NSR Query Results

Output year order : Descending
Format : Normal

NSR database version of May 10, 2024.

Search: Author = M.Piarulli

Found 22 matches.

Back to query form

2023FO02      Phys. Rev. Res. 5, 033062 (2023)

B.Fore, J.M.Kim, G.Carleo, M.Hjorth-Jensen, A.Lovato, M.Piarulli

Dilute neutron star matter from neural-network quantum states

doi: 10.1103/PhysRevResearch.5.033062
Citations: PlumX Metrics

2023KI04      Phys.Rev. C 107, 015503 (2023)

G.B.King, A.Baroni, V.Cirigliano, S.Gandolfi, L.Hayen, E.Mereghetti, S.Pastore, M.Piarulli

Ab initio calculation of the β-decay spectrum of 6He

RADIOACTIVITY 6He(β-); calculated T1/2, β-decay energy spectrum, corrections to the β-decay spectrum induced by beyond-standard-model charged-current interactions in the standard model effective field theory, with and without sterile neutrinos. Quantum Monte Carlo methods with nuclear interactionsderived from chiral effective field theory and consistent weak vector and axial currents. Comparison to available experimental data.

doi: 10.1103/PhysRevC.107.015503
Citations: PlumX Metrics

2023PI01      Phys.Rev. C 107, 014314 (2023)

M.Piarulli, S.Pastore, R.B.Wiringa, S.Brusilow, R.Lim

Densities and momentum distributions in A ≤ 12 nuclei from chiral effective field theory interactions

NUCLEAR STRUCTURE 3H, 3,4,8He, 6,7Li, 9Be, 10B, 12C; calculated one-body neutron and proton densities, relative-distance np and pp pair densities, total number of spin-isospin pairs, total one-body neutron and proton momentum distributions, total np and pp momentum distributions, ratio of np and pp pairs as function of relative momentum. Variational Monte Carlo calculations with AV18+UX phenomenological three-nucleon interactions.

doi: 10.1103/PhysRevC.107.014314
Citations: PlumX Metrics

2022KI11      Phys.Rev. C 105, L042501 (2022)

G.B.King, S.Pastore, M.Piarulli, R.Schiavilla

Partial muon capture rates in A=3 and A=6 nuclei with chiral effective field theory

NUCLEAR REACTIONS 3He, 6Li(μ-, ν); E at rest; calculated partial muon capture rates. Ab-initio calculations - variational and Green’s function Monte Carlo methods. Comparison to experimental data.

doi: 10.1103/PhysRevC.105.L042501
Citations: PlumX Metrics

2022LO07      Phys.Rev. C 105, 055808 (2022)

A.Lovato, I.Bombaci, D.Logoteta, M.Piarulli, R.B.Wiringa

Benchmark calculations of infinite neutron matter with realistic two- and three-nucleon potentials

doi: 10.1103/PhysRevC.105.055808
Citations: PlumX Metrics

2022SC13      Phys.Rev. C 106, 054323 (2022)

J.Schmitt, G.B.King, R.G.T.Zegers, Y.Ayyad, D.Bazin, B.A.Brown, A.Carls, J.Chen, A.Davis, M.DeNudt, J.Droste, B.Gao, C.Hultquist, H.Iwasaki, S.Noji, S.Pastore, J.Pereira, M.Piarulli, H.Sakai, A.Stolz, R.Titus, R.B.Wiringa, J.C.Zamora

Probing spin-isospin excitations in proton-rich nuclei via the 11C(p, n)11N reaction

NUCLEAR REACTIONS 1H(11C, n), E=95 MeV/nucleon; measured reaction products, time-of-flight, En, In, (particle)n-coin, angular distribution; deduced σ(θ), σ(θ, E), cumulative Gamow-Teller transition strengths, B(GT) values to the 1/2- state at 0.73 MeV and the 3/2- state at 2.86 MeV in 11N. Multipole decomposition analysis. Comparison to shell-model calculations with wbp interaction and to experimental data on the 11B(n, p), (d, 2He), (t, 3He) reactions. Ursinus liquid hydrogen target coupled to Low Energy Neutron Detector Array (LENDA) and S800 spectrograph. 11C beam produced from Be(16O, X) reaction and purified with A1900 fragment separator at Coupled Cyclotron Facility (CCF) at the NSCL.

doi: 10.1103/PhysRevC.106.054323
Citations: PlumX Metrics

Data from this article have been entered in the XUNDL database. For more information, click here.

