NSR Query Results


Output year order : Descending
Format : Normal

NSR database version of April 11, 2024.

Search: Author = A.Lovato

Found 50 matches.

Back to query form



2024KA11      Phys.Rev. C 109, 034317 (2024)

G.Kanwar, A.Lovato, N.Rocco, M.Wagman

Mitigating Green's function Monte Carlo signal-to-noise problems using contour deformations

doi: 10.1103/PhysRevC.109.034317
Citations: PlumX Metrics


2024NI03      Phys.Rev. C 109, 014623 (2024)

A.Nikolakopoulos, A.Lovato, N.Rocco

Relativistic effects in Green's function Monte Carlo calculations of neutrino-nucleus scattering

doi: 10.1103/PhysRevC.109.014623
Citations: PlumX Metrics


2023BE13      Universe 9, 345 (2023)

O.Benhar, A.Lovato, L.Tonetto

Properties of Hot Nuclear Matter

doi: 10.3390/universe9080345
Citations: PlumX Metrics


2023FO02      Phys. Rev. Res. 5, 033062 (2023)

B.Fore, J.M.Kim, G.Carleo, M.Hjorth-Jensen, A.Lovato, M.Piarulli

Dilute neutron star matter from neural-network quantum states

doi: 10.1103/PhysRevResearch.5.033062
Citations: PlumX Metrics


2022AN04      Phys.Rev. C 105, 014002 (2022)

L.Andreoli, J.Carlson, A.Lovato, S.Pastore, N.Rocco, R.B.Wiringa

Electron scattering on A=3 nuclei from quantum Monte Carlo based approaches

NUCLEAR REACTIONS 3H(e, e), (e, e'), at momentum transfer θ=300 MeV/c; calculated total longitudinal response density. 3H, 3He(e, e'), at momentum transfer θ=300, 500, 700 MeV/c; calculated longitudinal and transverse response functions, single proton momentum distribution of 3He. 3He(e, e), (e, e'), E=287.2, 319.1, 469.4, 499.9, 560.3, 667.3 MeV; 3H(e, e), (e, e'), E=367.7, 506.9, 557.9, 652.4, 790.2 MeV; calculated inclusive double-differential σ(E). Green's function Monte Carlo (GFMC) method with two approaches for the final hadronic state: the spectral-function (SF) formalism and the short-time approximation (STA). Comparison with experimental data.

doi: 10.1103/PhysRevC.105.014002
Citations: PlumX Metrics


2022CI08      J.Phys.(London) G49, 120502 (2022)

V.Cirigliano, Z.Davoudi, J.Engel, R.J.Furnstahl, G.Hagen, U.Heinz, H.Hergert, M.Horoi, C.W.Johnson, A.Lovato, E.Mereghetti, W.Nazarewicz, A.Nicholson, T.Papenbrock, S.Pastore, M.Plumlee, D.R.Phillips, P.E.Shanahan, S.R.Stroberg, F.Viens, A.Walker-Loud, K.A.Wendt, S.M.Wild

Towards precise and accurate calculations of neutrinoless double-beta decay

RADIOACTIVITY 48Ca(2β-); calculated neutrinoless nuclear matrix elements using chiral-EFT interactions, EDF, IBM, QRPA, SM-pf, SM-sdpf, SM-MBPT, RSM, QMC+SM, IM-GCM, VS-IMSRG, CCSD, CCSD-T1.

doi: 10.1088/1361-6471/aca03e
Citations: PlumX Metrics


2022GN01      Few-Body Systems 63, 7 (2022)

A.Gnech, C.Adams, N.Brawand, G.Carleo, A.Lovato, N.Rocco

Nuclei with Up to A=6 Nucleons with Artificial Neural Network Wave Functions

NUCLEAR STRUCTURE 2,3H, 6Li, 3,4,6He; calculated VM-ANN and HH point-nucleon densities, ground-state energies and charge radii using as input the leading-order pionless-EFT Hamiltonian with and without the 3N force.

doi: 10.1007/s00601-021-01706-0
Citations: PlumX Metrics


2022LO07      Phys.Rev. C 105, 055808 (2022)

A.Lovato, I.Bombaci, D.Logoteta, M.Piarulli, R.B.Wiringa

Benchmark calculations of infinite neutron matter with realistic two- and three-nucleon potentials

doi: 10.1103/PhysRevC.105.055808
Citations: PlumX Metrics


2022LO15      Phys. Rev. Res. 4, 043178 (2022)

