NSR Query Results


Output year order : Descending
Format : Normal

NSR database version of April 11, 2024.

Search: Author = S.Gandolfi

Found 55 matches.

Back to query form



2023KI04      Phys.Rev. C 107, 015503 (2023)

G.B.King, A.Baroni, V.Cirigliano, S.Gandolfi, L.Hayen, E.Mereghetti, S.Pastore, M.Piarulli

Ab initio calculation of the β-decay spectrum of 6He

RADIOACTIVITY 6He(β-); calculated T1/2, β-decay energy spectrum, corrections to the β-decay spectrum induced by beyond-standard-model charged-current interactions in the standard model effective field theory, with and without sterile neutrinos. Quantum Monte Carlo methods with nuclear interactionsderived from chiral effective field theory and consistent weak vector and axial currents. Comparison to available experimental data.

doi: 10.1103/PhysRevC.107.015503
Citations: PlumX Metrics


2023MA41      Phys.Rev. C 108, L031304 (2023)

J.D.Martin, S.J.Novario, D.Lonardoni, J.Carlson, S.Gandolfi, I.Tews

Auxiliary field diffusion Monte Carlo calculations of magnetic moments of light nuclei with chiral effective field theory interactions

doi: 10.1103/PhysRevC.108.L031304
Citations: PlumX Metrics


2023NO01      Phys.Rev.Lett. 130, 032501 (2023)

S.J.Novario, D.Lonardoni, S.Gandolfi, G.Hagen

Trends of Neutron Skins and Radii of Mirror Nuclei from First Principles

NUCLEAR STRUCTURE 42,46,48Ca, 48Ti, 48Cr; calculated neutron skin thickness, mirror-difference binding energy per nucleon using dN2LOGO (394) with and without the Coulomb term.

doi: 10.1103/PhysRevLett.130.032501
Citations: PlumX Metrics


2023RO11      Phys.Rev. C 108, 025811 (2023)

H.Rose, N.Kunert, T.Dietrich, P.T.H.Pang, R.Smith, C.Van Den Broeck, S.Gandolfi, I.Tews

Revealing the strength of three-nucleon interactions with the proposed Einstein Telescope

doi: 10.1103/PhysRevC.108.025811
Citations: PlumX Metrics


2023WE07      Phys.Rev. C 108, L021301 (2023)

R.Weiss, S.Gandolfi

Nuclear three-body short-range correlations in coordinate space

NUCLEAR STRUCTURE 3,4He, 6Li, 16O; calculated three-body densities for the ground-state, contact ratios. Auxiliary-field diffusion Monte Carlo (AFDMC) method combined with next-to-next-to-leading-order (N2LO) local chiral interaction with the E1 parametrization of the three-body force. Found that three nucleons at short distances behave like the bound 3He wave function.

doi: 10.1103/PhysRevC.108.L021301
Citations: PlumX Metrics


2022PA12      Phys.Rev. C 105, 049802 (2022)

S.Pastore, J.Carlson, R.Schiavilla, J.L.Barrow, S.Gandolfi, R.B.Wiringa

Reply to "Comment on 'Quasielastic lepton scattering and back-to-back nucleons in the short-time approximation"

NUCLEAR REACTIONS 4He(e, e'), q=300-800 MeV/c; calculated transverse scaling functions for 4He with one-body and one plus two-body currents. Short time approximation (STA). Pointed that enhanced scaling reflects quasielastic kinematics and the dominant role played by pion-exchange interactions and currents in the quasielastic regime.

doi: 10.1103/PhysRevC.105.049802
Citations: PlumX Metrics


2020KI13      Phys.Rev. C 102, 025501 (2020)

G.B.King, L.Andreoli, S.Pastore, M.Piarulli, R.Schiavilla, R.B.Wiringa, J.Carlson, S.Gandolfi

Chiral effective field theory calculations of weak transitions in light nuclei

NUCLEAR STRUCTURE 3H, 4,6,8He, 6,7,8Li, 7,8Be, 8,10B, 10C; calculated energies of ground and excited states, point-proton radii using Green's function Monte Carlo (GFMC) calculations, and compared with experimental data.