2021AT02      Phys.Rev. C 104, 059802 (2021)

M.C.Atkinson, W.H.Dickhoff, M.Piarulli, A.Rios, R.B.Wiringa

Reply to "Comment on 'Reexamining the relation between the binding energy of finite nuclei and the equation of state of infinite nuclear matter'"

doi: 10.1103/PhysRevC.104.059802
Citations: PlumX Metrics

2021SC12      Phys.Rev. C 103, 054003 (2021)

R.Schiavilla, L.Girlanda, A.Gnech, A.Kievsky, A.Lovato, L.E.Marcucci, M.Piarulli, M.Viviani

Two- and three-nucleon contact interactions and ground-state energies of light- and medium-mass nuclei

NUCLEAR STRUCTURE 3H, 3,4,6He, 6Li, 16O, 40,48Ca, 90Zr; calculated binding energies in the EFT formalism with the construction of 2N contact local interactions at LO, NLO, and N3LO in configuration space, with deuteron properties determined from analysis of np and pp scattering data. Comparison with experimental data.

NUCLEAR REACTIONS 1H(n, n), (p, p), E=1-25 MeV; analyzed experimental scattering data; deduced scattering lengths, effective radii and phase shifts, deuteron S-wave radial functions at LO and deuteron S- and D-wave radial functions in the EFT formalism.

doi: 10.1103/PhysRevC.103.054003
Citations: PlumX Metrics

2020AT02      Phys.Rev. C 102, 044333 (2020)

M.C.Atkinson, W.H.Dickhoff, M.Piarulli, A.Rios, R.B.Wiringa

Reexamining the relation between the binding energy of finite nuclei and the equation of state of infinite nuclear matter

NUCLEAR STRUCTURE 12C, 40,48Ca, 208Pb; calculated binding energies, binding energy as a function of radius in 12C, energy densities using a dispersive optical model. Comparison with ab initio self-consistent Green's-function calculations, and with experimental data. 8Be; calculated total binding-energy density, the kinetic-energy density, the two-body potential-energy density, and the three-body potential-energy density using Green's-function Monte Carlo method, with the Argonne-Urbana two- and three-body interactions. 12C; calculated three-body potential-energy densities for different chiral interactions and the Urbana-X.

NUCLEAR REACTIONS 12C(p, p), (n, n), (polarized p, p), (polarized n, n), (p, X), (n, X), E<200 MeV; calculated differential σ(θ, E) and analyzing powers Ay(θ, E) for elastic scattering, proton and neutron total reaction σ(E) generated from the dispersive optical model (DOM). Comparison with experimental data.

doi: 10.1103/PhysRevC.102.044333
Citations: PlumX Metrics

2020KI13      Phys.Rev. C 102, 025501 (2020)

G.B.King, L.Andreoli, S.Pastore, M.Piarulli, R.Schiavilla, R.B.Wiringa, J.Carlson, S.Gandolfi

Chiral effective field theory calculations of weak transitions in light nuclei

NUCLEAR STRUCTURE 3H, 4,6,8He, 6,7,8Li, 7,8Be, 8,10B, 10C; calculated energies of ground and excited states, point-proton radii using Green's function Monte Carlo (GFMC) calculations, and compared with experimental data.

RADIOACTIVITY 6,8He, 8Li(β-); 7Be(EC); 8B, 10C(β+); calculated Gamow-Teller reduced matrix elements (RMEs), two-body transition densities and pair densities using chiral axial currents and GFMC (VMC) wave functions, with NV2+3-Ia and NV2+3-Ia* Hamiltonian models, and RMEs compared to experimental data.

doi: 10.1103/PhysRevC.102.025501
Citations: PlumX Metrics

2020PI05      Phys.Rev. C 101, 045801 (2020)

M.Piarulli, I.Bombaci, D.Logoteta, A.Lovato, R.B.Wiringa

Benchmark calculations of pure neutron matter with realistic nucleon-nucleon interactions

doi: 10.1103/PhysRevC.101.045801
Citations: PlumX Metrics

2019CI06      Phys.Rev. C 100, 055504 (2019)