A.Lovato, C.Adams, G.Carleo, N.Rocco

Hidden-nucleons neural-network quantum states for the nuclear many-body problem

NUCLEAR STRUCTURE 16O; calculated the hidden-nucleon ansatz accuracy comparable to the numerically exact hyperspherical harmonic method in light nuclei and to the auxiliary field diffusion Monte Carlo.

doi: 10.1103/PhysRevResearch.4.043178
Citations: PlumX Metrics


2022PE20      Phys. Rev. Res. 4, 023138 (2022)

G.Pescia, J.Han, A.Lovato, J.Lu, G.Carleo

Neural-network quantum states for periodic systems in continuous space

NUCLEAR STRUCTURE 4He; calculated energy per particle, spatial periodicity, parameters in terms of a permutationally invariant part described by the Deep Sets neural-network architecture; deduced example applications to both one- and two-dimensional interacting quantum gases with Gaussian interactions, as well as to 4He confined in a one-dimensional geometry.

doi: 10.1103/PhysRevResearch.4.023138
Citations: PlumX Metrics


2022WE03      Phys.Rev. C 106, 054319 (2022)

R.Weiss, A.Lovato, R.B.Wiringa

Isospin-symmetry implications for nuclear two-body distributions and short-range correlations

NUCLEAR STRUCTURE 6,7Li, 6,10Be; calculated two-body pp, nn and pn densities with spins equal 0 and 1. Ab initio variational Monte Carlo calculations with AV18 + UX potential.

RADIOACTIVITY 10Be(2β-); calculated 0νββ Fermi transition densities.

doi: 10.1103/PhysRevC.106.054319
Citations: PlumX Metrics


2022WE06      Phys.Rev. C 106, 065501 (2022)

R.Weiss, P.Soriano, A.Lovato, J.Menendez, R.B.Wiringa

Neutrinoless double-β decay: Combining quantum Monte Carlo and the nuclear shell model with the generalized contact formalism

RADIOACTIVITY 12,10Be, 14C, 48Ca, 76Ge, 130Te, 136Xe(2β-); calculated Fermi, Gamow-Teller, and short-range transition densities, 0νββ-decay matrix elements. Calculation within framework based on the generalized contact formalism that combines the nuclear shell model and quantum Monte Carlo methods.

doi: 10.1103/PhysRevC.106.065501
Citations: PlumX Metrics


2021AD12      Phys.Rev.Lett. 127, 022502 (2021)

C.Adams, G.Carleo, A.Lovato, N.Rocco

Variational Monte Carlo Calculations of A ≤ 4 Nuclei with an Artificial Neural-Network Correlator Ansatz

NUCLEAR STRUCTURE 2,3H, 4He; calculated ground-state energies, point-nucleon densities. Artificial neural networks (ANNs).

doi: 10.1103/PhysRevLett.127.022502
Citations: PlumX Metrics


2021IS02      Phys.Rev. C 103, 015502 (2021)

J.Isaacson, W.I.Jay, A.Lovato, P.A.N.Machado, N.Rocco

New approach to intranuclear cascades with quantum Monte Carlo configurations

NUCLEAR REACTIONS 12C(p, p), (p, X), E=5-200 MeV; calculated nucleon density, proton-proton and proton-neutron correlation functions in carbon from Green's function Monte Carlo and mean-field configurations, total σ(E), carbon transparency as function of incident proton energy, histograms of the distance traveled by a struck particle before the first interaction takes place for different values of the interaction cross section, nucleon multiplicity. Novel intranuclear cascade (INC) model with realistic quantum Monte Carlo (QMC) and mean-field (MF) nuclear configurations. Comparison with experimental data.

doi: 10.1103/PhysRevC.103.015502
Citations: PlumX Metrics


2021MA52      Phys.Rev. C 104, 024315 (2021)

F.Marino, C.Barbieri, A.Carbone, G.Colo, A.Lovato, F.Pederiva, X.Roca-Maza, E.Vigezzi

Nuclear energy density functionals grounded in ab initio calculations

NUCLEAR STRUCTURE 16O, 34Si, 36S, 36,40,48,52Ca, 90Zr, 132Sn, 208Pb; calculated energies per nucleon and charge radii by ab initio computation of equations of state (EoSs) of symmetric nuclear and pure neutron matter using the chiral NNLOsat-based nuclear energy density functional (EDF), and the phenomenological AV4+UIXc Hamiltonians. Comparison with experimental data. Discussed practical and systematic way to merge ab initio nuclear theory and density functional theory.