RADIOACTIVITY 6,8He, 8Li(β-); 7Be(EC); 8B, 10C(β+); calculated Gamow-Teller reduced matrix elements (RMEs), two-body transition densities and pair densities using chiral axial currents and GFMC (VMC) wave functions, with NV2+3-Ia and NV2+3-Ia* Hamiltonian models, and RMEs compared to experimental data.

doi: 10.1103/PhysRevC.102.025501
Citations: PlumX Metrics


2020LO09      Phys. Rev. Res. 2, 022033 (2020)

D.Lonardoni, I.Tews, S.Gandolfi, J.Carlson

Nuclear and neutron-star matter from local chiral interactions

doi: 10.1103/PhysRevResearch.2.022033
Citations: PlumX Metrics


2020LY02      J.Phys.(London) G47, 045109 (2020)

J.E.Lynn, D.Lonardoni, J.Carlson, J.-W.Chen, W.Detmold, S.Gandolfi, A.Schwenk

Ab initio short-range-correlation scaling factors from light to medium-mass nuclei

NUCLEAR STRUCTURE 2,3H, 3,4,6He, 6Li, 12C, 16O, 40Ca, 63Cu, 56Fe, 197Au; calculated two-nucleon distributions, short-range-correlation(SRC) scaling factors, binding energies from ab initio low-energy nuclear theory.

doi: 10.1088/1361-6471/ab6af7
Citations: PlumX Metrics


2020PA15      Phys.Rev. C 101, 044612 (2020)

S.Pastore, J.Carlson, S.Gandolfi, R.Schiavilla, R.B.Wiringa

Quasielastic lepton scattering and back-to-back nucleons in the short-time approximation

NUCLEAR REACTIONS 4He(e, e'), q=300-800 MeV/c; calculated transverse response densities, longitudinal and transverse sum rules, contribution of response density in the back-to-back configurations due to scattering from pp and nn pairs. Short time approximation (STA), combined with quantum Monte Carlo computational methods. Comparison with experimental data, and with results from Green's function Monte Carlo (GFMC) method. Relevance to current and planned neutrino oscillation experiments.

doi: 10.1103/PhysRevC.101.044612
Citations: PlumX Metrics


2019AN06      Phys.Rev. C 99, 025501 (2019)

L.Andreoli, V.Cirigliano, S.Gandolfi, F.Pederiva

Quantum Monte Carlo calculations of dark matter scattering off light nuclei

NUCLEAR STRUCTURE 2,3H, 3,4He, 6Li; calculated isoscalar matrix elements for elastic scattering of dark matter particles off light nuclei using quantum Monte Carlo methods with scalar-mediated DM-nucleus interactions and scalar currents obtained to next-to-leading order in chiral effective theory, and with the nuclear ground states obtained from phenomenological nuclear Hamiltonian and Argonne ν18 two-body interaction and Urbana IX three-body interaction.

doi: 10.1103/PhysRevC.99.025501
Citations: PlumX Metrics


2019GA36      J.Phys.(London) G46, 103001 (2019)

S.Gandolfi, J.Lippuner, A.W.Steiner, I.Tews, X.Du, M.Al-Mamun

From the microscopic to the macroscopic world: from nucleons to neutron stars

doi: 10.1088/1361-6471/ab29b3
Citations: PlumX Metrics


2019MA47      Phys.Rev. C 100, 014001 (2019)

L.Madeira, S.Gandolfi, K.E.Schmidt, V.S.Bagnato

Vortices in low-density neutron matter and cold Fermi gases

doi: 10.1103/PhysRevC.100.014001
Citations: PlumX Metrics


2018LO04      Phys.Rev. C 97, 022502 (2018)

A.Lovato, S.Gandolfi, J.Carlson, E.Lusk, S.C.Pieper, R.Schiavilla

Quantum Monte Carlo calculation of neutral-current ν - 12C inclusive quasielastic scattering

NUCLEAR REACTIONS 12C(ν, ν), (ν-bar, ν-bar), at energy transfer ω<400 MeV; calculated response functions and differential cross sections at final neutrino angles of 15°, 30°, 60° and 120° for neutral-current scattering at momentum transfer q=570 MeV/c; deduced substantial two-nucleon contributions to the neutral-current scattering of neutrinos and antineutrinos over the entire quasielastic region. Realistic treatments of nuclear interactions and currents, including the axial, vector, and vector-axial interference terms. Relevance to T2K, MINERνA and DUNE experiments.

