NSR Query Results


Output year order : Descending
Format : Normal

NSR database version of April 11, 2024.

Search: Author = T.Papenbrock

Found 107 matches.

    Showing 1 to 100.

   [Next]

Back to query form



2023GU20      Phys.Rev. C 108, 054309 (2023)

C.Gu, Z.H.Sun, G.Hagen, T.Papenbrock

Entanglement entropy of nuclear systems

doi: 10.1103/PhysRevC.108.054309
Citations: PlumX Metrics


2023KO15      Nature(London) 620, 965 (2023)

Y.Kondo, N.L.Achouri, H.Al Falou, L.Atar, T.Aumann, H.Baba, K.Boretzky, C.Caesar, D.Calvet, H.Chae, N.Chiga, A.Corsi, F.Delaunay, A.Delbart, Q.Deshayes, Zs.Dombradi, C.A.Douma, A.Ekstrom, Z.Elekes, C.Forssen, I.Gasparic, J.-M.Gheller, J.Gibelin, A.Gillibert, G.Hagen, M.N.Harakeh, A.Hirayama, C.R.Hoffman, M.Holl, A.Horvat, A.Horvath, J.W.Hwang, T.Isobe, W.G.Jiang, J.Kahlbow, N.Kalantar-Nayestanaki, S.Kawase, S.Kim, K.Kisamori, T.Kobayashi, D.Korper, S.Koyama, I.Kuti, V.Lapoux, S.Lindberg, F.M.Marques, S.Masuoka, J.Mayer, K.Miki, T.Murakami, M.Najafi, T.Nakamura, K.Nakano, N.Nakatsuka, T.Nilsson, A.Obertelli, K.Ogata, F.de Oliveira Santos, N.A.Orr, H.Otsu, T.Otsuka, T.Ozaki, V.Panin, T.Papenbrock, S.Paschalis, A.Revel, D.Rossi, A.T.Saito, T.Y.Saito, M.Sasano, H.Sato, Y.Satou, H.Scheit, F.Schindler, P.Schrock, M.Shikata, N.Shimizu, Y.Shimizu, H.Simon, D.Sohler, O.Sorlin, L.Stuhl, Z.H.Sun, S.Takeuchi, M.Tanaka, M.Thoennessen, H.Tornqvist, Y.Togano, T.Tomai, J.Tscheuschner, J.Tsubota, N.Tsunoda, T.Uesaka, Y.Utsuno, I.Vernon, H.Wang, Z.Yang, M.Yasuda, K.Yoneda, S.Yoshida

First observation of 28O

NUCLEAR REACTIONS H(29F, X)27O/28O, E=235 MeV/nucleon; measured reaction products; deduced yields. The hydrogen target was surrounded by the MINOS Time Projection Chamber, SAMURAI spectrometer, RIKEN RI Beam Factory.

RADIOACTIVITY 28O(4n), 27O(3n); measured decay products, En, In; deduced decay energy spectra and schemes from the measured momenta using the invariant-mass technique, resonance parameters. Comparison with the large-scale shell-model calculations using the new chiral effective field theory (EEdf3) interaction.

doi: 10.1038/s41586-023-06352-6
Citations: PlumX Metrics

Data from this article have been entered in the XUNDL database. For more information, click here.


2023KO19      Phys.Rev.Lett. 131, 102501 (2023)

K.Konig, S.Fritzsche, G.Hagen, J.D.Holt, A.Klose, J.Lantis, Y.Liu, K.Minamisono, T.Miyagi, W.Nazarewicz, T.Papenbrock, S.V.Pineda, R.Powel, P.-G.Reinhard

Surprising Charge-Radius Kink in the Sc Isotopes at N=20

NUCLEAR REACTIONS Be(40Ca, X)40Sc/41Sc, E=140 MeV/nucleon; measured frequencies; deduced resonance spectra, charge radii using collinear laser spectroscopy, kink at neutron shell closure. Comparison with available data. The National Superconducting Cyclotron Laboratory.

doi: 10.1103/PhysRevLett.131.102501
Citations: PlumX Metrics

Data from this article have been entered in the XUNDL database. For more information, click here.


2023SU07      Phys.Rev. C 108, 014307 (2023)

Z.H.Sun, G.Hagen, T.Papenbrock

Coupled-cluster theory for strong entanglement in nuclei

NUCLEAR STRUCTURE 12C, 28Si, 56Ni; calculated ground-state energy. Single-reference coupled-cluster theory based on spherical and deformed reference states and the tailored coupled-cluster method. Comparison to experimental data.

doi: 10.1103/PhysRevC.108.014307
Citations: PlumX Metrics


2022CI08      J.Phys.(London) G49, 120502 (2022)

V.Cirigliano, Z.Davoudi, J.Engel, R.J.Furnstahl, G.Hagen, U.Heinz, H.Hergert, M.Horoi, C.W.Johnson, A.Lovato, E.Mereghetti, W.Nazarewicz, A.Nicholson, T.Papenbrock, S.Pastore, M.Plumlee, D.R.Phillips, P.E.Shanahan, S.R.Stroberg, F.Viens, A.Walker-Loud, K.A.Wendt, S.M.Wild

Towards precise and accurate calculations of neutrinoless double-beta decay

RADIOACTIVITY 48Ca(2β-); calculated neutrinoless nuclear matrix elements using chiral-EFT interactions, EDF, IBM, QRPA, SM-pf, SM-sdpf, SM-MBPT, RSM, QMC+SM, IM-GCM, VS-IMSRG, CCSD, CCSD-T1.

doi: 10.1088/1361-6471/aca03e
Citations: PlumX Metrics


2022HA19      Phys.Rev. C 105, 064311 (2022)

G.Hagen, S.J.Novario, Z.H.Sun, T.Papenbrock, G.R.Jansen, J.G.Lietz, T.Duguet, A.Tichai

Angular-momentum projection in coupled-cluster theory: Structure of 34Mg

NUCLEAR STRUCTURE 8Be; calculated energies using symmetry-unrestricted Hartree-Fock and HF-RVAP as a function of the mass quadrupole moment q20. 20Ne, 34Mg; calculated the norm kernels and Hamiltonian kernels as function of the rotation angle using Hartree-Fock and CCD theories. 8Be, 20Ne, 34Mg; calculated projected coupled-cluster energies of the ground and excited states as a function of oscillator frequency using CCD, SLD, and SQD approximations. 44,46,48Ti, 48,50Cr; calculated low-lying states of J=0, 2 and 4 using projection-after-variation Hartree-Fock (PAV HF), variation-after-projection Hartree-Fock (VAP-HF), and projected CCD, SLD, and SQD methods, and compared to FCI results. Angular-momentum projection after variation with the disentangled coupled-cluster formalism and a Hermitian approach. Comparison with two-nucleon interaction from chiral effective field theory and for pf-shell nuclei within the traditional shell model, and with experimental data.

doi: 10.1103/PhysRevC.105.064311
Citations: PlumX Metrics


2022HU13      Nat.Phys. 610, 1196 (2022)

B.Hu, W.Jiang, T.Miyagi, Z.Sun, A.Ekstrom, C.Forssen, G.Hagen, J.D.Holt, T.Papenbrock, S.R.Stroberg, I.Vernon

Ab initio predictions link the neutron skin of 208Pb to nuclear forces

NUCLEAR STRUCTURE 208Pb; analyzed available data; calculated neutron skin using Ab initio, bulk properties.

doi: 10.1038/s41567-022-01715-8
Citations: PlumX Metrics


2022KI18      Phys.Rev. C 106, 034325 (2022)

O.Kiss, M.Grossi, P.Lougovski, F.Sanchez, S.Vallecorsa, T.Papenbrock

Quantum computing of the 6Li nucleus via ordered unitary coupled clusters

NUCLEAR STRUCTURE 6Li; calculated ground and first excited states, J, π. Shell-model quantum-computations of the 6Li, composed of a frozen α core and two valence nucleons. Studied the effect of the ordering of excitation operators in unitary coupled clusters type approach for the variational quantum eigensolver (VQE) algorithm.

doi: 10.1103/PhysRevC.106.034325
Citations: PlumX Metrics


2022KO04      Phys.Rev. C 105, L021303 (2022)

