NSR Query Results


Output year order : Descending
Format : Normal

NSR database version of April 27, 2024.

Search: Author = C.D.Pruitt

Found 17 matches.

Back to query form



2023CH46      Phys.Rev.Lett. 131, 172501 (2023)

R.J.Charity, J.Wylie, S.M.Wang, T.B.Webb, K.W.Brown, G.Cerizza, Z.Chajecki, J.M.Elson, J.Estee, D.E.M.Hoff, S.A.Kuvin, W.G.Lynch, J.Manfredi, N.Michel, D.G.McNeel, P.Morfouace, W.Nazarewicz, C.D.Pruitt, C.Santamaria, S.Sweany, J.Smith, L.G.Sobotka, M.B.Tsang, A.H.Wuosmaa

Strong Evidence for 9N and the Limits of Existence of Atomic Nuclei

RADIOACTIVITY 9N(p), 8C, 6Be(2p) [from 9Be(13O, X)9N, E=69.5 MeV/nucleon]; measured decay products, Ep, Ip. 9N, 8C; deduced invariant-mass spectra, level diagrams, possible single resonancelike peak in the spectrum. R-matrix fits, comparison with the theoretical predictions of an open-quantum-system approach. The National Superconducting Cyclotron Laboratory at Michigan State University.

doi: 10.1103/PhysRevLett.131.172501
Citations: PlumX Metrics


2023HE08      J.Phys.(London) G50, 060501 (2023)

C.Hebborn, F.M.Nunes, G.Potel, W.H.Dickhoff, J.W.Holt, M.C.Atkinson, R.B.Baker, C.Barbieri, G.Blanchon, M.Burrows, R.Capote, P.Danielewicz, M.Dupuis, C.Elster, J.E.Escher, L.Hlophe, A.Idini, H.Jayatissa, B.P.Kay, K.Kravvaris, J.J.Manfredi, A.Mercenne, B.Morillon, G.Perdikakis, C.D.Pruitt, G.H.Sargsyan, I.J.Thompson, M.Vorabbi, T.R.Whitehead

Optical potentials for the rare-isotope beam era

doi: 10.1088/1361-6471/acc348
Citations: PlumX Metrics


2023PR03      Phys.Rev. C 107, 014602 (2023)

C.D.Pruitt, J.E.Escher, R.Rahman

Uncertainty-quantified phenomenological optical potentials for single-nucleon scattering