doi: 10.1103/PhysRevC.97.022502
Citations: PlumX Metrics


2018LO06      Phys.Rev.Lett. 120, 122502 (2018)

D.Lonardoni, J.Carlson, S.Gandolfi, J.E.Lynn, K.E.Schmidt, A.Schwenk, X.B.Wang

Properties of Nuclei up to A=16 using Local Chiral Interactions

NUCLEAR STRUCTURE 6He, 6Li, 12C, 16O; calculated ground-state energies and charge radii, form factors. Continuum quantum Monte Carlo (QMC) method, comparison with available data.

doi: 10.1103/PhysRevLett.120.122502
Citations: PlumX Metrics


2018LO09      Phys.Rev. C 97, 044318 (2018)

D.Lonardoni, S.Gandolfi, J.E.Lynn, C.Petrie, J.Carlson, K.E.Schmidt, A.Schwenk

Auxiliary field diffusion Monte Carlo calculations of light and medium-mass nuclei with local chiral interactions

NUCLEAR STRUCTURE 3H, 3,4,6He, 6Li, 12C, 16O; calculated constrained and unconstrained ground state binding energies, charge radii, charge form factors, and Coulomb sum rule by auxilliary field diffusion Monte Carlo (AFDMC) method using AV6' potential in combination with local chiral two- and three-nucleon interactions up to next-to-next-to-leading order; analyzed p-wave n-α elastic scattering phase shifts compared to an R-matrix analysis of experimental data. Comparison with GFMC predictions for Coulomb sum rule.

doi: 10.1103/PhysRevC.97.044318
Citations: PlumX Metrics


2018LO14      Phys.Rev. C 98, 014322 (2018)

D.Lonardoni, S.Gandolfi, X.B.Wang, J.Carlson

Single- and two-nucleon momentum distributions for local chiral interactions

NUCLEAR STRUCTURE 4He, 12C, 16O; calculated charge radii, proton and two-nucleon (pn and pp) momentum distributions using variational Monte Carlo (VMC) calculations with local chiral interactions at next-to-next-to leading order N2LO. Comparison with other theoretical predictions, and available experimental data.

doi: 10.1103/PhysRevC.98.014322
Citations: PlumX Metrics


2018PA08      Phys.Rev. C 97, 022501 (2018)

S.Pastore, A.Baroni, J.Carlson, S.Gandolfi, StevenC.Pieper, R.Schiavilla, R.B.Wiringa

Quantum Monte Carlo calculations of weak transitions in A = 6-10 nuclei

RADIOACTIVITY 3H, 6He(β-); 10C(β+); 7Be(EC); calculated ab initio Gamow-Teller (GT) reduced matrix elements (RMEs) using variational and Green's function Monte Carlo wave functions (GFMC, VMC)from the Argonne v18 two-nucleon and Illinois-7 three-nucleon interactions, and axial many-body currents from either meson-exchange phenomenology or chiral effective field theory. Comparison with experimental data. Calculations for 3H decay in Supplemental Material (Ref, 32 in paper).

doi: 10.1103/PhysRevC.97.022501
Citations: PlumX Metrics


2017GA10      Phys.Rev.Lett. 118, 232501 (2017)

S.Gandolfi, H.-W.Hammer, P.Klos, J.E.Lynn, A.Schwenk

Is a Trineutron Resonance Lower in Energy than a Tetraneutron Resonance?

doi: 10.1103/PhysRevLett.118.232501
Citations: PlumX Metrics


2017LY01      Phys.Rev. C 96, 054007 (2017)

J.E.Lynn, I.Tews, J.Carlson, S.Gandolfi, A.Gezerlis, K.E.Schmidt, A.Schwenk

Quantum Monte Carlo calculations of light nuclei with local chiral two- and three-nucleon interactions

