022AT03      Phys.Rev. C 105, 055503 (2022)

M.Atzori Corona, M.Cadeddu, N.Cargioli, P.Finelli, M.Vorabbi

Incorporating the weak mixing angle dependence to reconcile the neutron skin measurement on 208Pb by PREX-II

NUCLEAR REACTIONS 208Pb(polarized e-, e-), E=953 MeV; analyzed experimental results of PREX-II experiment reported by 2021Ad10 by fixing the weak mixing angle to its standard model, and using atomic parity violation (APV) experimental results on 208Pb in order to explain the disagreement between PREX-II result and the theoretical nuclear-model predictions, as well as several previous experimental measurements of neutron skin thickness of 208Pb; calculated asymmetry and σ values under the DWBA using modified DREPHA code; deduced neutron skin thickness. Relevance to upcoming P2, MOLLER, MREX, and CREX experiments for resolution of disagreements in results.

doi: 10.1103/PhysRevC.105.055503
Citations: PlumX Metrics


2022VO02      Phys.Rev. C 105, 014621 (2022)

M.Vorabbi, M.Gennari, P.Finelli, C.Giusti, P.Navratil, R.Machleidt

Elastic proton scattering off nonzero spin nuclei

NUCLEAR REACTIONS 6,7Li, 13C(polarized p, p), E=200 MeV; 10B(polarized p, p), E=197 MeV; 1H(9C, p), E=290 MeV; calculated σ(θ) and analyzing powers Ay(θ) using microscopic optical potential (OP) and chiral theories for the nucleon-nucleon (NN) interaction, extended to include the spin of the target nucleus. Comparison with experimental data.

doi: 10.1103/PhysRevC.105.014621
Citations: PlumX Metrics


2021HO15      Phys.Lett. B 822, 136710 (2021)

M.Holl, R.Kanungo, Z.H.Sun, G.Hagen, J.A.Lay, A.M.Moro, P.Navratil, T.Papenbrock, M.Alcorta, D.Connolly, B.Davids, A.Diaz Varela, M.Gennari, G.Hackman, J.Henderson, S.Ishimoto, A.I.Kilic, R.Krucken, A.Lennarz, J.Liang, J.Measures, W.Mittig, O.Paetkau, A.Psaltis, S.Quaglioni, J.S.Randhawa, J.Smallcombe, I.J.Thompson, M.Vorabbi, M.Williams

Proton inelastic scattering reveals deformation in 8He

NUCLEAR REACTIONS 1H(8He, p), E=8.25 MeV/nucleon; measured reaction products, Ep, Ip. 8He; deduced σ(θ), resonance parameters, first 2+ state, quadrupole deformation parameter. Comparison with no-core shell model predictions. Charged particle spectroscopy station IRIS at TRIUMF in Canada.

doi: 10.1016/j.physletb.2021.136710
Citations: PlumX Metrics

Data from this article have been entered in the EXFOR database. For more information, access X4 datasetC2684.


2021VO03      Phys.Rev. C 103, 024604 (2021)

M.Vorabbi, M.Gennari, P.Finelli, C.Giusti, P.Navratil, R.Machleidt

Impact of three-body forces on elastic nucleon-nucleus scattering observables

NUCLEAR REACTIONS 12C(polarized p, p), E=122, 160, 200, 300 MeV; 16O(p, p), (polarized p, p), E=100, 135, 200, 318 MeV; 12C(n, n), E=108, 128, 155, 185, 225 MeV; calculated differential σ(E, θ), and analyzing power Ay(Ε, θ) using nonrelativistic optical model potentials obtained from the no-core shell model densities using two- and three-nucleon chiral interactions; deduced that contribution of the 3N force in the tNN matrix is small for the differential cross section and sizable for the spin observables such as analyzing power. Comparison with experimental data.

doi: 10.1103/PhysRevC.103.024604
Citations: PlumX Metrics


2020AR13      Phys.Rev.Lett. 125, 182501 (2020)

P.Arthuis, C.Barbieri, M.Vorabbi, P.Finelli

Ab Initio Computation of Charge Densities for Sn and Xe Isotopes

NUCLEAR STRUCTURE 100,132Sn, 132,136,138Xe; calculated charge density distributions, neutron skins using self-consistent Green's function theory. Comparison with available data.