NUCLEAR REACTIONS 24Mg(n, n), E=3.4-14.83 MeV; Mg(n, n), E=1.969-21.6 MeV; 27Al(n, n), E=3.2-136 MeV; 28Si(n, n), E=21.7 MeV; Si(n, n), E=5.44-75 MeV; 31P(n, n), E=3.5-9.05 MeV; 32S(n, n), E=21.7 MeV; S(n, n), E=3-40.3 MeV; Cl(n, n), E=14.1 MeV; K(n, n), E=3-7.91 MeV; Ar(n, n), E=7.75, 14 MeV; 40Ca(n, n), E=2.06-40.0 MeV; Ca(n, n), E=65.0 MeV; 45Sc(n, n), E=2.62-10.0 MeV; Ti(n, n), E=4.5-13.95 MeV; 51V(n, n), E=5.44-14.37 MeV; 52Cr(n, n), E=3.0-21.6 MeV; 54Fe(n, n), E=7.0-26 MeV; 55Mn(n, n), E=2.47-11.01 MeV; Fe(n, n), E=55.0-75.0 MeV; 56Fe(n, n), E=4.6-26 MeV; 58Ni(n, n), E=7.904-24.0 MeV; Ni(n, n), E=3.0-21.6 MeV; 59Co(n, n), E=2.0-23.0 MeV; 60Ni(n, n), E=4.34-24.0 MeV; 63Cu(n, n), E=5.5-13.92 MeV; Cu(n, n), E=1.6-155 MeV; Ge(n, n), E=7.55 MeV; As(n, n), E=8.05 MeV; Se(n, n), E=1.0-14.1 MeV; 80Se(n, n), E=4.0-10.0 MeV; Sr(n, n), E=3.2-14.76 MeV; 88Sr(n, n), E=11.0 MeV; 89Y(n, n), E=3.83-21.6 MeV; 90Zr(n, n), E=2.0-24.0 MeV; 91Zr(n, n), E=8.0-24.0 MeV; Zr(n, n), E=55.0-75.0 MeV; 92Mo(n, n), E=1.5-26.0 MeV; 92Zr(n, n), E=2.0-24.0 MeV; 93Nb(n, n), E=2.55-20.0 MeV; 94Zr(n, n), E=1.5-24.0 MeV; 96,100Mo(n, n), E=1.5-26.0 MeV; 98Mo(n, n), E=1.8-26.0 MeV; 103Rh(n, n), E=1.5-9.995 MeV; Pd(n, n), E=1.5-8.03 MeV; 107Ag(n, n), E=1.6-4.0 MeV; Ag(n, n), E=4.51-9.99 MeV; Cd(n, n), E=2.25-96.0 MeV; In(n, n), E=4.5-14.0 MeV; 116Sn(n, n), E=9.945-24.0 MeV; 118Sn(n, n), E=11.0-24.0 MeV; Sn(n, n), E=6.04-65.0 MeV; 120Sn(n, n), E=1.55-16.905 MeV; 123Sb(n, n), E=1.55-14.0 MeV; 124Sn(n, n), E=11.0-24.0 MeV; 127I(n, n), E=4.0-16.1 MeV; Te(n, n), E=3.2-14.0 MeV; Ba(n, n), E=1.0-5.0 MeV; La(n, n), E=2.545-3.578 MeV; Ce(n, n), E=0.98-21.6 MeV; 141Pr(n, n), E=1.2-8.0 MeV; 142,144Nd(n, n), E=7.0 MeV; Nd(n, n), E=0.98 MeV; 148Sm(n, n), E=2.47-7.0 MeV; 197Au(n, n), E=4.1-8.05 MeV; Hg(n, n), E=3.0-16.0 MeV; 206Pb(n, n), E=7.0-21.6 MeV; Pb(n, n), E=155 MeV; 208Pb(n, n), E=1.8-136.0 MeV; 209Bi(n, n), E=2-24 MeV; 27Al(polarized n, n), E=7.62, 14, 17 MeV; 40Ca(polarized n, n), E=9.91, 11.91, 13.9, 16.923 MeV; 54Fe(polarized n, n), E=9.941, 13.937, 16.93 MeV; 58Ni(polarized n, n), E=9.906, 13.94, 16.934 MeV; 65Cu(polarized n, n), E=9.96, 13.9 MeV; 89Y(polarized n, n), E=9.954, 13.934, 16.93 MeV; 93Nb(polarized n, n), E=9.941, 13.915 MeV; 120Sn(polarized n, n), E=9.907, 13.894 MeV; 208Pb(polarized n, n), E=1.8, 5.969, 6.967, 7.962, 8.958, 9.95 MeV; 209Bi(polarized n, n), E=4.5, 6, 9 MeV; Mg(n, X), E=0.008-39.807, 5.293-297.8 MeV; 27Al(n, X), E=0.935, 0.25-19.286, 1.999-80.62, 5.293-297.772 MeV; Si(n, X), E=0.187-47.68, 1.996-79.828, 5.293-297.772 MeV; S(n, X), E=0.102, 2.259-14.888, 5.293-297.8 MeV; 40Ca(n, X), E=0.04-6.058, 5.293-297.772 MeV; 48Ti(n, X), E=0.974-4.025, 5.293-297.8 MeV; Cr(n, X), E=0.185-29.306; 52Cr(n, X), E=0.021, 1.0-4.15, 5.293-297.8 MeV; Fe(n, X), E=2.268 MeV; 56Fe(n, X), E=0.187-48.608, 5.293-297.8, 1.0-18.026 MeV; 58Ni(n, X), E=0.003-67.481, 0.5-19.54, 5.293-297.8 MeV; Cu(n, X), E=1.2-4.5, 5.293-297.772 MeV; 89Y(n, X), E=1.822-19.52, 5.293-297.8 MeV; 90Zr(n, X), E=2.349, 0.433-1.54, 0.933-5.054, 5.293-297.772 MeV; 93Nb(n, X), E=0.75-3.963, 0.215-1.32, 5.293-297.772 MeV; Mo(n, X), E=2.253-14.713, 0.103-1.105, 0.215-1.32, 1.822-19.28, 0.985-4.195, 5.293-297.8 MeV; Sn(n, X), E=0.002, 0.215-1.35, 5.293-297.772 MeV; Ce(n, X), E=0.182, 1.013, 2.26-14.866, 17.5-27.8, 2.253-56.92, 160.0-280.0 MeV; 197Au(n, X), E=0.048-4.389, 5.293-297.8 MeV; Hg(n, X), E=0.04, 1.007-2.007, 2.255-14.873, 5.293-297.8 MeV; 208Pb(n, X), E=17.665, 0.717-1.719, 2.491-14.137, 5.293-297.772; 209Bi(n, X), E=0.011-1.013, 1.237-3.353, 2.376-13.977, 69.547, 5.293-297.772 MeV; analyzed experimental data taken from the EXFOR database for neutron differential elastic σ(E), neutron analyzing powers, and neutron total σ(E) for Koning-Delaroche (KD), uncertainty-quantification (KDUQ) using Markov-chain Monte Carlo (MMCC) method for parameter inference; deduced uncertainty-quantified phenomenological optical potentials and tools for forward uncertainty propagation.