M.Kortelainen, Z.Sun, G.Hagen, W.Nazarewicz, T.Papenbrock, P.-G.Reinhard

Universal trend of charge radii of even-even Ca-Zn nuclei

NUCLEAR STRUCTURE 36,38,40,42,44,46,48,50,52,54,56,58,60Ca, 42,44,46,48,50,52,54,56,58,60,62Ti, 44,46,48,50,52,54,56,58,60,62,64Cr, 46,48,50,52,54,56,58,60,62,64,66Fe, 48,50,52,54,56,58,60,62,64,66,68Ni, 60,62,64,66,68,70Zn; calculated ground state energies, charge rms radii. Coupled cluster (CC) and ab-initio density functional theory calculations extended to the open-shell deformed nuclei. Comparison to available data.

doi: 10.1103/PhysRevC.105.L021303
Citations: PlumX Metrics


2022MA04      Phys.Rev.Lett. 128, 022502 (2022)

S.Malbrunot-Ettenauer, S.Kaufmann, S.Bacca, C.Barbieri, J.Billowes, M.L.Bissell, K.Blaum, B.Cheal, T.Duguet, R.F.Garcia Ruiz, W.Gins, C.Gorges, G.Hagen, H.Heylen, J.D.Holt, G.R.Jansen, A.Kanellakopoulos, M.Kortelainen, T.Miyagi, P.Navratil, W.Nazarewicz, R.Neugart, G.Neyens, W.Nortershauser, S.J.Novario, T.Papenbrock, T.Ratajczyk, P.-G.Reinhard, L.V.Rodriguez, R.Sanchez, S.Sailer, A.Schwenk, J.Simonis, V.Soma, S.R.Stroberg, L.Wehner, C.Wraith, L.Xie, Z.Y.Xu, X.F.Yang, D.T.Yordanov

Nuclear Charge Radii of the Nickel Isotopes 58-68, 70Ni

NUCLEAR MOMENTS 58,59,60,61,62,63,64,65,66,67,68Ni, 70Ni; measured frequency-time spectrum; deduced isotope shifts, mean-square charge radii. Comparison with ab initio approaches. Collinear laser spectroscopy beam line COLLAPS, ISOLDE/CERN.

doi: 10.1103/PhysRevLett.128.022502
Citations: PlumX Metrics

Data from this article have been entered in the XUNDL database. For more information, click here.


2022MI13      Phys.Rev. C 106, 024004 (2022)

C.Mishra, A.Ekstrom, G.Hagen, T.Papenbrock, L.Platter

Two-pion exchange as a leading-order contribution in chiral effective field theory

doi: 10.1103/PhysRevC.106.024004
Citations: PlumX Metrics


2022OH01      Phys.Rev. C 105, L031305 (2022)

B.Ohayon, R.F.Garcia Ruiz, Z.H.Sun, G.Hagen, T.Papenbrock, B.K.Sahoo

Nuclear charge radii of Na isotopes: Interplay of atomic and nuclear theory

NUCLEAR STRUCTURE 18,20,22,24,26,28Ne, 21,23,25,27,28,31Na, 22,24,26,28,30,32Mg; analyzed experimental isotope shifts (from 2012YO01, 1978HU12, 2011MA48, 1975HU04); deduced charge radii using improved atomic calculations and nuclear coupled-cluster theory. Developed analytic response-based RCC (AR-RCC) theory to include full triple electron excitations and perturbatively estimate quadrupole excitations. Comparison to the results obtained with atomic parameters obtained with different calculations and with values returned from the semiempirical neutron-skin for Na isotopes.

doi: 10.1103/PhysRevC.105.L031305
Citations: PlumX Metrics


2022PA11      Phys.Rev. C 105, 044322 (2022)

T.Papenbrock

Effective field theory of pairing rotations

NUCLEAR STRUCTURE 102,104,106,108,110,112,114,116,118,120,122,124,126,128,130Sn, 180,182,184,186,188,190,192,194,196,198,200,202,204,206Pb, 134Te, 134Xe, 134Ba, 140Ce, 140Nd, 140Sm, 140Gd, 140Dy, 150Er, 152Yb, 150,152,154,156,158,160Nd, 152,154,156,158,160,162,164Sm, 154,156,158,160,162,164,166Gd, 156,158,160,162,164,166,168Dy, 158,160,162,164,166,168,170Er, 160,162,164,166,168,170,172Yb, 162,164,166,168,170,172,174Hf, 164,166,168,170,172,174,176W, 166,168,170,172,174,176,178Os, 168,170,172,174,176,178,180Pt, 172,174,176,178,180,182Hg, 146,148,150,152,154,156,158,160,162,164,166Gd, 148,150,152,154,156,158,160,162,164,166,168Dy, 150,152,154,156,158,160,162,164,166,168,170,172Er, 152,154,156,158,160,162,164,166,168,170,172,174,176,178Yb, 156,158,160,162,164,166,168,170,172,174,176,178,180,182,184,186Hf, 160,162,164,166,168,170,172,174,176,178,180,182,184,186,188,190W, 164,166,168,170,172,174,176,178,180,182,184,186,188,190,192,194,196Os, 133Sb, 135I, 137Cs, 139La, 141Pr, 143Pm, 145Eu, 147Tb, 149Ho, 183,185,187,189,191,192,193,195,197,199,201,203,205Pb; calculated pairing rotational constants, and pairing rotational bands in even-even and odd-A nuclei in a model-independent way using an effective field theory with a standard approach to emergent symmetry breaking via nonlinear realization of the broken phase symmetry. Comparison with available experimental data.

doi: 10.1103/PhysRevC.105.044322
Citations: PlumX Metrics


2022SO15      Phys.Rev. C 106, 034310 (2022)

J.E.Sobczyk, S.Bacca, G.Hagen, T.Papenbrock

Spectral function for 4He using the Chebyshev expansion in coupled-cluster theory

NUCLEAR REACTIONS 4He(e, e'), at momentum transfers q ≈ 270-670 MeV; calculated intrinsic momentum distribution, and compared with that in laboratory system, spectral functions, differential σ(momentum transfer) using coupled-cluster singles-and-doubles (CCSD) approximation, with an expansion of integral transforms into Chebyshev polynomials.

doi: 10.1103/PhysRevC.106.034310
Citations: PlumX Metrics


2022SU28      Phys.Rev. C 106, L061302 (2022)

Z.H.Sun, C.A.Bell, G.Hagen, T.Papenbrock

How to renormalize coupled cluster theory

ATOMIC MASSES 20,22,24,26,28,30,32,34Na, 16,24O, 40,48Ca, 78Ni, 90Zr, 100Sn; calculated binding energies, energies per nucleon. Coupled cluster theory with included short-range three-body correlations by renormalizing the three-body contact interaction. Comparison to experimental values.

doi: 10.1103/PhysRevC.106.L061302
Citations: PlumX Metrics


2021HO15      Phys.Lett. B 822, 136710 (2021)

M.Holl, R.Kanungo, Z.H.Sun, G.Hagen, J.A.Lay, A.M.Moro, P.Navratil, T.Papenbrock, M.Alcorta, D.Connolly, B.Davids, A.Diaz Varela, M.Gennari, G.Hackman, J.Henderson, S.Ishimoto, A.I.Kilic, R.Krucken, A.Lennarz, J.Liang, J.Measures, W.Mittig, O.Paetkau, A.Psaltis, S.Quaglioni, J.S.Randhawa, J.Smallcombe, I.J.Thompson, M.Vorabbi, M.Williams

Proton inelastic scattering reveals deformation in 8He

NUCLEAR REACTIONS 1H(8He, p), E=8.25 MeV/nucleon; measured reaction products, Ep, Ip. 8He; deduced σ(θ), resonance parameters, first 2+ state, quadrupole deformation parameter. Comparison with no-core shell model predictions. Charged particle spectroscopy station IRIS at TRIUMF in Canada.

doi: 10.1016/j.physletb.2021.136710
Citations: PlumX Metrics

Data from this article have been entered in the EXFOR database. For more information, access X4 datasetC2684.


2021KO08      Nat.Phys. 17, 439 (2021), Erratum Nat.Phys. 17, 539 (2021)

A.Koszorus, X.F.Yang, W.G.Jiang, S.J.Novario, S.W.Bai, J.Billowes, C.L.Binnersley, M.L.Bissell, T.E.Cocolios, B.S.Cooper, R.P.de Groote, A.Ekstrom, K.T.Flanagan, C.Forssen, S.Franchoo, R.F.Garcia Ruiz, F.P.Gustafsson, G.Hagen, G.R.Jansen, A.Kanellakopoulos, M.Kortelainen, W.Nazarewicz, G.Neyens, T.Papenbrock, P.-G.Reinhard, C.M.Ricketts, B.K.Sahoo, A.R.Vernon, S.G.Wilkins

Charge radii of exotic potassium isotopes challenge nuclear theory and the magic character of N = 32

NUCLEAR MOMENTS 36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52K; measured frequencies; deduced hyperfine structure spectra, charge radii, new magic numbers. Comparison with NNLO, HFB calculations.

doi: 10.1038/s41567-020-01136-5
Citations: PlumX Metrics

Data from this article have been entered in the XUNDL database. For more information, click here.