V.Cirigliano, W.Dekens, J.de Vries, M.L.Graesser, E.Mereghetti, S.Pastore, M.Piarulli, U.van Kolck, R.B.Wiringa

Renormalized approach to neutrinoless double-β decay

RADIOACTIVITY 6He, 12Be(2β-); calculated Fermi (F), Gamow-Teller (GT), and tensor (T) densities, variational Monte Carlo (VMC) for the dimensionless matrix elements of the long-range and short-range neutrino-exchange potentials and short-range transition densities for 0νββ decay modes; deduced that a short-range operator is only needed in spin-singlet s-wave transitions, while leading-order transitions involving higher partial waves depend solely on long-range currents.Ab initio calculations of the matrix elements for 0νββ decay using pionless and chiral effective field theory, extended to include next-to-leading-order corrections.

doi: 10.1103/PhysRevC.100.055504
Citations: PlumX Metrics

2019DI06      Phys.Rev. C 99, 034004 (2019)

N.N.Dinur, O.J.Hernandez, S.Bacca, N.Barnea, C.Ji, S.Pastore, M.Piarulli, R.B.Wiringa

Zemach moments and radii of 2, 3H and 3, 4He

NUCLEAR STRUCTURE 2,3H, 3,4He; calculated Zemach electromagnetic moments, charge radii, ground-state wave-functions using various few-body methods, such as Numerov algorithm or the harmonic oscillator expansion method for A=2 nuclei, and Monte Carlo (VMC) and Green's function Monte Carlo (GFMC) methods, with hyperspherical harmonics (HH) expansions and momentum-space formulation (HH-p), and the effective interaction scheme in coordinate space (EIHH). Comparison with experimental values. Benchmarking of electromagnetic moments relevant to ongoing experimental efforts of muon-nucleus systems, and to muonic atom data measured by the CREMA collaboration at the Paul Scherrer Institute.

doi: 10.1103/PhysRevC.99.034004
Citations: PlumX Metrics

2019SC07      Phys.Rev. C 99, 034005 (2019)

R.Schiavilla, A.Baroni, S.Pastore, M.Piarulli, L.Girlanda, A.Kievsky, A.Lovato, L.E.Marcucci, StevenC.Pieper, M.Viviani, R.B.Wiringa

Local chiral interactions and magnetic structure of few-nucleon systems

NUCLEAR STRUCTURE 2,3H, 3He; calculated magnetic form factors, and contributions to the isoscalar and isovector combinations of the trinucleon magnetic moments using chiral interactions. Comparison with experimental data.

NUCLEAR REACTIONS 2H(γ, n), E=2-29 MeV; 2H(e, n), E=0-3 MeV; calculated deuteron photodisintegration cross sections, deuteron threshold electrodisintegration cross sections at backward angles using chiral two-, and three-nucleon interactions including Δ intermediate states for LO, NLO, N2LO, and N3LO models. Comparison with experimental data.

doi: 10.1103/PhysRevC.99.034005
Citations: PlumX Metrics

2018BA37      Phys.Rev. C 98, 044003 (2018)

A.Baroni, R.Schiavilla, L.E.Marcucci, L.Girlanda, A.Kievsky, A.Lovato, S.Pastore, M.Piarulli, S.Pieper, M.Viviani, R.B.Wiringa

Local chiral interactions, the tritium Gamow-Teller matrix element, and the three-nucleon contact term

RADIOACTIVITY 3H(β-); calculated Gamow-Teller matrix element, and low energy constants in the contact three-nucleon interaction within the chiral two- and three nucleon interactions including Δ intermediate states, contributions due to loop corrections in the axial current at next-to-next-to-next-to-next-to-leading order (N4LO). Comparison with experimental values.

doi: 10.1103/PhysRevC.98.044003
Citations: PlumX Metrics

2018PI01      Phys.Rev.Lett. 120, 052503 (2018)

M.Piarulli, A.Baroni, L.Girlanda, A.Kievsky, A.Lovato, E.Lusk, L.E.Marcucci, S.C.Pieper, R.Schiavilla, M.Viviani, R.B.Wiringa