doi: 10.1103/PhysRevC.104.024315
Citations: PlumX Metrics


2021RA07      Phys.Rev. C 103, 035502 (2021)

K.Raghavan, P.Balaprakash, A.Lovato, N.Rocco, S.M.Wild

Machine-learning-based inversion of nuclear responses

NUCLEAR STRUCTURE 4He; calculated response functions characterized by an elastic narrow peak and a quasieleastic (QE) peak, physics-informed neural network (Phys-NN) and maximum entropy (MaxEnt) testing metrics, comparison between the Phys-NN and MaxEnt reconstructions for the one-peak and two-peak datasets, energy-dependent entropy for the Phys-NN and Max-Ent for the one-peak and two-peak datasets; deduced Phys-NN and MaxEnt reconstruction performance. Physics-informed artificial neural network architecture for approximating the inverse of the Laplace transform using realistic, electromagnetic response functions. Relevance to short-range nuclear dynamics and for the correct interpretation of neutrino oscillation experiments.

doi: 10.1103/PhysRevC.103.035502
Citations: PlumX Metrics


2021SC12      Phys.Rev. C 103, 054003 (2021)

R.Schiavilla, L.Girlanda, A.Gnech, A.Kievsky, A.Lovato, L.E.Marcucci, M.Piarulli, M.Viviani

Two- and three-nucleon contact interactions and ground-state energies of light- and medium-mass nuclei

NUCLEAR STRUCTURE 3H, 3,4,6He, 6Li, 16O, 40,48Ca, 90Zr; calculated binding energies in the EFT formalism with the construction of 2N contact local interactions at LO, NLO, and N3LO in configuration space, with deuteron properties determined from analysis of np and pp scattering data. Comparison with experimental data.

NUCLEAR REACTIONS 1H(n, n), (p, p), E=1-25 MeV; analyzed experimental scattering data; deduced scattering lengths, effective radii and phase shifts, deuteron S-wave radial functions at LO and deuteron S- and D-wave radial functions in the EFT formalism.

doi: 10.1103/PhysRevC.103.054003
Citations: PlumX Metrics


2020EN01      Eur.Phys.J. A 56, 15 (2020)

A.Endrizzi, A.Perego, F.M.Fabbri, L.Branca, D.Radice, S.Bernuzzi, B.Giacomazzo, F.Pederiva, A.Lovato

Thermodynamics conditions of matter in the neutrino decoupling region during neutron star mergers

doi: 10.1140/epja/s10050-019-00018-6
Citations: PlumX Metrics


2020PI05      Phys.Rev. C 101, 045801 (2020)

M.Piarulli, I.Bombaci, D.Logoteta, A.Lovato, R.B.Wiringa

Benchmark calculations of pure neutron matter with realistic nucleon-nucleon interactions

doi: 10.1103/PhysRevC.101.045801
Citations: PlumX Metrics


2019LO11      Phys.Rev. C 100, 035502 (2019)

A.Lovato, N.Rocco, R.Schiavilla

Muon capture in nuclei: An ab initio approach based on Green's function Monte Carlo methods

NUCLEAR REACTIONS 4He(μ, nν)3H, (μ, 2nν)2H, (μ, 3nν)1H, 3H(μ, 3nν), E=0-83.6 MeV; calculated differential rates of muon capture on 3H and 4He as function of energy of the muon neutrino using an ab initio Green's function Monte Carlo (GFMC) method, in a dynamical framework based on realistic two- and three-nucleon interactions and realistic nuclear charge-changing weak currents. Comparison with experimental data for muon capture in 4He.

doi: 10.1103/PhysRevC.100.035502
Citations: PlumX Metrics


2019MA33      Phys.Rev.Lett. 122, 182501 (2019)

B.Maass, T.Huther, K.Konig, J.Kramer, J.Krause, A.Lovato, P.Muller, K.Pachucki, M.Puchalski, R.Roth, R.Sanchez, F.Sommer, R.B.Wiringa, W.Nortershauser

Nuclear Charge Radii of 10, 11B

NUCLEAR MOMENTS 10,11B; measured frequencies; deduced nuclear charge radii by combining high-accuracy ab initio mass-shift calculations and a high-accuracy measurement of the isotope shift.

doi: 10.1103/PhysRevLett.122.182501
Citations: PlumX Metrics

Data from this article have been entered in the XUNDL database. For more information, click here.