2021MO23      Nat.Phys. 17, 1099 (2021)

M.Mougeot, D.Atanasov, J.Karthein, R.N.Wolf, P.Ascher, K.Blaum, K.Chrysalidis, G.Hagen, J.D.Holt, W.J.Huang, G.R.Jansen, I.Kulikov, Yu.A.Litvinov, D.Lunney, V.Manea, T.Miyagi, T.Papenbrock, L.Schweikhard, A.Schwenk, T.Steinsberger, S.R.Stroberg, Z.H.Sun, A.Welker, F.Wienholtz, S.G.Wilkins, K.Zuber

Mass measurements of 99-101In challenge ab initio nuclear theory of the nuclide 100Sn

NUCLEAR REACTIONS La(p, X)99In/100In/101In, E=1.4 GeV; measured reaction products, TOF; deduced atomic masses. Comparison with AME2020, theoretical calculations.

doi: 10.1038/s41567-021-01326-9
Citations: PlumX Metrics

Data from this article have been entered in the XUNDL database. For more information, click here.


2021NO04      Phys.Rev.Lett. 126, 182502 (2021)

S.Novario, P.Gysbers, J.Engel, G.Hagen, G.R.Jansen, T.D.Morris, P.Navratil, T.Papenbrock, S.Quaglioni

Coupled-Cluster Calculations of Neutrinoless Double-β Decay in 48Ca

RADIOACTIVITY 48Ca(2β-); calculated nuclear matrix element for the neutrinoless ββ-decay using coupled-cluster theory and nuclear interactions from chiral effective field theory.

doi: 10.1103/PhysRevLett.126.182502
Citations: PlumX Metrics


2021SU22      Phys.Rev. C 104, 064310 (2021)

Z.H.Sun, G.Hagen, G.R.Jansen, T.Papenbrock

Effective shell-model interaction for nuclei "southeast" of 100Sn

NUCLEAR STRUCTURE 100Sn; calculated single-particle neutron and single-hole proton states from effective shell-model interaction for the valence space and using chiral nucleon-nucleon and three-nucleon forces and single-reference coupled-cluster theory and ΔNNLOGO potentials, with detailed matrix elements given in the Supplemental Material. 98Cd, 100In, 100,102Sn; calculated ground-state energies relative using 1.8/2.0(EM) and ΔNNLOGO potentials and compared to experimental data. 102,104,106,108Sn, 98Cd, 100,101,103,105,107In, 100,102,104,106Cd, ; calculated low-lying positive-parity levels from Jπ=0+ to 8+ for even-A and low-lying positive- and negative-parity levels from Jπ=1/2- to 13/2+ for odd-A using 1.8/2.0(EM) and ΔNNLOGO potentials, and compared to experimental data. Systematic derivation of the particle-hole variant of the shell-model coupled-cluster method to compute nuclei in the vicinity of 100Sn, with the shell-model effective interaction defined in a model space consisting of particles and holes.

doi: 10.1103/PhysRevC.104.064310
Citations: PlumX Metrics


2020BA27      Phys.Rev.Lett. 124, 222504 (2020)

S.Bagchi, R.Kanungo, Y.K.Tanaka, H.Geissel, P.Doornenbal, W.Horiuchi, G.Hagen, T.Suzuki, N.Tsunoda, D.S.Ahn, H.Baba, K.Behr, F.Browne, S.Chen, M.L.Cortes, A.Estrade, N.Fukuda, M.Holl, K.Itahashi, N.Iwasa, G.R.Jansen, W.G.Jiang, S.Kaur, A.O.Macchiavelli, S.Y.Matsumoto, S.S.Momiyama, I.Murray, T.Nakamura, S.J.Novario, H.J.Ong, T.Otsuka, T.Papenbrock, S.Paschalis, A.Prochazka, C.Scheidenberger, P.Schrock, Y.Shimizu, D.Steppenbeck, H.Sakurai, D.Suzuki, H.Suzuki, M.Takechi, H.Takeda, S.Takeuchi, R.Taniuchi, K.Wimmer, K.Yoshida

Two-Neutron Halo is Unveiled in 29F

NUCLEAR REACTIONS C(29F, X), E=255 MeV/nucleon; C(27F, X), E=250 MeV/nucleon; measured reaction products, En, In. 27,29F; deduced two-neutron Borromean halo. Comparison with theoretical calculations.

doi: 10.1103/PhysRevLett.124.222504
Citations: PlumX Metrics

Data from this article have been entered in the EXFOR database. For more information, access X4 datasetE2672. Data from this article have been entered in the XUNDL database. For more information, click here.


2020JI11      Phys.Rev. C 102, 054301 (2020)

W.G.Jiang, A.Ekstrom, C.Forssen, G.Hagen, G.R.Jansen, T.Papenbrock

Accurate bulk properties of nuclei from A = 20 to ∞ from potentials with Δ isobars

NUCLEAR STRUCTURE 2,3H, 3,4He, 16,22,24O, 40,48,50,52,54,56,58,60Ca, 78Ni, 90Zr, 100,132Sn; calculated binding energies, and charge radii for Ca isotopes, quadrupole moment for 2H, first 3- state of 16O, and first 2+ states of 22O, 24O and 48Ca. Coupled-cluster calculations with ΔNNLOGO interactions optimized from chiral effective field theory. Comparison with experimental data. Computed neutron-proton and proton-proton phase shifts for the contact and selected peripheral partial waves with the ΔNLOGO and ΔNNLOGO potentials.

doi: 10.1103/PhysRevC.102.054301
Citations: PlumX Metrics


2020NO10      Phys.Rev. C 102, 051303(R) (2020)

S.J.Novario, G.Hagen, G.R.Jansen, T.Papenbrock

Charge radii of exotic neon and magnesium isotopes

NUCLEAR STRUCTURE 18,20,22,24,26,28,30,32,34Ne, 22,24,26,28,30,32,34,36,38,40Mg; calculated charge radii, isotope shifts, ground-state energies, S(2n) using nucleon-nucleon and three-nucleon potentials from chiral effective field theory (EFT), and coupled-cluster methods. Comparison with experimental data.

doi: 10.1103/PhysRevC.102.051303
Citations: PlumX Metrics


2020PA39      Phys.Rev. C 102, 044324 (2020)

T.Papenbrock, H.A.Weidenmuller

Effective field theory for deformed odd-mass nuclei

NUCLEAR STRUCTURE 187Os, 239Pu; calculated low- and high-spin levels, J, π, rotational bands using effective field theory (EFT) up to next-to-leading order. Comparison with experimental data.

doi: 10.1103/PhysRevC.102.044324
Citations: PlumX Metrics


2020RO24      Phys.Rev. C 102, 064624 (2020)

A.Roggero, C.Gu, A.Baroni, T.Papenbrock

Preparation of excited states for nuclear dynamics on a quantum computer

doi: 10.1103/PhysRevC.102.064624
Citations: PlumX Metrics


2019GY02      Nat.Phys. 15, 428 (2019)

P.Gysbers, G.Hagen, J.D.Holt, G.R.Jansen, T.D.Morris, P.Navratil, T.Papenbrock, S.Quaglioni, A.Schwenk, S.R.Stroberg, K.A.Wendt

Discrepancy between experimental and theoretical β-decay rates resolved from first principles

NUCLEAR STRUCTURE 3H, 6Li, 7Be, 8He, 10C, 14O, 19,24Ne, 37K, 25,28Al, 24,26Na, 30Mg, 33,34P, 42,43,46Sc, 42,45Ti, 45,47V, 100Sn; calculated the Gamow–Teller strength for β decay.

doi: 10.1038/s41567-019-0450-7
Citations: PlumX Metrics


2019JI09      Phys.Rev. C 100, 054326 (2019)

W.G.Jiang, G.Hagen, T.Papenbrock

Extrapolation of nuclear structure observables with artificial neural networks

NUCLEAR STRUCTURE 4He, 6Li, 16O; calculated ground-state energies, point-proton radii using neural network method for extrapolation of NCSM and the coupled-cluster calculations. Comparison with results from infrared (IR) extrapolations.

doi: 10.1103/PhysRevC.100.054326
Citations: PlumX Metrics


2019LU13      Phys.Rev. C 100, 054307 (2019)

B.K.Luna, T.Papenbrock

Low-energy bound states, resonances, and scattering of light ions

NUCLEAR REACTIONS 4He(d, d), E=0-5 MeV; 4He(t, t), (3He, 3He), E=0-8 MeV; 4He(α, α), E=0-12 MeV; 16O(p, p), E=0-7 MeV; calculated phase shifts of elastic scattering, effective range parameters, asymptotic normalization coefficients, sum of charge radii using a δ-shell potential, and a simple two-parameter model.