NUCLEAR STRUCTURE 2H; calculated deuteron wave functions, binding energy, asymptotic D/S ratio, quadrupole moment, root-mean-square (rms) matter radius, momentum distributions and tensor polarization at N2LO, deuteron energy at LO, NLO, and N2LO as function of radius. 3H, 3,4He; calculated wave functions for AV18+UIX at N22LO, energies using Green's function Monte Carlo (GFMC) method, kinetic and potential energy contributions to the GFMC energy, point-proton radii at LO, NLO, and N2LO, one-body proton and neutron distributions for 3,4He at N2LO, longitudinal charge form factor for 4He. Quantum Monte Carlo (QMC) calculations for light nuclei with local chiral NN and 3N interactions.

doi: 10.1103/PhysRevC.96.054007
Citations: PlumX Metrics


2016KL06      Phys.Rev. C 94, 054005 (2016)

P.Klos, J.E.Lynn, I.Tews, S.Gandolfi, A.Gezerlis, H.-W.Hammer, M.Hoferichter, A.Schwenk

Quantum Monte Carlo calculations of two neutrons in finite volume

NUCLEAR STRUCTURE 2n; calculated ground state, energy and nodal surface of the first excited state for a two neutron-system in a box; extracted low-energy S-wave scattering parameters from ground- and excited-state energies for different box sizes using Luscher formula. Auxiliary-field diffusion Monte Carlo (AFDMC) calculations, and chiral EFT interactions. Relevance to effective field theories of strong interaction.

doi: 10.1103/PhysRevC.94.054005
Citations: PlumX Metrics


2016LO09      Phys.Rev.Lett. 117, 082501 (2016)

A.Lovato, S.Gandolfi, J.Carlson, Steven C.Pieper, R.Schiavilla

Electromagnetic Response of 12C: A First-Principles Calculation

NUCLEAR REACTIONS 12C(E, E'), E<400 MeV; calculated electromagnetic longitudinal and transverse response functions, form factors, Coulomb sum rule.

doi: 10.1103/PhysRevLett.117.082501
Citations: PlumX Metrics


2016LY02      Phys.Rev.Lett. 116, 062501 (2016)

J.E.Lynn, I.Tews, J.Carlson, S.Gandolfi, A.Gezerlis, K.E.Schmidt, A.Schwenk

Chiral Three-Nucleon Interactions in Light Nuclei, Neutron-α Scattering, and Neutron Matter

NUCLEAR STRUCTURE 4He; analyzed available data; deduced binding and ground-state energies. Quantum Monte Carlo calculations of light nuclei using local two- and three-nucleon (3N) interactions derived from chiral effective field theory up to next-to-next-to-leading order (N2LO).

doi: 10.1103/PhysRevLett.116.062501
Citations: PlumX Metrics


2016TE01      Phys.Rev. C 93, 024305 (2016)

I.Tews, S.Gandolfi, A.Gezerlis, A.Schwenk

Quantum Monte Carlo calculations of neutron matter with chiral three-body forces

doi: 10.1103/PhysRevC.93.024305
Citations: PlumX Metrics


2016ZH42      Phys.Rev. C 94, 041302 (2016)

P.W.Zhao, S.Gandolfi

Radii of neutron drops probed via the neutron skin thickness of nuclei

NUCLEAR STRUCTURE 48Ca, 208Pb; calculated neutron skin thickness as function of rms radius, rms radii for three neutron drops, slope of the symmetry energy versus rms radii. Nonrelativistic and relativistic density functional theories (DFT) and with ab initio calculations. Relevance to understanding of multineutron interactions, neutron-rich nuclei, neutron stars, etc.

doi: 10.1103/PhysRevC.94.041302
Citations: PlumX Metrics


2015GA11      Acta Phys.Pol. B46, 359 (2015)

S.Gandolfi

Microscopic Calculations of Nuclear and Neutron Matter, Symmetry Energy and Neutron Stars

doi: 10.5506/APhysPolB.46.359
Citations: PlumX Metrics


2015LO02      Phys.Rev.Lett. 114, 092301 (2015)

D.Lonardoni, A.Lovato, S.Gandolfi, F.Pederiva

Hyperon Puzzle: Hints from Quantum Monte Carlo Calculations

doi: 10.1103/PhysRevLett.114.092301
Citations: PlumX Metrics


2015LO05      Phys.Rev. C 91, 062501 (2015)