2019RO06      Phys.Rev. C 99, 025502 (2019)

N.Rocco, C.Barbieri, O.Benhar, A.De Pace, A.Lovato

Neutrino-nucleus cross section within the extended factorization scheme

NUCLEAR REACTIONS 12C, 16O(ν, X), (ν-bar, X), E=1 GeV muon neutrinos; calculated scattering differential σ(θ), and total σ using extended factorization scheme based on the impulse approximation and spectral function formalism by including relativistic meson-exchange two-body currents (MEC) relevant for charged-current (CC) and neutral-current (NC) interactions. Relevance to experimental data from MiniBooNE Collaboration, and future generation experiments.

doi: 10.1103/PhysRevC.99.025502
Citations: PlumX Metrics


2019RO17      Phys.Rev. C 100, 045503 (2019)

N.Rocco, S.X.Nakamura, T.-S.H.Lee, A.Lovato

Electroweak pion production on nuclei within the extended factorization scheme

NUCLEAR REACTIONS 12C(e, e'π), E=620, 730, 961, 1650 MeV; 12C(ν, ν'), (ν, μ-), E=1.0 GeV; 1H(e, e'π0), (e, e'π+), Q2=0.4, 1.76, 2.95 MeV; 1H(ν, μ-π+), 1n(ν, μ-π0), (ν, μ-π+), E<2.25 GeV muon neutrinos; calculated double differential σ(E) using the dynamical coupled-channel (DCC) ANL-Osaka model and Metropolis Monte Carlo integration techniques for generating the matrix elements of current operators relevant to pion production off the nucleon. Comparison with experimental data from ANL and BNL.

doi: 10.1103/PhysRevC.100.045503
Citations: PlumX Metrics


2019SC07      Phys.Rev. C 99, 034005 (2019)

R.Schiavilla, A.Baroni, S.Pastore, M.Piarulli, L.Girlanda, A.Kievsky, A.Lovato, L.E.Marcucci, StevenC.Pieper, M.Viviani, R.B.Wiringa

Local chiral interactions and magnetic structure of few-nucleon systems

NUCLEAR STRUCTURE 2,3H, 3He; calculated magnetic form factors, and contributions to the isoscalar and isovector combinations of the trinucleon magnetic moments using chiral interactions. Comparison with experimental data.

NUCLEAR REACTIONS 2H(γ, n), E=2-29 MeV; 2H(e, n), E=0-3 MeV; calculated deuteron photodisintegration cross sections, deuteron threshold electrodisintegration cross sections at backward angles using chiral two-, and three-nucleon interactions including Δ intermediate states for LO, NLO, N2LO, and N3LO models. Comparison with experimental data.

doi: 10.1103/PhysRevC.99.034005
Citations: PlumX Metrics


2019SO10      Phys.Rev. C 99, 065503 (2019)

J.E.Sobczyk, N.Rocco, A.Lovato, J.Nieves

Weak production of strange and charmed ground-state baryons in nuclei

NUCLEAR REACTIONS 12C, 16O, 40Ca(ν-bar, μ+Λ), (ν-bar, μ+Σ-), (ν-bar, μ+Σ0), (ν-bar, μ+Σ+), (ν-bar, μ-Λ), E=0.5-5 GeV; calculated differential σ(E, θ) and total σ(E) for muonic neutrino beams, form factors using realistic hole spectral functions with propagation of hyperons in the nuclear medium via a Monte Carlo cascade. Implications in the analysis of experiments from SciBooNE, MicroBooNE, MINERvA and ArgoNeuT collaborations.

doi: 10.1103/PhysRevC.99.065503
Citations: PlumX Metrics


2018BA37      Phys.Rev. C 98, 044003 (2018)

A.Baroni, R.Schiavilla, L.E.Marcucci, L.Girlanda, A.Kievsky, A.Lovato, S.Pastore, M.Piarulli, S.Pieper, M.Viviani, R.B.Wiringa

Local chiral interactions, the tritium Gamow-Teller matrix element, and the three-nucleon contact term