NUCLEAR STRUCTURE 6,7Li, 7,8Be, 17F; calculated energies of bound states and resonances, and elastic scattering σ of light ions using a δ-shell potential. Calculated charge radius of 17F. Discussed Coulomb halo effective field theory.

doi: 10.1103/PhysRevC.100.054307
Citations: PlumX Metrics


2019PA55      Phys.Rev. C 100, 061304 (2019)

C.G.Payne, S.Bacca, G.Hagen, W.G.Jiang, T.Papenbrock

Coherent elastic neutrino-nucleus scattering on 40Ar from first principles

NUCLEAR REACTIONS 40Ar(ν, ν), E<50 MeV; calculated charge and weak form factors, neutron skin radius, coherent scattering σ(E) using coupled-cluster theory based on nuclear Hamiltonians inspired by effective field theories of quantum chromodynamics; deduced that nuclear physics uncertainties will likely not limit the sensitivity to new physics. Comparison to data from electron scattering experiments. Estimation of systematic uncertainties.

doi: 10.1103/PhysRevC.100.061304
Citations: PlumX Metrics


2018BA42      Phys.Rev. C 98, 054301 (2018)

A.Bansal, S.Binder, A.Ekstrom, G.Hagen, G.R.Jansen, T.Papenbrock

Pion-less effective field theory for atomic nuclei and lattice nuclei

NUCLEAR STRUCTURE 3H, 3,4He, 16O, 40Ca; calculated binding energies per nucleon and point-proton radii, g.s. energy and separation momentum of 3H and 4He, correlation between the triton and 4He binding energies. Pion-less effective field theory (EFT) as discrete variable representation (DVR) in the harmonic oscillator basis at leading-order and next-to-leading-order. Relevance to different lattice quantum chromodynamics (QCD) approaches to light nuclei.

doi: 10.1103/PhysRevC.98.054301
Citations: PlumX Metrics


2018EK02      Phys.Rev. C 97, 024332 (2018)

A.Ekstrom, G.Hagen, T.D.Morris, T.Papenbrock, P.D.Schwartz

Δ isobars and nuclear saturation

NUCLEAR STRUCTURE 2,3H, 3,4He; calculated binding energies, charge radii at LO, NLO, and NNLO with and without the Δ(1232) isobar as function of momentum cutoff values of 450 and 500 MeV. 4He, 16O, 40Ca; calculated ground-state energies per nucleon and charge radii computed with coupled cluster theory and the Δ-full potential at LO, NLO, and NNLO. 8He, 16,22,24O, 40,48Ca; calculated binding energies, charge radii, proton and neutron point radii, neutron skin. 40Ca; calculated elastic charge form factor. Chiral effective field theory with inclusion of the Δ-isobar Δ(1232) degree of freedom at all orders up to next-to-next-to-leading order (NNLO). Comparison with experimental data.

doi: 10.1103/PhysRevC.97.024332
Citations: PlumX Metrics


2018FO05      Phys.Rev. C 97, 034328 (2018)

C.Forssen, B.D.Carlsson, H.T.Johansson, D.Saaf, A.Bansal, G.Hagen, T.Papenbrock

Large-scale exact diagonalizations reveal low-momentum scales of nuclei

NUCLEAR STRUCTURE 6Li, 3H, 3,4,6,8He, 16O; calculated extrapolated ground-state energy and point-proton radii, infrared (IR) extrapolations with the NNLOopt NN interaction. No-core shell model (NCSM) calculations with the coupled-cluster method at several fixed ultraviolet (UV) cutoffs using pANTOINE code; deduced small-momentum scale of finite nuclei.

doi: 10.1103/PhysRevC.97.034328
Citations: PlumX Metrics


2018MI09      Phys.Rev. C 98, 014324 (2018)

M.Miorelli, S.Bacca, G.Hagen, T.Papenbrock

Computing the dipole polarizability of 48Ca with increased precision

NUCLEAR STRUCTURE 4He, 16O, 48Ca; calculated electromagnetic, and polarizability sum rules, electric dipole polarizability of 48Ca by benchmarking 4He and 16O results. Coupled-cluster method by including leading order 3p-3h correlations for the ground state, excited states, and the similarity-transformed operator. Comparison with experimental data.

doi: 10.1103/PhysRevC.98.014324
Citations: PlumX Metrics


2018MO07      Phys.Rev.Lett. 120, 152503 (2018)

T.D.Morris, J.Simonis, S.R.Stroberg, C.Stumpf, G.Hagen, J.D.Holt, G.R.Jansen, T.Papenbrock, R.Roth, A.Schwenk

Structure of the Lightest Tin Isotopes

NUCLEAR STRUCTURE 100,108,116,124,132Sn, 101Sn, 105Te; calculated energy levels, J, π using nucleon-nucleon and three-nucleon forces constrained by data of few-nucleon systems.

doi: 10.1103/physrevlett.120.152503
Citations: PlumX Metrics


2018SU23      Phys.Rev. C 98, 054320 (2018)

Z.H.Sun, T.D.Morris, G.Hagen, G.R.Jansen, T.Papenbrock

Shell-model coupled-cluster method for open-shell nuclei

NUCLEAR STRUCTURE 6,7,8He, 6,7,8Li; calculated low-lying levels, J, π, squared point-proton radii, and isotope shifts using shell-model coupled-cluster method employing 4He core. Comparison with other theoretical predictions.

doi: 10.1103/PhysRevC.98.054320
Citations: PlumX Metrics


2017AC01      Phys.Rev. C 95, 031301 (2017)

B.Acharya, A.Ekstrom, D.Odell, T.Papenbrock, L.Platter

Corrections to nucleon capture cross sections computed in truncated Hilbert spaces

NUCLEAR REACTIONS 1H(n, γ), E(cm)=1 MeV; 1H(p, X), E(cm)=50, 1000 keV; calculated dependence of the nucleon capture cross section on the radius of the hard wall with Dirichlet boundary condition using computations based on hyperspherical harmonics. Relevance to rp-process.

doi: 10.1103/PhysRevC.95.031301
Citations: PlumX Metrics


2017BI09      Phys.Rev.Lett. 118, 252501 (2017)

J.Birkhan, M.Miorelli, S.Bacca, S.Bassauer, C.A.Bertulani, G.Hagen, H.Matsubara, P.von Neumann-Cosel, T.Papenbrock, N.Pietralla, V.Yu.Ponomarev, A.Richter, A.Schwenk, A.Tamii

Electric Dipole Polarizability of 48Ca and Implications for the Neutron Skin

NUCLEAR REACTIONS 48Ca(p, p'), E=295 MeV; 48Ca(γ, X), E<25 MeV; measured reaction products; deduced σ, electric dipole polarizability, B(E1).

doi: 10.1103/PhysRevLett.118.252501
Citations: PlumX Metrics

Data from this article have been entered in the EXFOR database. For more information, access X4 datasetE2558.