NUCLEAR REACTIONS 27Al(p, p), E=17.0-183.0 MeV; 28Si(p, p), (polarized p, p), E=17.8-180.0 MeV; 40Ca(p, p), (polarized p, p), E=16.0-201.4 MeV; 54Fe(p, p), E=9.69-65.0 MeV; 54Fe(polarized p, p), E=9.69-24.6 MeV; Fe(p, p), E=182.4 MeV; 54Fe(polarized p, p), E=155, 179 MeV; 56Fe(p, p), E=16.0-156.0 MeV; 56Fe(polarized p, p), E=14-65 MeV; 58Ni(p, p), E=10.7-192.0 MeV; 58Ni(polarized p, p), E=18.6-192.0 MeV; Ni(polarized p, p), E=155 MeV; 60Ni(p, p), E=14.4-65.0 MeV; 60Ni(polarized p, p), E=20.4-65 MeV; 90Zr, 120Sn(p, p), E=9.7-160.0 MeV; 90Zr, 120Sn(polarized p, p), E=9.7-40.0 MeV; 208Pb, 209Bi(p, p), E=16.0-200.0 MeV; 208Pb(polarized p, p), E=26.3-200 MeV; 27Al(p, X), E=8.8-234 MeV; Si(p, X), E=20.7-65.5 MeV; 40Al(p, X), E=10.34-65.5 MeV; Ca(p, X), E=99.3, 179.6 MeV; Fe(p, X), E=8.8-230 MeV; 56Fe(p, X), E=14.5-60.8 MeV; 63Cu(p, X), E=6.75-14.5 MeV; Cu(p, X), E=8.78-225 MeV; 90Zr(p, X), E=14.5, 30-60.8 MeV; Zr(p, X), E=9.2-98.8 MeV; Sn(p, X), E=9.99-221 MeV; 120Sn(p, X), E=14.5-65.5 MeV; Pb(p, X), E=9.92-226 MeV; 208Pb(p, X), E=21.1-65.5 MeV; analyzed experimental data taken from the EXFOR database for proton differential elastic σ(E), proton analyzing powers, and proton total σ(E) for Koning-Delaroche (KD), uncertainty-quantification (KDUQ) using Markov-chain Monte Carlo (MCMC) for parameter inference; deduced uncertainty-quantified phenomenological optical model potentials and tools for forward uncertainty propagation and tools for forward uncertainty propagation.