RADIOACTIVITY 3H(β-); calculated Gamow-Teller matrix element, and low energy constants in the contact three-nucleon interaction within the chiral two- and three nucleon interactions including Δ intermediate states, contributions due to loop corrections in the axial current at next-to-next-to-next-to-next-to-leading order (N4LO). Comparison with experimental values.

doi: 10.1103/PhysRevC.98.044003
Citations: PlumX Metrics


2018LO04      Phys.Rev. C 97, 022502 (2018)

A.Lovato, S.Gandolfi, J.Carlson, E.Lusk, S.C.Pieper, R.Schiavilla

Quantum Monte Carlo calculation of neutral-current ν - 12C inclusive quasielastic scattering

NUCLEAR REACTIONS 12C(ν, ν), (ν-bar, ν-bar), at energy transfer ω<400 MeV; calculated response functions and differential cross sections at final neutrino angles of 15°, 30°, 60° and 120° for neutral-current scattering at momentum transfer q=570 MeV/c; deduced substantial two-nucleon contributions to the neutral-current scattering of neutrinos and antineutrinos over the entire quasielastic region. Realistic treatments of nuclear interactions and currents, including the axial, vector, and vector-axial interference terms. Relevance to T2K, MINERνA and DUNE experiments.

doi: 10.1103/PhysRevC.97.022502
Citations: PlumX Metrics


2018MA54      Phys.Rev. C 98, 034005 (2018)

L.Madeira, A.Lovato, F.Pederiva, K.E.Schmidt

Quantum Monte Carlo formalism for dynamical pions and nucleons

doi: 10.1103/PhysRevC.98.034005
Citations: PlumX Metrics


2018PI01      Phys.Rev.Lett. 120, 052503 (2018)

M.Piarulli, A.Baroni, L.Girlanda, A.Kievsky, A.Lovato, E.Lusk, L.E.Marcucci, S.C.Pieper, R.Schiavilla, M.Viviani, R.B.Wiringa

Light-Nuclei Spectra from Chiral Dynamics

doi: 10.1103/PhysRevLett.120.052503
Citations: PlumX Metrics


2018RO11      Phys.Rev. C 97, 055501 (2018)

N.Rocco, W.Leidemann, A.Lovato, G.Orlandini

Relativistic effects in ab initio electron-nucleus scattering

NUCLEAR REACTIONS 4He(e-, e-'), E=300-1108 MeV; calculated longitudinal and transverse electromagnetic response functions with and without two-body relativistic kinematics, and double differential σ(E, θ) using Green's Function Monte Carlo (GFMC) approach with the inclusion of two-fragment model; developed a new algorithm to interpolate response functions to arbitrary values of momentum transfer. Comparison with previous theoretical predictions, and with experimental values.

doi: 10.1103/PhysRevC.97.055501
Citations: PlumX Metrics


2018SO03      Phys.Rev. C 97, 035506 (2018)

J.E.Sobczyk, N.Rocco, A.Lovato, J.Nieves

Scaling within the spectral function approach

NUCLEAR REACTIONS 12C(e, e'), at momentum transfer q=0.57-1.2 GeV; calculated nucleon-density response function, transverse, longitudinal, and nucleon-density scaling functions, nonrelativistic PWIA scaling responses using two approaches, semi-phenomenological model, and hole spectral function (SF) based on correlated basis function (CBF). Comparison with experimental data.

doi: 10.1103/PhysRevC.97.035506
Citations: PlumX Metrics


2017BE30      Phys.Rev. C 96, 054301 (2017)

O.Benhar, A.Lovato

Perturbation theory of nuclear matter with a microscopic effective interaction

doi: 10.1103/PhysRevC.96.054301
Citations: PlumX Metrics


2017LO11      Phys.Rev. C 96, 024326 (2017)

D.Lonardoni, A.Lovato, S.C.Pieper, R.B.Wiringa

Variational calculation of the ground state of closed-shell nuclei up to A=40

NUCLEAR STRUCTURE 4He, 16O, 40Ca; calculated cluster contributions to energies per nucleon, point radii, total energies, charge radii, point proton and two-nucleon densities, operator two-nucleon densities, proton momentum distributions, integrated strengths, longitudinal elastic form factors, Coulomb sum rules, central and radial correlation functions, and variational parameters. Variational Monte Carlo calculations using realistic phenomenological two- and three-nucleon potentials AV18 and AV18+UIX. Comparison with experimental data.

doi: 10.1103/PhysRevC.96.024326
Citations: PlumX Metrics


2017RO17      Phys.Rev. C 96, 015504 (2017)