2017CA06      Prog.Part.Nucl.Phys. 94, 68 (2017)

J.Carlson, M.P.Carpenter, R.Casten, C.Elster, P.Fallon, A.Gade, C.Gross, G.Hagen, A.C.Hayes, D.W.Higinbotham, C.R.Howell, C.J.Horowitz, K.L.Jones, F.G.Kondev, S.Lapi, A.Macchiavelli, E.A.McCutchan, J.Natowitz, W.Nazarewicz, T.Papenbrock, S.Reddy, M.J.Savage, G.Savard, B.M.Sherrill, L.G.Sobotka, M.A.Stoyer, M.B.Tsang, K.Vetter, I.Wiedenhoever, A.H.Wuosmaa, S.Yennello

White paper on nuclear astrophysics and low-energy nuclear physics, Part 2: Low-energy nuclear physics

doi: 10.1016/j.ppnp.2016.11.002
Citations: PlumX Metrics


2017RO04      Phys.Rev. C 95, 024315 (2017)

J.Rotureau, P.Danielewicz, G.Hagen, F.M.Nunes, T.Papenbrock

Optical potential from first principles

NUCLEAR REACTIONS 16O(n, n), E=10 MeV; analyzed and constructed microscopic nuclear optical potentials from chiral interactions for nucleon nucleus scattering, and phase shifts by combining the Green's function approach with the coupled cluster method.

doi: 10.1103/PhysRevC.95.024315
Citations: PlumX Metrics


2016BI07      Phys.Rev. C 93, 044332 (2016)

S.Binder, A.Ekstrom, G.Hagen, T.Papenbrock, K.A.Wendt

Effective field theory in the harmonic oscillator basis

NUCLEAR STRUCTURE 2,3H, 3,4He; calculated binding energies and radii from different effective interactions. 4He, 16O, 40Ca, 90Zr, 132Sn; calculated ground-state energies and squared point proton radii. Coupled-cluster calculations at the singles and doubles level using chiral effective field theory (EFT) in harmonic oscillator basis. Comparison with experimental data.

doi: 10.1103/PhysRevC.93.044332
Citations: PlumX Metrics


2016CO20      Phys.Rev. C 94, 054316 (2016)

E.A.Coello Perez, T.Papenbrock

Effective field theory for vibrations in odd-mass nuclei

NUCLEAR STRUCTURE 98Ru, 99Rh; 100Ru, 101Rh; 102Ru, 103Rh; 104Pd, 105Ag; 106Pd, 107Ag; 108Pd, 109Ag; 110Pd, 111Ag; 108Cd, 107Ag; 110Cd, 109Ag; 108Cd, 107Ag; 112Cd, 111Ag; calculated low-energy constants (LECs), next-to-next-to-leading order (NNLO) spectra of even-even/odd-mass systems. 102Ru, 103Rh, 106,108Pd, 107,109Ag, 110,111,112,113Cd; calculated B(E2), B(M1), magnetic dipole and electric quadrupole moments. Effective field theory (EFT) for simultaneous description of spherical even-even/odd-mass. Comparison with available experimental data.

doi: 10.1103/PhysRevC.94.054316
Citations: PlumX Metrics


2016GA34      Nat.Phys. 12, 594 (2016)

R.F.Garcia Ruiz, M.L.Bissell, K.Blaum, A.Ekstrom, N.Frommgen, G.Hagen, M.Hammen, K.Hebeler, J.D.Holt, G.R.Jansen, M.Kowalska, K.Kreim, W.Nazarewicz, R.Neugart, G.Neyens, W.Nortershauser, T.Papenbrock, J.Papuga, A.Schwenk, J.Simonis, K.A.Wendt, D.T.Yordanov

Unexpectedly large charge radii of neutron-rich calcium isotopes

NUCLEAR REACTIONS U(p, X)43Ca/44Ca/45Ca/46Ca/47Ca/48Ca/49Ca/50Ca/51Ca/52Ca, E=1.4GeV; measured hyperfine structure spectra; deduced charge radii. Comparison with available data.

doi: 10.1038/nphys3645
Citations: PlumX Metrics


2016HA27      Nat.Phys. 12, 186 (2016)

G.Hagen, A.Ekstrom, C.Forssen, G.R.Jansen, W.Nazarewicz, T.Papenbrock, K.A.Wendt, S.Bacca, N.Barnea, B.Carlsson, C.Drischler, K.Hebeler, M.Hjorth-Jensen, M.Miorelli, G.Orlandini, A.Schwenk, J.Simonis

Neutron and weak-charge distributions of the 48Ca nucleus

NUCLEAR STRUCTURE 48Ca; calculated neutron skin parameters, radii. Ab initio calculations.

doi: 10.1038/nphys3529
Citations: PlumX Metrics


2016HA32      Phys.Rev.Lett. 117, 172501 (2016)

G.Hagen, G.R.Jansen, T.Papenbrock

Structure of 78Ni from First-Principles Computations

NUCLEAR STRUCTURE 48Ca, 77,78,79,80Ni; analyzed available data; calculated energy levels, J, π.

doi: 10.1103/PhysRevLett.117.172501
Citations: PlumX Metrics


2016HA34      Phys.Scr. 91, 063006 (2016)

G.Hagen, M.Hjorth-Jensen, G.R.Jansen, T.Papenbrock

Emergent properties of nuclei from ab initio coupled-cluster calculations

COMPILATION 4,8He, 14C, 16O, 40,48Ca, 56Ni; compiled gs energy, mass excess, difference between theoretical charge radii and data; calculated gs energy, mass excess, charge radii using ab initio approach with chiral NNLOsat interaction.

NUCLEAR STRUCTURE 16,22,24,28O; calculated gs energy, mass excess using two NNLOsat interactions. Compared to available data. 17,23,25O, 53,55,61Ca; calculated low-lying unbound levels, J, π using harmonic oscillator HF basis and Gamow-Hartree-Fock basis. 20Ne, 24Mg; calculated yrast states using CCEI (Coupled Cluster Effective Interaction) and USDB; compared to data.

doi: 10.1088/0031-8949/91/6/063006
Citations: PlumX Metrics


2016MI19      Phys.Rev. C 94, 034317 (2016)

M.Miorelli, S.Bacca, N.Barnea, G.Hagen, G.R.Jansen, G.Orlandini, T.Papenbrock

Electric dipole polarizability from first principles calculations

NUCLEAR STRUCTURE 4He, 16,22O, 40Ca; calculated electric dipole polarizability, photoabsorption response functions. Coupled-cluster method with bound-state techniques, and using different interactions from chiral effective field theory. Comparison with experimental data. Relevance to radii of proton and neutron distributions.

doi: 10.1103/PhysRevC.94.034317
Citations: PlumX Metrics


2016OD01      Phys.Rev. C 93, 044331 (2016)

D.Odell, T.Papenbrock, L.Platter

Infrared extrapolations of quadrupole moments and transitions

doi: 10.1103/PhysRevC.93.044331
Citations: PlumX Metrics


2016PA10      Phys.Scr. 91, 053004 (2016)

T.Papenbrock, H.A.Weidenmuller

Effective field theory for deformed atomic nuclei

doi: 10.1088/0031-8949/91/5/053004
Citations: PlumX Metrics


2015CO08      Phys.Rev. C 92, 014323 (2015)

E.A.Coello Perez, T.Papenbrock

Effective theory for the nonrigid rotor in an electromagnetic field: Toward accurate and precise calculations of E2 transitions in deformed nuclei

NUCLEAR STRUCTURE 150Nd, 152,154Sm, 154Gd, 162Dy, 166,168Er, 174Yb, 188Os, 236U; calculated quadrupole decays within the ground-state bands, B(E2) for transitions in ground, β and γ bands. Model-independent approach based on an effective theory for axially symmetric systems. Comparison with experimental data.

ATOMIC PHYSICS H, N; calculated quadrupole transition moments for decays within the ground band of the H2 and N2 molecules. Model-independent approach based on an effective theory. Comparison with experimental data.

doi: 10.1103/PhysRevC.92.014323
Citations: PlumX Metrics


2015CO17      Phys.Rev. C 92, 064309 (2015)

E.A.Coello Perez, T.Papenbrock

Effective field theory for nuclear vibrations with quantified uncertainties

NUCLEAR STRUCTURE 62Ni, 98,100Ru, 106,108Pd, 110,112,114Cd, 118,120,122Te; calculated energies of three-phonon levels, B(E2) and comparison with experimental results. Anharmonic vibrators. Leading order (LO) and next-to-leading-order (NLO) effective field theory (EFT) for nuclear vibrations. Bayesian statistics for quantification of theoretical uncertainties.

doi: 10.1103/PhysRevC.92.064309
Citations: PlumX Metrics


2015EK01      Phys.Rev. C 91, 051301 (2015)

A.Ekstrom, G.R.Jansen, K.A.Wendt, G.Hagen, T.Papenbrock, B.D.Carlsson, C.Forssen, M.Hjorth-Jensen, P.Navratil, W.Nazarewicz