NUCLEAR REACTIONS 40Ca(n, n), E=13.905, 16.916 MeV; Ca, 51V, 55Mn, 59Co, 88Sr, 89Y, 90Zr, 93Nb, 122Sn, 165Ho, 206Pb, 209Bi(n, n), E=11.01 MeV; 54Fe(n, n), E=9.94-26.0 MeV; 56Fe(n, n), E=11.0-26.0 MeV; 58,60Ni(n, n), E=9.958, 13.941 MeV; 65Cu(n, n), E=9.94, 13.92 MeV; 92,96,98,100Mo(n, n), E=11.0-26.0 MeV; 116Sn(n, n), E=9.945-24.0 MeV; 118,124Sn(n, n), E=11.0, 24.0 MeV; 120Sn(n, n), E=9.943-16.905 MeV; 208Pb(n, n), E=11.0-26.0 MeV; 40Ca(polarized n, n), E=10.935, 13.904, 16.923 MeV; 58Ni(polarized n, n), E=9.92, 13.91 MeV; 116,120Sn(polarized n, n), E=9.907, 13.894 MeV; 208Pb(polarized n, n), E=9.97, 13.9 MeV; 40Ca, 59Co, 208Pb(p, p), E=40.0, 65.0 MeV; 44,48Ca, 89Y, 98,100Mo, 209Bi(p, p), E=65.0 MeV; 48,50Ti(p, p), E=16.0, 65.0 MeV; 54Fe, 58,60Ni, 90Zr(p, p), E=16.0-65.0 MeV; 56Fe(p, p), E=17.2-65.0 MeV; 62Ni(p, p), E=20.4-65.0 MeV; 63,65Cu, 76,82Se, 134,136,138Ba(p, p), E=16.0 MeV; 64Ni(p, p), E=20.4, 65.0 MeV; 64,66,70Zn, 118,122Sn(p, p), E=20.4 MeV; 68Zn(p, p), E=20.4, 40.0 MeV; 72,74Ge, 106,108,116Cd(p, p), E=22.3 MeV; 78,80Se(p, p), E=16.0, 22.3 MeV; 86,88Sr(p, p), E=24.6 MeV; 110,112,114Cd(p, p), E=20.4, 22.3 MeV; 116,124Sn(p, p), E=16.0, 20.4 MeV; 120Sn(p, p), E=16.0-40.0 MeV; 40,44,48Ca, 46,48,50Ti, 59Co, 64Ni, 89Y, 90Zr, 98,100Mo, 144Sm, 208Pb, 209Bi(polarized p, p), E=65.0 MeV; 48,50Ti, 63,65Cu, 76,78,80,82Se, 90Zr, 116,124Sn, 134,136,138Ba(polarized p, p), E=16.0 MeV; 54Fe, 58,60Ni(polarized p, p), E=16.0-65.0 MeV; 56Fe(polarized p, p), E=17.2-65.0 MeV; 59Co, 68Zn(polarized p, p), E=40.0 MeV; 62Ni(polarized p, p), E=20.4-65.0 MeV; 64Ni, 64,66,68,70Zn, 110,112,114Cd, 118,122,124Sn(polarized p, p), E=20.4 MeV; 72,74Ge, 78,80Se, 106,108,110,112,114,116Cd(polarized p, p), E=22.3 MeV; 86,88Sr(polarized p, p), E=24.6 MeV; 120Sn(polarized p, p), E=16.0-40.0 MeV; analyzed experimental data taken from the EXFOR database for neutron and proton differential elastic σ(E), and neutron and proton analyzing powers for Chapel Hill'89 (CH89), uncertainty-quantification (CHUQ) using Markov-chain Monte Carlo (MCMC) for parameter inference; deduced uncertainty-quantified phenomenological optical model potentials and tools for forward uncertainty propagation.

NUCLEAR REACTIONS 27Al(n, n), E=15.431 MeV; 28Si(n, n), E=15.43, 18.9 MeV; 32S(n, n), E=7.96-18.9 MeV; Ar(n, n), E=6.0 MeV; 40Ca(n, n), E=11.9-225.0 MeV; 48Ca(n, n), E=11.9, 16.8 MeV; 54Fe(n, n), E=2.0-6.0 MeV; Fe(n, n), E=1.75, 8.17 MeV; 56Fe(n, n), E=1.3-96.0 MeV; 59Co(n, n), E=9.953-18.862 MeV; Cu(n, n), E=6.95-14.18 MeV; 89Y(n, n), E=96.0 MeV; 112,124Sn(n, n), E=11.0, 17.0 MeV; Gd(n, n), E=0.334-9.99 MeV; 181Ta(n, n), E=0.323-9.99 MeV; W(n, n), E=7.19-14.1 MeV; Re(n, n), E=0.352-9.99 MeV; 197Au(n, n), E=4.51-9.99 MeV; Pb(n, n), E=2.24-4.02 MeV; 208Pb(n, n), E=30.4-225.0 MeV; 209Bi(n, n), E=3.99 MeV; 27Al(polarized n, n), E=15.425 MeV; 28Si(polarized n, n), E=15.4, 18.6 MeV; 32S(polarized n, n), E=9.9-16.9 MeV; 59Co(polarized n, n), E=15.273 MeV; S(n, X), E=14.1 MeV; 40,48Ca(n, X), E=12.04-276.13 MeV; Ti(n, X), E=0.4-24.75, 0.401-24.69 MeV; Ni, 58,64Ni, 103Rh, Pb(n, X), E=2.505-290.209 MeV; Zr(n, X), E=0.4-24.74 MeV; Sn, 112,124Sn(n, X), E=3.006-299.233 MeV; In, Te, Pb(n, X), E=14.1 MeV; Ta(n, X), E=0.2-9.121, 0.732-1.853 MeV; 181Ta(n, X), E=0.4-24.72 MeV; 182,184,186W(n, X), E=5.48-299.34 MeV; 197Au(n, X), E=0.2-9.121 MeV; 204Pb(n, X), E=26.993 MeV; 209Bi(n, X), E=0.682 MeV; 24Mg(p, p), E=7.4 MeV; 58Ni(p, p), E=172.0, 250.0 MeV; 64Zn(p, p), E=24.0 MeV; 116,118,122,124Sn(p, p), E=295.0 MeV; 120Sn(p, p), E=200.0-300.0 MeV; 58Ni(polarized p, p), E=172.0, 250.0; 58Ni, 116,118,122,124Sn, 204,206,208Pb(polarized p, p), E=295.0 MeV; 120Sn(polarized p, p), E=200.0-300.0 MeV; 40Ca, 90Zr, 208Pb(p, X), E=81.0-180.0 MeV; 58Ni(p, X), E=81.0 MeV; analyzed experimental data taken from the EXFOR database after the publication of the original CH89 and KD treatments for neutron and proton differential elastic σ(E), and neutron and proton analyzing powers for uncertainty-quantification using Markov-chain Monte Carlo (MCMC) for parameter inference; deduced uncertainty-quantified phenomenological optical model potentials parameters and tools for forward uncertainty propagation.