N.Rocco, L.Alvarez-Ruso, A.Lovato, J.Nieves

Electromagnetic scaling functions within the Green's function Monte Carlo approach

NUCLEAR REACTIONS 4He, 12C(e, e'), q=300, 400, 500, 600, 700 MeV; calculated longitudinal and transverse scaling functions in the relativistic and nonrelativistic cases; deduced scaling properties of the electromagnetic response functions. Green's function Monte Carlo (GFMC) approach, with only the one-body current contribution. Comparison with experimental data. Novel interpretation of the scaling function, and role of relativistic effects.

doi: 10.1103/PhysRevC.96.015504
Citations: PlumX Metrics


2016LO09      Phys.Rev.Lett. 117, 082501 (2016)

A.Lovato, S.Gandolfi, J.Carlson, Steven C.Pieper, R.Schiavilla

Electromagnetic Response of 12C: A First-Principles Calculation

NUCLEAR REACTIONS 12C(E, E'), E<400 MeV; calculated electromagnetic longitudinal and transverse response functions, form factors, Coulomb sum rule.

doi: 10.1103/PhysRevLett.117.082501
Citations: PlumX Metrics


2016ME06      Phys.Rev. C 93, 035802 (2016)

A.Mecca, A.Lovato, O.Benhar, A.Polls

Transport properties of the Fermi hard-sphere system

doi: 10.1103/PhysRevC.93.035802
Citations: PlumX Metrics


2016PI15      Phys.Rev. C 94, 054007 (2016)

M.Piarulli, L.Girlanda, R.Schiavilla, A.Kievsky, A.Lovato, L.E.Marcucci, StevenC.Pieper, M.Viviani, R.B.Wiringa

Local chiral potentials with Δ-intermediate states and the structure of light nuclei

NUCLEAR STRUCTURE 3H, 3,4,6He, 6Li; calculated ground- and excited-state energies, and proton rms radii using nonlocal nucleon-nucleon potentials in hyperspherical harmonics (HH), variational Monte Carlo (VMC), Green's function Monte Carlo (GFMC) approaches.

NUCLEAR REACTIONS 1H(p, p), (n, n), E=0-125, 0-200 MeV; analyzed Granada-2013 database of pp and np observables order by order in the chiral expansion up to N3LO and fitted to the deuteron binding energy and nn singlet scattering length; deduced nucleon-nucleon potentials, long-range included one- and two-pion exchange contributions without and with Δ isobars in the intermediate states up to order Q3 in the chiral expansion, while the short range consisted of contact interactions up to order Q4.

doi: 10.1103/PhysRevC.94.054007
Citations: PlumX Metrics


2016RO10      Phys.Rev.Lett. 116, 192501 (2016)

N.Rocco, A.Lovato, O.Benhar

Unified Description of Electron-Nucleus Scattering within the Spectral Function Formalism

NUCLEAR REACTIONS 12C(E, E'), E=0.680, 1.3 GeV; calculated σ(θ, E). Comparison with experimental data.

doi: 10.1103/PhysRevLett.116.192501
Citations: PlumX Metrics


2016RO32      Phys.Rev. C 94, 065501 (2016)

N.Rocco, A.Lovato, O.Benhar

Comparison of the electromagnetic responses of 12C obtained from the Green's function Monte Carlo and spectral function approaches

NUCLEAR REACTIONS 12C(e, e'), at momentum transfer q=300, 380, 570 MeV; analyzed and evaluated electromagnetic response function data in the longitudinal and transverse channels using the Green's function Monte Carlo (GFMC) and spectral function (SF) approaches.

doi: 10.1103/PhysRevC.94.065501
Citations: PlumX Metrics


2015BE26      Phys.Rev. C 92, 024602 (2015)

O.Benhar, A.Lovato, N.Rocco

Contribution of two-particle-two-hole final states to the nuclear response

NUCLEAR REACTIONS 4He(e, e'), E not given; 12C(e, e'), E=961 MeV; calculated transverse electromagnetic response, differential using state-of-the-art models of nuclear Hamiltonian and currents, within the Green's function Monte Carlo (GFMC) computational scheme; analyzed mechanisms of correlations in the initial and final states and coupling to meson exchange currents (MEC) which lead to the appearance of two-particle-two-hole final states. Comparison with experimental data. Relevance to experiments and analyses of MiniBooNE collaboration.