Light-Nuclei Spectra from Chiral Dynamics

doi: 10.1103/PhysRevLett.120.052503
Citations: PlumX Metrics

2016MA09      J.Phys.(London) G43, 023002 (2016)

L.E.Marcucci, F.Gross, M.T.Pena, M.Piarulli, R.Schiavilla, I.Sick, A.Stadler, J.W.Van Orden, M.Viviani

Electromagnetic structure of few-nucleon ground states

NUCLEAR REACTIONS 2,3H, 3,4He(E, E), E not given; analyzed available data; deduced experimental form factors of the hydrogen and helium isotopes, extracted from an up-to-date global analysis of σ and polarization observables measured in elastic electron scattering from these systems.

doi: 10.1088/0954-3899/43/2/023002
Citations: PlumX Metrics

2016PI15      Phys.Rev. C 94, 054007 (2016)

M.Piarulli, L.Girlanda, R.Schiavilla, A.Kievsky, A.Lovato, L.E.Marcucci, StevenC.Pieper, M.Viviani, R.B.Wiringa

Local chiral potentials with Δ-intermediate states and the structure of light nuclei

NUCLEAR STRUCTURE 3H, 3,4,6He, 6Li; calculated ground- and excited-state energies, and proton rms radii using nonlocal nucleon-nucleon potentials in hyperspherical harmonics (HH), variational Monte Carlo (VMC), Green's function Monte Carlo (GFMC) approaches.

NUCLEAR REACTIONS 1H(p, p), (n, n), E=0-125, 0-200 MeV; analyzed Granada-2013 database of pp and np observables order by order in the chiral expansion up to N3LO and fitted to the deuteron binding energy and nn singlet scattering length; deduced nucleon-nucleon potentials, long-range included one- and two-pion exchange contributions without and with Δ isobars in the intermediate states up to order Q3 in the chiral expansion, while the short range consisted of contact interactions up to order Q4.

doi: 10.1103/PhysRevC.94.054007
Citations: PlumX Metrics

2015PI04      Phys.Rev. C 91, 024003 (2015)

M.Piarulli, L.Girlanda, R.Schiavilla, R.Navarro-Perez, J.E.Amaro, E.Ruiz Arriola

Minimally nonlocal nucleon-nucleon potentials with chiral two-pion exchange including Δ resonances

doi: 10.1103/PhysRevC.91.024003
Citations: PlumX Metrics

2013PI01      Phys.Rev. C 87, 014006 (2013)

M.Piarulli, L.Girlanda, L.E.Marcucci, S.Pastore, R.Schiavilla, M.Viviani

Electromagnetic structure of A=2 and 3 nuclei in chiral effective field theory

NUCLEAR STRUCTURE 2H, 3H, 3He; calculated structure function, tensor polarization, charge, isoscalar and isovector magnetic and quadrupole form factors, low-energy constants (LEC). Chiral-effective-field-theory. Chiral or conventional two- and three-nucleon potentials and Monte Carlo methods.

doi: 10.1103/PhysRevC.87.014006
Citations: PlumX Metrics

2011MA05      Phys.Rev. C 83, 014002 (2011)

L.E.Marcucci, M.Piarulli, M.Viviani, L.Girlanda, A.Kievsky, S.Rosati, R.Schiavilla

Muon capture on deuteron and 3He

NUCLEAR REACTIONS 2H(μ-, ν)2n, 3He(μ-, ν)3H; calculated binding energies of deuteron, triton and 3H, scattering lengths, magnetic moments, total and differential rates for muon capture using chiral effective field theory (EFT) with the two- and three-nucleon potentials AV18/UIX and N3LO/N2LO. Comparison with experimental data.

doi: 10.1103/PhysRevC.83.014002
Citations: PlumX Metrics

2011MA07      Few-Body Systems 49, 35 (2011)

L.E.Marcucci, M.Piarulli

Muon Capture on Light Nuclei

NUCLEAR REACTIONS 2H, 3He(μ-, ν), E not given; calculated total rate of muon capture. Argonne and Urbana IX nucleon potentials.

doi: 10.1007/s00601-010-0157-x
Citations: PlumX Metrics

Back to query form