doi: 10.1103/PhysRevC.107.014602
Citations: PlumX Metrics


2021BI06      Phys.Rev. C 103, L051303 (2021)

J.Bishop, G.V.Rogachev, S.Ahn, E.Aboud, M.Barbui, A.Bosh, J.Hooker, C.Hunt, H.Jayatissa, E.Koshchiy, R.Malecek, S.T.Marley, M.Munch, E.C.Pollacco, C.D.Pruitt, B.T.Roeder, A.Saastamoinen, L.G.Sobotka, S.Upadhyayula

Evidence against the Efimov effect in 12C from spectroscopy and astrophysics

RADIOACTIVITY 12N(β+); 12B(β-); measured β-delayed charged particles, Eα, Iα from the decay of 40-MeV 12N beam stopped inside the active-area of the TexAT (Texas Active target) TPC (Time Projection Chamber), Eγ, Iγ, γγ-coin from the decay of 12B using Gammasphere array at ANL. 12C; deduced no evidence for an hypothetical state predicted by Efimov effect at 7.458 MeV from a combined analysis of the two experiments involving charged-particle spectroscopy at Texas A and M, and γ-ray measurements at ANL, along with astrophysical rate calculations. Relevance to rate required for stars to undergo the red giant phase.

doi: 10.1103/PhysRevC.103.L051303
Citations: PlumX Metrics


2021CH19      Phys.Rev.Lett. 126, 132501 (2021)

R.J.Charity, T.B.Webb, J.M.Elson, D.E.M.Hoff, C.D.Pruitt, L.G.Sobotka, K.W.Brown, G.Cerizza, J.Estee, W.G.Lynch, J.Manfredi, P.Morfouace, C.Santamaria, S.Sweany, C.Y.Tsang, M.B.Tsang, Y.Zhang, K.Zhu, S.A.Kuvin, D.McNeel, J.Smith, A.H.Wuosmaa, Z.Chajecki

Observation of the Exotic Isotope 13F Located Four Neutrons beyond the Proton Drip Line

NUCLEAR REACTIONS 9Be(13O, 13F), E=69.5 MeV/nucleon; measured reaction products, Ep, Ip. 13F, 12O, 11N, 10C, 9B, 8Be; deduced 13F resonance parameters, energy levels, J, π, level decays via initial proton emissions.

doi: 10.1103/PhysRevLett.126.132501
Citations: PlumX Metrics

Data from this article have been entered in the EXFOR database. For more information, access X4 datasetC2686. Data from this article have been entered in the XUNDL database. For more information, click here.


2021CH45      Phys.Rev. C 104, 024325 (2021)

R.J.Charity, T.B.Webb, J.M.Elson, D.E.M.Hoff, C.D.Pruitt, L.G.Sobotka, P.Navratil, G.Hupin, K.Kravvaris, S.Quaglioni, K.W.Brown, G.Cerizza, J.Estee, W.G.Lynch, J.Manfredi, P.Morfouace, C.Santamaria, S.Sweany, M.B.Tsang, T.Tsang, K.Zhu, S.A.Kuvin, D.McNeel, J.Smith, A.H.Wuosmaa, Z.Chajecki

Using spin alignment of inelastically excited nuclei in fast beams to assign spins: The spectroscopy of 13O as a test case