doi: 10.1103/PhysRevLett.125.182501
Citations: PlumX Metrics


2020VO04      Phys.Rev.Lett. 124, 162501 (2020)

M.Vorabbi, M.Gennari, P.Finelli, C.Giusti, P.Navratil

Elastic Antiproton-Nucleus Scattering from Chiral Forces

doi: 10.1103/PhysRevLett.124.162501
Citations: PlumX Metrics


2019VO06      Phys.Rev. C 100, 024304 (2019)

M.Vorabbi, P.Navratil, S.Quaglioni, G.Hupin

7Be and 7Li nuclei within the no-core shell model with continuum

NUCLEAR STRUCTURE 7Be, 7Li; calculated levels, resonances, J, π, cluster form factors of ground states, widths, phase shifts of 3He+4He and 6Li+p scattering for 7Be, and 3H+4He, 6Li+n, and 6He+p for 7Li. No-core shell model with continuum. Comparison with experimental data. Relevance to primordial nucleosynthesis, nuclear astrophysics, and fusion energy generation.

doi: 10.1103/PhysRevC.100.024304
Citations: PlumX Metrics


2018GE01      Phys.Rev. C 97, 034619 (2018)

M.Gennari, M.Vorabbi, A.Calci, P.Navratil

Microscopic optical potentials derived from ab initio translationally invariant nonlocal one-body densities

NUCLEAR STRUCTURE 4,6,8He, 12C, 16O; calculated ground-state local and nonlocal neutron and proton densities using relativistic mean-field for spherical nuclei, and NN-N4LO(500)+3Nlnl interaction. Calculated densities applied to optical potential construction for analysis of elastic scattering reactions.

NUCLEAR REACTIONS 4He(p, p), (polarized p, p), E=72, 156, 200 MeV; 1H(6He, p), (8He, p), E=71, 200 MeV, and polarized proton targets; 12C(p, p), (polarized p, p), E=122, 160, 200 MeV; 16O(p, p), (polarized p, p), E=100, 135, 200 MeV; calculated differential σ(θ, E), analyzing powers Ay from translational invariant (trinv) local and nonlocal densities, and from center of mass (COM) contaminated density (wiCOM) and trinv nonlocal densities. Microscopic optical potentials with chiral NN-N4LO(500) interactions as the only input. Comparison with experimental data.

doi: 10.1103/PhysRevC.97.034619
Citations: PlumX Metrics


2018VO02      Phys.Rev. C 97, 034314 (2018)

M.Vorabbi, A.Calci, P.Navratil, M.K.G.Kruse, S.Quaglioni, G.Hupin

Structure of the exotic 9He nucleus from the no-core shell model with continuum

NUCLEAR STRUCTURE 9He; calculated n+8He continuum by ab initio no-core shell model with continuum (NCSMC) formalism and chiral nucleon-nucleon interactions at N4LO; deduced unbound character of 9He, and two resonant states, J, π. Comparison with structure of 10Li and 11B. 4,6,8He; calculated ground-state energies by NCSM using the SRG-evolved N4LO nucleon-nucleon potential. Comparison with available experimental data.

doi: 10.1103/PhysRevC.97.034314
Citations: PlumX Metrics


2018VO16      Phys.Rev. C 98, 064602 (2018)

M.Vorabbi, P.Finelli, C.Giusti

Proton-nucleus elastic scattering: Comparison between phenomenological and microscopic optical potentials

NUCLEAR REACTIONS 16O, 40,42,44,48Ca(p, p), (polarized p, p), E=200, 318 MeV; 58Ni(p, p), (polarized p, p), E=192, 295, 333 MeV; 60Ni(p, p), (polarized p, p), E=178 MeV; 62Ni(p, p), E=156 MeV; 116,118,120,122,124Sn(p, p), (polarized p, p), E=295 MeV; 120Sn, 208Pb(p, p), (polarized p, p), E=200 MeV; 204,206,208Pb(p, p), E=295 MeV; 56Ni(p, p), E(cm)=400 MeV/nucleon; calculated differential σ(θ) relative to Rutherford σ, and analyzing power Ay using nonrelativistic optical model potentials, and compared with experimental data.

doi: 10.1103/PhysRevC.98.064602
Citations: PlumX Metrics


2017VO09      Phys.Rev. C 96, 044001 (2017)