Accurate nuclear radii and binding energies from a chiral interaction

NUCLEAR STRUCTURE 2H, 4,8He, 6,9Li, 14C, 16O, 40Ca; calculated ground-state energies, charge radii, quadrupole moment for deuteron. 6Li, 14C, 16O, 22,24F, 22,24O, 40Ca; calculated levels, J, π, charge density in 16O, scattering lengths, and effective ranges in low-energy proton-proton scattering, scattering phase shifts in low-energy neutron-proton scattering, half-life for the β- decay of 3H; deduced consistently optimized interaction from chiral EFT at NNLO for nuclei and infinite nuclear matter. Coupled-cluster calculations based on chiral effective field theory interaction (NNLOsat). Comparison with experimental data.

doi: 10.1103/PhysRevC.91.051301
Citations: PlumX Metrics


2015PA38      J.Phys.(London) G42, 105103 (2015)

T.Papenbrock, H.A.Weidenmuller

Effective field theory of emergent symmetry breaking in deformed atomic nuclei

doi: 10.1088/0954-3899/42/10/105103
Citations: PlumX Metrics


2015WE05      Phys.Rev. C 91, 061301 (2015)

K.A.Wendt, C.Forssen, T.Papenbrock, D.Saaf

Infrared length scale and extrapolations for the no-core shell model

NUCLEAR STRUCTURE 4,6He, 6,7Li, 10B, 16O; calculated infrared (IR) length scale, Ground-state energy as a function of the IR scale, binding energy per particle. Large-scale no-core shell model (NCSM) with Dirichlet boundary condition. Comparison with Benchmark results from coupled-cluster calculations for 16O.

doi: 10.1103/PhysRevC.91.061301
Citations: PlumX Metrics


2014BA62      Phys.Rev. C 90, 064619 (2014)

S.Bacca, N.Barnea, G.Hagen, M.Miorelli, G.Orlandini, T.Papenbrock

Giant and pigmy dipole resonances in 4He, 16, 22O, and 40Ca from chiral nucleon-nucleon interactions

NUCLEAR REACTIONS 4He, 16,22O, 40Ca(γ, n), E not given; calculated dipole response functions using Lorentz integral transform combined with the CC method (LITCC), GDR and PDR, low-lying E1 strength in 22O, electric dipole polarizability in 40Ca. Comparison with experimental data.

doi: 10.1103/PhysRevC.90.064619
Citations: PlumX Metrics


2014EK01      Phys.Rev.Lett. 113, 262504 (2014)

A.Ekstrom, G.R.Jansen, K.A.Wendt, G.Hagen, T.Papenbrock, S.Bacca, B.Carlsson, D.Gazit

Effects of Three-Nucleon Forces and Two-Body Currents on Gamow-Teller Strengths

RADIOACTIVITY 14C, 22,24O(β-); calculated quenching factor; deduced a novel coupled-cluster technique for the computation of spectra in the daughter nuclei and made several predictions and spin assignments in the exotic neutron-rich isotopes of fluorine.

NUCLEAR STRUCTURE 14N, 22,24F; calculated energy levels, J, π.

doi: 10.1103/PhysRevLett.113.262504
Citations: PlumX Metrics


2014FU03      Phys.Rev. C 89, 044301 (2014)

R.J.Furnstahl, S.N.More, T.Papenbrock

Systematic expansion for infrared oscillator basis extrapolations

doi: 10.1103/PhysRevC.89.044301
Citations: PlumX Metrics


2014HA01      Phys.Rev. C 89, 014319 (2014)

G.Hagen, T.Papenbrock, A.Ekstrom, K.A.Wendt, G.Baardsen, S.Gandolfi, M.Hjorth-Jensen, C.J.Horowitz

Coupled-cluster calculations of nucleonic matter

NUCLEAR STRUCTURE A=10-1000; N=66, 132; calculated relative finite-size corrections for the kinetic energy in pure neutron matter, E/A of nuclear and neutron matter. Coupled-cluster computations of equation of state (EoS) for symmetric nuclear matter and neutron matter using optimized nucleon-nucleon (NN) potential NNLOopt at next-to-next-to leading order. Comparison with benchmark calculations.

doi: 10.1103/PhysRevC.89.014319
Citations: PlumX Metrics


2014KO46      Phys.Rev. C 90, 064007 (2014)

S.Konig, S.K.Bogner, R.J.Furnstahl, S.N.More, T.Papenbrock

Ultraviolet extrapolations in finite oscillator bases

NUCLEAR STRUCTURE 2H; calculated relative error in the deuteron energy, computed in harmonic-oscillator bases for a wide range of oscillator parameters, infrared (IR) and ultraviolet (UV) corrections and extrapolations in finite oscillator, comparison of UV extrapolations for a deuteron state bases for different potentials.

doi: 10.1103/PhysRevC.90.064007
Citations: PlumX Metrics


2014OR05      Few-Body Systems 55, 907 (2014)

G.Orlandini, S.Bacca, N.Barnea, G.Hagen, M.Miorelli, T.Papenbrock

Coupling the Lorentz Integral Transform (LIT) and the Coupled Cluster (CC) Methods: A Way Towards Continuum Spectra of "Not-So-Few-Body" System

NUCLEAR REACTIONS 16O, 40Ca(γ, X), E=10-20 MeV; analyzed available data; deduced resonance parameters for the giant dipole resonance. LIT and CC calculations.

doi: 10.1007/s00601-013-0772-4
Citations: PlumX Metrics


2014PA02      Phys.Rev. C 89, 014334 (2014)

T.Papenbrock, H.A.Weidenmuller

Effective field theory for finite systems with spontaneously broken symmetry

doi: 10.1103/PhysRevC.89.014334
Citations: PlumX Metrics


2013BA47      Phys.Rev.Lett. 111, 122502 (2013)

S.Bacca, N.Barnea, G.Hagen, G.Orlandini, T.Papenbrock

First Principles Description of the Giant Dipole Resonance in 16O

NUCLEAR STRUCTURE 16O; calculated giant dipole resonance parameters, position and strength. Nucleon-nucleon interaction, comparison with available data.

doi: 10.1103/PhysRevLett.111.122502
Citations: PlumX Metrics


2013BO19      Comput.Phys.Commun. 184, 085101 (2013)

S.Bogner, A.Bulgac, J.Carlson, J.Engel, G.Fann, R.J.Furnstahl, S.Gandolfi, G.Hagen, M.Horoi, C.Johnson, M.Kortelainen, E.Lusk, P.Maris, H.Nam, P.Navratil, W.Nazarewicz, E.Ng, G.P.A.Nobre, E.Ormand, T.Papenbrock, J.Pei, S.C.Pieper, S.Quaglioni, K.J.Roche, J.Sarich, N.Schunck, M.Sosonkina, J.Terasaki, I.Thompson, J.P.Vary, S.M.Wild

Computational nuclear quantum many-body problem: The UNEDF project

NUCLEAR REACTIONS 3He(d, p), 7Be(p, γ), E<1MeV; 172Yb, 188Os, 238U(γ, X), E<24 MeV; calculated σ. Comparison with experimental data.

NUCLEAR STRUCTURE 100Zr; calculated quadrupole deformation parameter, radii, neutron separation energy.

doi: 10.1016/j.cpc.2013.05.020
Citations: PlumX Metrics


2013EK01      Phys.Rev.Lett. 110, 192502 (2013)

A.Ekstrom, G.Baardsen, C.Forssen, G.Hagen, M.Hjorth-Jensen, G.R.Jansen, R.Machleidt, W.Nazarewicz, T.Papenbrock, J.Sarich, S.M.Wild

Optimized Chiral Nucleon-Nucleon Interaction at Next-to-Next-to-Leading Order

NUCLEAR STRUCTURE 3H, 3,4He, 10B, 17,22,24O, 40,48,50,52,54,56Ca; calculated energy of the first 2+ state, energy per nucleon for neutron matter, phase shifts. The nucleon-nucleon interaction from chiral effective field theory at next-to-next-to-leading order (NNLO).

doi: 10.1103/PhysRevLett.110.192502
Citations: PlumX Metrics


2013MO11      Phys.Rev. C 87, 044326 (2013)

S.N.More, A.Ekstrom, R.J.Furnstahl, G.Hagen, T.Papenbrock

Universal properties of infrared oscillator basis extrapolations

doi: 10.1103/PhysRevC.87.044326
Citations: PlumX Metrics


2013ZH08      Phys.Rev. C 87, 034323 (2013)

J.Zhang, T.Papenbrock

Rotational constants of multi-phonon bands in an effective theory for deformed nuclei