doi: 10.1103/PhysRevC.92.024602
Citations: PlumX Metrics


2015LO02      Phys.Rev.Lett. 114, 092301 (2015)

D.Lonardoni, A.Lovato, S.Gandolfi, F.Pederiva

Hyperon Puzzle: Hints from Quantum Monte Carlo Calculations

doi: 10.1103/PhysRevLett.114.092301
Citations: PlumX Metrics


2015LO05      Phys.Rev. C 91, 062501 (2015)

A.Lovato, S.Gandolfi, J.Carlson, S.C.Pieper, R.Schiavilla

Electromagnetic and neutral-weak response functions of 4He and 12C

NUCLEAR REACTIONS 4He, 12C(e, e') at q=570, 600 MeV; calculated Euclidean neutral-weak transverse and interference response functions, Euclidean electromagnetic longitudinal and transverse response function. Green's function Monte Carlo (GFMC) method. Comparison with experimental data. Results question the conventional picture of dominant single-nucleon knockout processes in quasielastic inclusive scattering.

doi: 10.1103/PhysRevC.91.062501
Citations: PlumX Metrics


2015ME02      Phys.Rev. C 91, 034325 (2015)

A.Mecca, A.Lovato, O.Benhar, A.Polls

Effective-interaction approach to the Fermi hard-sphere system

doi: 10.1103/PhysRevC.91.034325
Citations: PlumX Metrics


2014GA29      Phys.Rev. C 90, 061306 (2014)

S.Gandolfi, A.Lovato, J.Carlson, KevinE.Schmidt

From the lightest nuclei to the equation of state of asymmetric nuclear matter with realistic nuclear interactions

NUCLEAR STRUCTURE 4He, 6Li, 16O, 40Ca; calculated binding energies using auxiliary field diffusion Monte Carlo (AFDMC) method with AV6, AV7 (Argonne) nucleon-nucleon forces and chiral N2LO. Comparison with calculations using Green's function Monte Carlo (GFMC) method. Comparison with experimental results.

doi: 10.1103/PhysRevC.90.061306
Citations: PlumX Metrics


2014LO04      Phys.Rev. C 89, 025804 (2014)

A.Lovato, O.Benhar, S.Gandolfi, C.Losa

Neutral-current interactions of low-energy neutrinos in dense neutron matter

doi: 10.1103/PhysRevC.89.025804
Citations: PlumX Metrics


2014LO06      Phys.Rev.Lett. 112, 182502 (2014)

A.Lovato, S.Gandolfi, J.Carlson, Steven C.Pieper, R.Schiavilla

Neutral Weak Current Two-Body Contributions in Inclusive Scattering from 12C

NUCLEAR STRUCTURE 12C; calculated sum rules of the neutral weak response functions. Ab initio model.

doi: 10.1103/PhysRevLett.112.182502
Citations: PlumX Metrics


2013LO02      Nucl.Phys. A901, 22 (2013)

A.Lovato, C.Losa, O.Benhar

Weak response of cold symmetric nuclear matter at three-body cluster level

doi: 10.1016/j.nuclphysa.2013.01.029
Citations: PlumX Metrics


2013LO09      Phys.Rev.Lett. 111, 092501 (2013)

A.Lovato, S.Gandolfi, R.Butler, J.Carlson, E.Lusk, Steven C.Pieper, R.Schiavilla

Charge Form Factor and Sum Rules of Electromagnetic Response Functions in 12C

NUCLEAR REACTIONS 12C(E, E), (E, E'), E<350 MeV; calculated ground-state wave function, elastic form factor. Green's function Monte Carlo, comparison with available data.

doi: 10.1103/PhysRevLett.111.092501
Citations: PlumX Metrics


2012LO01      Phys.Rev. C 85, 024003 (2012)

A.Lovato, O.Benhar, S.Fantoni, K.E.Schmidt

Comparative study of three-nucleon potentials in nuclear matter

doi: 10.1103/PhysRevC.85.024003
Citations: PlumX Metrics


2011LO13      Phys.Rev. C 83, 054003 (2011)

A.Lovato, O.Benhar, S.Fantoni, A.Yu.Illarionov, K.E.Schmidt

Density-dependent nucleon-nucleon interaction from three-nucleon forces

doi: 10.1103/PhysRevC.83.054003
Citations: PlumX Metrics


Back to query form