NUCLEAR REACTIONS 9Be(13O, 13O'), E=69.5 MeV/nucleon, [secondary 13O beam from 9Be(16O, X), E=150 MeV/nucleon primary reaction, followed by separation of fragments using A1900 fragment separator at NSCL-MSU facility]; measured charged particles, angular distribution of protons in 1p- and 2p-decays of the excited states of 13O using High Resolution Array (HiRA) of 14 ΔE-E (Si-CsI(Tl)) telescopes; deduced invariant-mass distributions of the p+12N and 2p+11C events from the decay of 13O excited states. 13O; deduced levels, resonances, J, π, Γ, E(p), possibly rotational bands built on deformed cluster configurations predicted by antisymmetrized molecular dynamics (AMD) calculations. Comparison of p(θ) data with DWBA using FRESCO code, and level structure of 13O with ab initio no-core shell model with continuum (NCSMC), and with the structure of 13B mirror nucleus.

doi: 10.1103/PhysRevC.104.024325
Citations: PlumX Metrics

Data from this article have been entered in the XUNDL database. For more information, click here.


2021MA55      Phys.Rev. C 104, 024608 (2021)

J.Manfredi, J.Lee, A.M.Rogers, M.B.Tsang, W.G.Lynch, C.Anderson, J.Barney, K.W.Brown, B.Brophy, G.Cerizza, Z.Chajecki, G.Chen, J.Elson, J.Estee, H.Iwasaki, C.Langer, Z.Li, C.Loelius, C.Y.Niu, C.Pruitt, H.Setiawan, R.Showalter, K.Smith, L.G.Sobotka, S.Sweany, S.Tangwancharoen, J.R.Winkelbauer, Z.Xiao, Z.Xu

Quenching of single-particle strengths in direct reactions

NUCLEAR REACTIONS 1H(46Ar, d)45Ar, (34Ar, d)33Ar, E=70 MeV/nucleon; measured heavy reaction residues, outgoing E(d), I(d), (reaction residues)δ-coin, differential σ(θ) using High Resolution Array (HiRA) for deuterons and S800 spectrograph for residue products at NSCL-MSU facility, CH2 target; deduced spectroscopic factors and reduction factors for the final states, asymmetry dependence of reduction factors. Comparison with results of previous measurements, and theoretical calculations using large-basis shell model (LBSM). Relevance to single-nucleon knockout reactions.

doi: 10.1103/PhysRevC.104.024608
Citations: PlumX Metrics


2020AT01      Phys.Rev. C 101, 044303 (2020)

M.C.Atkinson, M.H.Mahzoon, M.A.Keim, B.A.Bordelon, C.D.Pruitt, R.J.Charity, W.H.Dickhoff

Dispersive optical model analysis of 208Pb generating a neutron-skin prediction beyond the mean field

NUCLEAR REACTIONS 208Pb(p, X), (n, X), (p, p), (n, n), E=10-200 MeV; 208Pb(e, e), E=502 MeV; calculated reaction σ(E), differential σ(E, θ), analyzing powers Ay(θ) using dispersive optical model (DOM). Comparison with experimental data.

NUCLEAR STRUCTURE 208Pb; calculated neutron and proton single-particle energy levels, charge density, orbital occupation and depletion numbers, spectroscopic factors, binding energies, momentum distributions of protons and neutrons. 40,48Ca, 208Pb; calculated proton and neutron point distributions, and neutron skins. Hartree-Fock and dispersive optical model (DOM) calculations. Comparison with experimental data. Relevance to nuclear equation of state.

doi: 10.1103/PhysRevC.101.044303
Citations: PlumX Metrics


2020BI11      Phys.Rev. C 102, 041303 (2020)

J.Bishop, G.V.Rogachev, S.Ahn, E.Aboud, M.Barbui, A.Bosh, C.Hunt, H.Jayatissa, E.Koshchiy, R.Malecek, S.T.Marley, E.C.Pollacco, C.D.Pruitt, B.T.Roeder, A.Saastamoinen, L.G.Sobotka, S.Upadhyayula

Almost medium-free measurement of the Hoyle state direct-decay component with a TPC

RADIOACTIVITY 12N(β+), (β+α)[from 3He(10B, 12N), E=11 MeV/nucleon at K500 cyclotron at the Cyclotron Institute at Texas A and M University, followed by isotopic separation using Momentum Achromatic Recoil Spectrometer]; measured β-delayed charged-particles using Texas active target time-projection chamber (TPC). 12C; deduced upper limit for the nonsequential component of the decay of the excited 0+, Hoyle state in an almost medium-free reaction. Comparison with previous experimental results, and with predictions from Faddeev calculations.

doi: 10.1103/PhysRevC.102.041303
Citations: PlumX Metrics

Data from this article have been entered in the XUNDL database. For more information, click here.