NUCLEAR STRUCTURE 162Dy, 166,168Er, 232Th; calculated levels, J, π, multi-phonon bands, two-phonon γ vibrational bands, rotational constant A. Effective theory for deformed nuclei with higher-order corrections. Comparison with experimental data.

doi: 10.1103/PhysRevC.87.034323
Citations: PlumX Metrics


2012BE03      Phys.Rev. C 85, 014322 (2012)

M.Bertolli, T.Papenbrock, S.M.Wild

Occupation-number-based energy functional for nuclear masses

NUCLEAR STRUCTURE Z=8-110, N=8-160; analyzed binding energies, charge radii using global fits to known masses for 2049 nuclei. Energy density functional based on Hohenberg-Kohn theory with shell-model occupations.

doi: 10.1103/PhysRevC.85.014322
Citations: PlumX Metrics


2012FU08      Phys.Rev. C 86, 031301 (2012)

R.J.Furnstahl, G.Hagen, T.Papenbrock

Corrections to nuclear energies and radii in finite oscillator spaces

NUCLEAR STRUCTURE 6He, 16O; calculated ground-state energies, nuclear radii. Finite oscillator basis space. Halo nuclei. Comparison with other theoretical calculations.

doi: 10.1103/PhysRevC.86.031301
Citations: PlumX Metrics


2012HA19      Phys.Rev.Lett. 108, 242501 (2012)

G.Hagen, M.Hjorth-Jensen, G.R.Jansen, R.Machleidt, T.Papenbrock

Continuum Effects and Three-Nucleon Forces in Neutron-Rich Oxygen Isotopes

NUCLEAR STRUCTURE 18,22,23,24O; calculated level energies, J, π, point matter and charge radii, 24O long-lived resonances. Chiral effective field interaction, comparison with available data.

doi: 10.1103/PhysRevLett.108.242501
Citations: PlumX Metrics


2012HA26      Phys.Rev.Lett. 109, 032502 (2012)

G.Hagen, M.Hjorth-Jensen, G.R.Jansen, R.Machleidt, T.Papenbrock

Evolution of Shell Structure in Neutron-Rich Calcium Isotopes

NUCLEAR STRUCTURE 42,48,50,52,53,54,55,56,61Ca, 50,54,56Ti; calculated ground state energies, J, π. Chiral effective field theory, comparison with available data.

doi: 10.1103/PhysRevLett.109.032502
Citations: PlumX Metrics


2012PI12      Phys.Rev. C 86, 014308 (2012)

D.A.Pigg, G.Hagen, H.Nam, T.Papenbrock

Time-dependent coupled-cluster method for atomic nuclei

NUCLEAR STRUCTURE 4He, 18O; calculated energy spectra, time-dependent observables which commute with the Hamiltonian under time evolution. Role of the similarity-transformed Hamiltonian under real and imaginary-time evolution. Time-dependent coupled-cluster (TDCC) theory based on Kvaal's bi-variational formulation.

doi: 10.1103/PhysRevC.86.014308
Citations: PlumX Metrics


2011JA06      Phys.Rev. C 83, 054306 (2011)

G.R.Jansen, M.Hjorth-Jensen, G.Hagen, T.Papenbrock

Toward open-shell nuclei with coupled-cluster theory

NUCLEAR STRUCTURE 3,4,5,6He; calculated ground-state energies, first 2+ state energy in 6He, expectation value of total angular Momentum. Method based on equation-of-motion coupled-cluster theory.

doi: 10.1103/PhysRevC.83.054306
Citations: PlumX Metrics


2011KA36      Phys.Rev. C 84, 061304 (2011)

R.Kanungo, A.Prochazka, M.Uchida, W.Horiuchi, G.Hagen, T.Papenbrock, C.Nociforo, T.Aumann, D.Boutin, D.Cortina-Gil, B.Davids, M.Diakaki, F.Farinon, H.Geissel, R.Gernhauser, J.Gerl, R.Janik, O.Jensen, B.Jonson, B.Kindler, R.Knobel, R.Krucken, M.Lantz, H.Lenske, Y.Litvinov, B.Lommel, K.Mahata, P.Maierbeck, A.Musumarra, T.Nilsson, C.Perro, C.Scheidenberger, B.Sitar, P.Strmen, B.Sun, Y.Suzuki, I.Szarka, I.Tanihata, H.Weick, M.Winkler

Exploring the anomaly in the interaction cross section and matter radius of 23O

NUCLEAR REACTIONS C(22O, X), (23O, X), [22O, 23O secondary beams from 9Be(48Ca, X), E=1 GeV/nucleon primary reaction], E=900 MeV/nucleon; measured energy loss, time of flight, magnetic rigidity. 22,23O; deduced interaction cross section, matter radii, neutron skin thickness. Glauber model analysis. Comparison with ab initio coupled-cluster theory.

doi: 10.1103/PhysRevC.84.061304
Citations: PlumX Metrics

Data from this article have been entered in the EXFOR database. For more information, access X4 datasetD0806. Data from this article have been entered in the XUNDL database. For more information, click here.


2011PA09      Nucl.Phys. A852, 36 (2011)

T.Papenbrock

Effective theory for deformed nuclei

doi: 10.1016/j.nuclphysa.2010.12.013
Citations: PlumX Metrics


2010DA17      Phys.Rev.Lett. 105, 162502 (2010)

I.G.Darby, R.K.Grzywacz, J.C.Batchelder, C.R.Bingham, L.Cartegni, C.J.Gross, M.Hjorth-Jensen, D.T.Joss, S.N.Liddick, W.Nazarewicz, S.Padgett, R.D.Page, T.Papenbrock, M.M.Rajabali, J.Rotureau, K.P.Rykaczewski

Orbital Dependent Nucleonic Pairing in the Lightest Known Isotopes of Tin

RADIOACTIVITY 109Xe, 105Te(α); measured Iα, Eα, Iγ, Iγ; deduced J, π for ground and first excited states in 101Sn, ground state spin inversion, strong pairing interaction. Comparison with shell model calculations.

doi: 10.1103/PhysRevLett.105.162502
Citations: PlumX Metrics

Data from this article have been entered in the XUNDL database. For more information, click here.


2010HA11      Phys.Rev.Lett. 104, 182501 (2010)

G.Hagen, T.Papenbrock, M.Hjorth-Jensen

Ab Initio Computation of the 17F Proton Halo State and Resonances in A=17 Nuclei

NUCLEAR STRUCTURE 17O, 17F; calculated energies of proton halo states, J, π. deduced continuum effect binding energy yields.

doi: 10.1103/PhysRevLett.104.182501
Citations: PlumX Metrics


2010HA22      Phys.Rev. C 82, 034330 (2010)

G.Hagen, T.Papenbrock, D.J.Dean, M.Hjorth-Jensen

Ab initio coupled-cluster approach to nuclear structure with modern nucleon-nucleon interactions

NUCLEAR STRUCTURE 4He, 16,17,22,24,25,28O, 16,22,24,25,28F, 40,48Ca; calculated ground-state energies, rms radii, single-particle energies, and binding energies. Coupled-cluster model with bare and secondary renormalized nucleon-nucleon interactions. Comparison with experimental data.

doi: 10.1103/PhysRevC.82.034330
Citations: PlumX Metrics


2010JE03      Phys.Rev. C 82, 014310 (2010)

O.Jensen, G.Hagen, T.Papenbrock, D.J.Dean, J.S.Vaagen

Computation of spectroscopic factors with the coupled-cluster method

NUCLEAR STRUCTURE 15N, 15,16O; calculated ground-state energies, spectroscopic factors for removal of proton and neutron from 16O using coupled-cluster theory and equation of motion.

doi: 10.1103/PhysRevC.82.014310
Citations: PlumX Metrics


2009BA61      Eur.Phys.J. A 42, 553 (2009)

S.Bacca, A.Schwenk, G.Hagen, T.Papenbrock

Helium halo nuclei from low-momentum interactions

NUCLEAR STRUCTURE 4,6,8He; calculated ground-state energies. Comparison with data.

doi: 10.1140/epja/i2009-10815-5
Citations: PlumX Metrics


2009HA20      Phys.Rev.Lett. 103, 062503 (2009)

G.Hagen, T.Papenbrock, D.J.Dean

Solution of the Center-Of-Mass Problem in Nuclear Structure Calculations

NUCLEAR STRUCTURE 4He, 16O; calculated nuclear wave function as a product of intrinsic and center-of-mass in a sufficiently large model space.