M.Vorabbi, P.Finelli, C.Giusti

Optical potentials derived from nucleon-nucleon chiral potentials at N4 LO

NUCLEAR REACTIONS 12C, 16O, 40Ca(p, p), (polarized p, p), E=200 MeV; calculated pp and np Wolfenstein amplitudes, cross sections, analyzing powers, and spin rotations; deduced Optical potentials using use NN chiral potentials at fifth order (N4LO). Comparison with experimental data.

doi: 10.1103/PhysRevC.96.044001
Citations: PlumX Metrics


2016VO02      Phys.Rev. C 93, 034619 (2016)

M.Vorabbi, P.Finelli, C.Giusti

Theoretical optical potential derived from nucleon-nucleon chiral potentials

NUCLEAR REACTIONS 16O(p, p), (polarized p, p), E=100, 200, 450-600 MeV; calculated real and imaginary parts of pp and pn Wolfenstein amplitudes using two different chiral potentials (EM and EGM), σ(θ) and analyzing powers Ay(θ); deduced new microscopic optical potential for elastic proton-nucleus scattering. Chiral perturbation theory. Comparison with experimental data.

doi: 10.1103/PhysRevC.93.034619
Citations: PlumX Metrics


2014ME03      Phys.Rev. C 89, 034604 (2014)

A.Meucci, M.Vorabbi, C.Giusti, F.D.Pacati, P.Finelli

Elastic and quasi-elastic electron scattering on the N=14, 20, and 28 isotonic chains

NUCLEAR REACTIONS 22,28O, 24,30Ne, 26,32,40Mg, 28,34,42Si, 30,36,44S, 32,38,46Ar, 34,40,42,44,48Ca, 42,48,50Ti, 44,50,52,54Cr, 46,54Fe, 56Ni(e, e), (e, e'), E=250, 850, 1080 MeV; calculated differential σ(θ) for elastic and quasi-elastic scattering, proton and neutron density distributions, parity-violating asymmetry parameter, differential RPWIA and RGF σ for (e, e') for selected isotones of N=14, 20 and 28. Distorted-wave Born approximation (DWBA) and relativistic Hartree-Bogoliubov (RHB) approach with density dependent meson-exchange interaction. Comparison with experimental data.

doi: 10.1103/PhysRevC.89.034604
Citations: PlumX Metrics


2014ME12      Phys.Rev. C 90, 027301 (2014)

A.Meucci, M.Vorabbi, C.Giusti, P.Finelli

Neutron density distribution and neutron skin thickness of 208Pb

NUCLEAR STRUCTURE 208Pb; calculated neutron density distribution and neutron thickness using various nonrelativistic and relativistic mean-field models. Comparison with experimental data from (γ, π0) at Mainz, and parity-violating asymmetry parameter for elastic electron scattering and neutron thickeners data for PREX experiment at JLab.

doi: 10.1103/PhysRevC.90.027301
Citations: PlumX Metrics


2013ME06      Phys.Rev. C 87, 054620 (2013)

A.Meucci, M.Vorabbi, C.Giusti, F.D.Pacati, P.Finelli

Elastic and quasi-elastic electron scattering off nuclei with neutron excess

NUCLEAR REACTIONS 14,16,18,20,22,24,26,28O(e, e), (e, e'), E=374.5, 850, 1080 MeV; 36,38,40,42,44,46,48,50,52,54,56Ca(e, e), (e, e'), E=496.8, 560, 850 MeV; 48Ca(e, e), E=2.2 GeV; calculated differential σ(θ, ω), differential RPWIA and RGF σ(ω), parity-violating asymmetry parameters for elastic and inelastic scattering. 208Pb(e, e), (e, e'), E=1.063 GeV; calculated weak charge density and asymmetry parameter compared with measurements by PREX Collaboration. Distorted-wave Born approximation approach with proton and neutron density distributions from relativistic Dirac-Hartree model. Comparison with experimental data.

NUCLEAR STRUCTURE 14,16,18,20,22,24,26,28O, 36,38,40,42,44,46,48,50,52,54,56Ca; evaluated neutron and proton distributions using relativistic Dirac-Hartree model.

doi: 10.1103/PhysRevC.87.054620
Citations: PlumX Metrics


Back to query form