2020BI15      Nucl.Instrum.Methods Phys.Res. A964, 163773 (2020)

J.Bishop, G.V.Rogachev, S.Ahn, E.Aboud, M.Barbui, P.Baron, A.Bosh, E.Delagnes, J.Hooker, C.Hunt, H.Jayatissa, E.Koshchiy, R.Malecek, S.T.Marley, R.O'Dwyer, E.C.Pollacco, C.Pruitt, B.T.Roeder, A.Saastamoinen, L.G.Sobotka, S.Upadhyayula

Beta-delayed charged-particle spectroscopy using TexAT

RADIOACTIVITY 12N(IT), (EC), 12C(3α), 8Be(2α) [from 3He(10B, n)12N, E=11 MeV/nucleon]; measured decay products, Eα, Iα; deduced branching ratio of 12N to states in 12C above the 3-α threshold, the total branching ratio to the Hoyle state, 12N T1/2 using the β-delayed charged-particle-decay. Comparison with available data.

doi: 10.1016/j.nima.2020.163773
Citations: PlumX Metrics


2020PR09      Phys.Rev.Lett. 125, 102501 (2020)

C.D.Pruitt, R.J.Charity, L.G.Sobotka, M.C.Atkinson, W.H.Dickhoff

Systematic Matter and Binding-Energy Distributions from a Dispersive Optical Model Analysis

NUCLEAR STRUCTURE 16,18O, 40,48Ca, 58,64Ni, 112,124Sn, 208Pb; analyzed available bound-state anscattering data; deduced neutronn skins, the interplay of asymmetry, Coulomb, and shell effects on the skin thickness.

doi: 10.1103/PhysRevLett.125.102501
Citations: PlumX Metrics


2020PR10      Phys.Rev. C 102, 034601 (2020)

C.D.Pruitt, R.J.Charity, L.G.Sobotka, J.M.Elson, D.E.M.Hoff, K.W.Brown, M.C.Atkinson, W.H.Dickhoff, H.Y.Lee, M.Devlin, N.Fotiades, S.Mosby

Isotopically resolved neutron total cross sections at intermediate energies

NUCLEAR REACTIONS 16,18O, 58,64Ni, 103Rh, 112,124Sn(n, X), E=3-450 MeV; measured E(n), I(n), σ(E) by time-of-flight using wave-form-digitizer technology and BC-400 fast plastic scintillators at the WNR facility of the Los Alamos Neutron Science Center; deduced spectroscopic factors for valence proton and neutron levels through a dispersive optical model (DOM) analyses of σ(θ) data. 16,18O, 58,64Ni, 103Rh, 112,124Sn(p, p), (polarized p, p), (n, n), E=10-200 MeV; analyzed experimental σ(E), σ(θ, E), Ay(θ, E) data in literature; deduced dispersive optical model (DOM) parameters, charge radii and binding energies. Comparison with previous experimental measurements of σ(E) using analog methods.

doi: 10.1103/PhysRevC.102.034601
Citations: PlumX Metrics

Data from this article have been entered in the EXFOR database. For more information, access X4 dataset14661.


2020WE08      Phys.Rev. C 101, 044317 (2020)

T.B.Webb, R.J.Charity, J.M.Elson, D.E.M.Hoff, C.D.Pruitt, L.G.Sobotka, K.W.Brown, J.Barney, G.Cerizza, J.Estee, W.G.Lynch, J.Manfredi, P.Morfouace, C.Santamaria, S.Sweany, M.B.Tsang, T.Tsang, Y.Zhang, K.Zhu, S.A.Kuvin, D.McNeel, J.Smith, A.H.Wuosmaa, Z.Chajecki

Invariant-mass spectrum of 11O

NUCLEAR REACTIONS 9Be(13O, 11O), E=69.5 MeV/nucleon; measured Ep, Ip, and invariant mass spectrum of 11O fragments from (9C)2p-coin events with two-proton emission from two states in 11O, longitudinal-momentum distributions using the HiRA array at NSCL-MSU facility. 11O; deduced levels, S(2p) for ground state.

doi: 10.1103/PhysRevC.101.044317
Citations: PlumX Metrics

Data from this article have been entered in the XUNDL database. For more information, click here.