doi: 10.1103/PhysRevLett.103.062503
Citations: PlumX Metrics


2009HA26      Phys.Rev. C 80, 021306 (2009)

G.Hagen, T.Papenbrock, D.J.Dean, M.Hjorth-Jensen, B.Velamur Asokan

Ab initio computation of neutron-rich oxygen isotopes

NUCLEAR STRUCTURE 16,22,24,28O; calculated ground-state energies, binding energies and rms point matter radii using ab initio calculations with the coupled-cluster model and chiral nucleon-nucleon interaction N3LO. Comparison with experimental data.

doi: 10.1103/PhysRevC.80.021306
Citations: PlumX Metrics


2008BE35      Phys.Rev. C 78, 064310 (2008)

M.G.Bertolli, T.Papenbrock

Energy functional for the three-level Lipkin model

doi: 10.1103/PhysRevC.78.064310
Citations: PlumX Metrics


2008HA30      Phys.Rev.Lett. 101, 092502 (2008)

G.Hagen, T.Papenbrock, D.J.Dean, M.Hjorth-Jensen

Medium-Mass Nuclei from Chiral Nucleon-Nucleon Interactions

NUCLEAR STRUCTURE 4He, 16O, 40Ca, 48Ca, 48Ni; calculated binding energies, radii and densities; spherical coupled-cluster theory; bare chiral NN-interaction;

doi: 10.1103/PhysRevLett.101.092502
Citations: PlumX Metrics


2008PA34      Phys.Rev. C 78, 054305 (2008)

T.Papenbrock, H.A.Weidenmuller

Abundance of ground states with positive parity

doi: 10.1103/PhysRevC.78.054305
Citations: PlumX Metrics


2008PA42      Int.J.Mod.Phys. E17, Supplement 1, 286 (2008)

T.Papenbrock, H.A.Weidenmuller

Preponderance of ground states with positive parity

doi: 10.1142/S0218301308011926
Citations: PlumX Metrics


2007HA33      Phys.Rev. C 76, 034302 (2007)

G.Hagen, T.Papenbrock, D.J.Dean, A.Schwenk, A.Nogga, M.Wloch, P.Piecuch

Coupled-cluster theory for three-body Hamiltonians

doi: 10.1103/PhysRevC.76.034302
Citations: PlumX Metrics


2007HA44      Phys.Rev. C 76, 044305 (2007)

G.Hagen, D.J.Dean, M.Hjorth-Jensen, T.Papenbrock, A.Schwenk

Benchmark calculations for 3H, 4He, 16O, and 40Ca with ab initio coupled-cluster theory

NUCLEAR STRUCTURE 3H, 4He, 16O, 40Ca; calculated CCSD and CCSD(T) energies. Coupled-cluster theory.

doi: 10.1103/PhysRevC.76.044305
Citations: PlumX Metrics


2007PA06      Phys.Rev. C 75, 014304 (2007)

T.Papenbrock, A.Bhattacharyya

Density-functional theory for the pairing Hamiltonian

doi: 10.1103/PhysRevC.75.014304
Citations: PlumX Metrics


2006PA05      Phys.Rev. C 73, 014311 (2006)

T.Papenbrock, H.A.Weidenmuller

Two-body random ensemble in nuclei

NUCLEAR STRUCTURE 20,22Ne, 24Mg; calculated level configurations, correlations. Two-body random ensemble.

doi: 10.1103/PhysRevC.73.014311
Citations: PlumX Metrics


2006PA40      Int.J.Mod.Phys. E15, 1885 (2006)

T.Papenbrock, H.A.Weidenmuller

Two-body random ensemble for nuclei

doi: 10.1142/S0218301306005435
Citations: PlumX Metrics


2005DE13      Nucl.Phys. A752, 299c (2005)

D.J.Dean, J.R.Gour, G.Hagen, M.Hjorth-Jensen, K.Kowalski, T.Papenbrock, P.Piecuch, M.Wloch

Nuclear Structure Calculations with Coupled Cluster Methods from Quantum Chemistry

NUCLEAR STRUCTURE 4He, 16O; calculated ground and excited states energies. Coupled cluster approximation.

doi: 10.1016/j.nuclphysa.2005.02.041
Citations: PlumX Metrics


2005PA44      J.Phys.(London) G31, S1377 (2005)

T.Papenbrock, D.J.Dean

Density matrix renormalization group and wavefunction factorization for nuclei

NUCLEAR STRUCTURE 76Ge, 76Se, 78Kr; calculated ground and excited states energies. Density matrix renormalization group.

doi: 10.1088/0954-3899/31/8/016
Citations: PlumX Metrics


2005PA45      Nucl.Phys. A757, 422 (2005)

T.Papenbrock, H.A.Weidenmuller

Origin of chaos in the spherical nuclear shell model: Role of symmetries

doi: 10.1016/j.nuclphysa.2005.04.018
Citations: PlumX Metrics


2005PA70      Eur.Phys.J. A 25, Supplement 1, 507 (2005)

T.Papenbrock

Wave function factorization of shell-model ground states

NUCLEAR STRUCTURE 51Mn; calculated ground-state energy. Wave function factorization.

doi: 10.1140/epjad/i2005-06-059-3
Citations: PlumX Metrics


2005WL01      Phys.Rev.Lett. 94, 212501 (2005)

M.Wloch, D.J.Dean, J.R.Gour, M.Hjorth-Jensen, K.Kowalski, T.Papenbrock, P.Piecuch

Ab-Initio Coupled-Cluster Study of 16O

NUCLEAR STRUCTURE 16O; calculated matter density, charge radius, charge form factor, excited states energies. Coupled-cluster singles and doubles approach, comparison with data.

doi: 10.1103/PhysRevLett.94.212501
Citations: PlumX Metrics


2005WL02      J.Phys.(London) G31, S1291 (2005)

M.Wloch, J.R.Gour, P.Piecuch, D.J.Dean, M.Hjorth-Jensen, T.Papenbrock

Coupled-cluster calculations for ground and excited states of closed- and open-shell nuclei using methods of quantum chemistry

NUCLEAR STRUCTURE 15,16,17O; calculated ground and excited states energies, configurations. Coupled-cluster methods.

doi: 10.1088/0954-3899/31/8/007
Citations: PlumX Metrics


2005WL03      Eur.Phys.J. A 25, Supplement 1, 485 (2005)

M.Wloch, D.J.Dean, J.R.Gour, P.Piecuch, M.Hjorth-Jensen, T.Papenbrock, K.Kowalski

Ab initio coupled cluster calculations for nuclei using methods of quantum chemistry

NUCLEAR STRUCTURE 16O; calculated ground and excited states energies. Coupled cluster methods.

doi: 10.1140/epjad/i2005-06-062-8
Citations: PlumX Metrics


2004KO17      Phys.Rev.Lett. 92, 132501 (2004)

K.Kowalski, D.J.Dean, M.Hjorth-Jensen, T.Papenbrock, P.Piecuch

Coupled Cluster Calculations of Ground and Excited States of Nuclei

NUCLEAR STRUCTURE 4He, 16O; calculated ground and excited states energies. Coupled cluster approach.

doi: 10.1103/PhysRevLett.92.132501
Citations: PlumX Metrics


2004PA04      Phys.Rev. C 69, 024312 (2004)

T.Papenbrock, A.Juodagalvis, D.J.Dean

Solution of large scale nuclear structure problems by wave function factorization

NUCLEAR STRUCTURE 4He, 24,28Mg, 26,28Al, 60Fe, 56Ni; calculated level energies. Wave function factorization, comparison with other truncation methods.

doi: 10.1103/PhysRevC.69.024312
Citations: PlumX Metrics


2004PA27      Phys.Rev.Lett. 93, 132503 (2004)

T.Papenbrock, H.A.Weidenmuller

Distribution of Spectral Widths and Preponderance of Spin-0 Ground States in Nuclei

doi: 10.1103/PhysRevLett.93.132503
Citations: PlumX Metrics


2003PA16      Phys.Rev. C 67, 051303 (2003)

T.Papenbrock, D.J.Dean

Factorization of shell-model ground states

NUCLEAR STRUCTURE 20,22Ne, 24Mg, 44Ti, 48Cr, 52Fe, 56Ni; calculated ground and excited states energies. Ground-state factorization, variational principle.

doi: 10.1103/PhysRevC.67.051303
Citations: PlumX Metrics


Back to query form    [Next]