2019WE03      Phys.Rev.Lett. 122, 122501 (2019)

T.B.Webb, S.M.Wang, K.W.Brown, R.J.Charity, J.M.Elson, J.Barney, G.Cerizza, Z.Chajecki, J.Estee, D.E.M.Hoff, S.A.Kuvin, W.G.Lynch, J.Manfredi, D.McNeel, P.Morfouace, W.Nazarewicz, C.D.Pruitt, C.Santamaria, J.Smith, L.G.Sobotka, S.Sweany, C.Y.Tsang, M.B.Tsang, A.H.Wuosmaa, Y.Zhang, K.Zhu

first Observation of Unbound 11O, the Mirror of the Halo Nucleus 11Li

RADIOACTIVITY 11,12O(2p) [from 9Be(13O, xn)11O/12O, E<69.5 MeV/nucleon]; measured decay products, Ep, Ip; deduced an invariant-mass spectrum, resonant state widths, two-nucleon density distributions. Comparison with theoretical calculations.

doi: 10.1103/PhysRevLett.122.122501
Citations: PlumX Metrics

Data from this article have been entered in the XUNDL database. For more information, click here.


2019WE11      Phys.Rev. C 100, 024306 (2019); Erratum Phys.Rev. C 102, 019904 (2020)

T.B.Webb, R.J.Charity, J.M.Elson, D.E.M.Hoff, C.D.Pruitt, L.G.Sobotka, K.W.Brown, J.Barney, G.Cerizza, J.Estee, G.Jhang, W.G.Lynch, J.Manfredi, P.Morfouace, C.Santamaria, S.Sweany, M.B.Tsang, T.Tsang, S.M.Wang, Y.Zhang, K.Zhu, S.A.Kuvin, D.McNeel, J.Smith, A.H.Wuosmaa, Z.Chajecki

Particle decays of levels in 11, 12N and 12O investigated with the invariant-mass method

NUCLEAR REACTIONS 9Be(13O, 12O), (13O, 12N), (13O, 11N), E=69.5 MeV/nucleon, [secondary 13O beam from 9Be(16O, 12O), E=150 MeV/nucleon primary reaction, followed by separation of ion beam using A1900 magnetic separator]; measured charged particles, (particle)(particle)-coin, cross sections using the High Resolution Array (HiRA) of 14 ΔE-E Si-CsI(Tl) telescopes at NSCL, MSU facility. 12,13O, 12N; deduced levels, J, π, 2p-, 3p-, 1p- and 2p+α-decay branches, p+10C, p+11C, 2p+10C invariance mass spectra, widths, total decay energy spectrum and invariant-mass spectra from coincident 4p+2α events. Comparison with Gamow coupled-channel (GCC) calculations, and with previous experimental data in the ENSDF database.

doi: 10.1103/PhysRevC.100.024306
Citations: PlumX Metrics

Data from this article have been entered in the XUNDL database. For more information, click here.


2018HO06      Phys.Rev. C 97, 054605 (2018)

D.E.M.Hoff, G.Potel, K.W.Brown, R.J.Charity, C.D.Pruitt, L.G.Sobotka, T.B.Webb, B.Roeder, A.Saastamoinen

Large longitudinal spin alignment generated in inelastic nuclear reactions

NUCLEAR REACTIONS 9Be, 12C, 27Al(7Li, 7Li'), E=24.0 MeV/nucleon; measured breakup fragments of 7Li, excitation energy distributions, and efficiency-corrected angular correlations, differential σ(θ) at Texas A and M K-500 Cyclotron facility; deduced magnetic substate distribution, and presence of large longitudinal spin alignment in inelastically excited 7Li. Comparison with α+t DWBA cluster-model calculations.

doi: 10.1103/PhysRevC.97.054605
Citations: PlumX Metrics


2017HO26      Phys.Rev.Lett. 119, 232501 (2017)

D.E.M.Hoff, R.J.Charity, K.W.Brown, C.D.Pruitt, L.G.Sobotka, T.B.Webb, G.Potel, B.Roeder, A.Saastamoinen

Large Longitudinal Spin Alignment of Excited Projectiles in Intermediate Energy Inelastic Scattering

NUCLEAR REACTIONS 9Be, C, 27Al(7Li, X), E=24 MeV/nucleon; measured projectile sequential breakup products. 7Li; deduced for peripheral events that do not excite the target large spin alignment of the excited projectiles longitudinal to the beam axis.

doi: 10.1103/PhysRevLett.119.232501
Citations: PlumX Metrics


Back to query form


Note: The following list of authors and aliases matches the search parameter C.D.Pruitt: , C.D.PRUITT