A.Lovato, S.Gandolfi, J.Carlson, S.C.Pieper, R.Schiavilla

Electromagnetic and neutral-weak response functions of 4He and 12C

NUCLEAR REACTIONS 4He, 12C(e, e') at q=570, 600 MeV; calculated Euclidean neutral-weak transverse and interference response functions, Euclidean electromagnetic longitudinal and transverse response function. Green's function Monte Carlo (GFMC) method. Comparison with experimental data. Results question the conventional picture of dominant single-nucleon knockout processes in quasielastic inclusive scattering.

doi: 10.1103/PhysRevC.91.062501
Citations: PlumX Metrics


2015ST02      Phys.Rev. C 91, 015804 (2015)

A.W.Steiner, S.Gandolfi, F.J.Fattoyev, W.G.Newton

Using neutron star observations to determine crust thicknesses, moments of inertia, and tidal deformabilities

doi: 10.1103/PhysRevC.91.015804
Citations: PlumX Metrics


2014GA06      Eur.Phys.J. A 50, 10 (2014)

S.Gandolfi, J.Carlson, S.Reddy, A.W.Steiner, R.B.Wiringa

The equation of state of neutron matter, symmetry energy and neutron star structure

doi: 10.1140/epja/i2014-14010-5
Citations: PlumX Metrics


2014GA29      Phys.Rev. C 90, 061306 (2014)

S.Gandolfi, A.Lovato, J.Carlson, KevinE.Schmidt

From the lightest nuclei to the equation of state of asymmetric nuclear matter with realistic nuclear interactions

NUCLEAR STRUCTURE 4He, 6Li, 16O, 40Ca; calculated binding energies using auxiliary field diffusion Monte Carlo (AFDMC) method with AV6, AV7 (Argonne) nucleon-nucleon forces and chiral N2LO. Comparison with calculations using Green's function Monte Carlo (GFMC) method. Comparison with experimental results.

doi: 10.1103/PhysRevC.90.061306
Citations: PlumX Metrics


2014GE06      Phys.Rev. C 90, 054323 (2014)

A.Gezerlis, I.Tews, E.Epelbaum, M.Freunek, S.Gandolfi, K.Hebeler, A.Nogga, A.Schwenk

Local chiral effective field theory interactions and quantum Monte Carlo applications

NUCLEAR STRUCTURE 2H; calculated binding energy, quadrupole moment, magnetic moment, asymptotic D/S ratio, rms radius, asymptotic s-wave factor, and the d-state probability using the local chiral potentials. Calculated ground-state energy for a 66-neutron matter system. Local chiral effective field theory interactions to next-to-next-to-leading order and Monte Carlo calculations for neutron matter.

doi: 10.1103/PhysRevC.90.054323
Citations: PlumX Metrics


2014HA01      Phys.Rev. C 89, 014319 (2014)

G.Hagen, T.Papenbrock, A.Ekstrom, K.A.Wendt, G.Baardsen, S.Gandolfi, M.Hjorth-Jensen, C.J.Horowitz

Coupled-cluster calculations of nucleonic matter

NUCLEAR STRUCTURE A=10-1000; N=66, 132; calculated relative finite-size corrections for the kinetic energy in pure neutron matter, E/A of nuclear and neutron matter. Coupled-cluster computations of equation of state (EoS) for symmetric nuclear matter and neutron matter using optimized nucleon-nucleon (NN) potential NNLOopt at next-to-next-to leading order. Comparison with benchmark calculations.

doi: 10.1103/PhysRevC.89.014319
Citations: PlumX Metrics


2014LO01      Phys.Rev. C 89, 014314 (2014)

D.Lonardoni, F.Pederiva, S.Gandolfi

Accurate determination of the interaction between Λ hyperons and nucleons from auxiliary field diffusion Monte Carlo calculations

NUCLEAR STRUCTURE 3,4H, 4,5,6,7He, 13C, 16,17,18O, 41,49Ca, 91Zr; calculated binding energies of single (Λ) hypernuclei, and double (ΛΛ) hypernucleus 6He with and without charge symmetry breaking (CSB) interaction. Solution of the Schrodinger equation for nonrelativistic baryons by auxiliary field diffusion quantum Monte Carlo (AFDMC) algorithm. Contribution of two- and three-body hyper-nucleon forces to the binding energy of hypernuclei. Comparisons with experimental data.

doi: 10.1103/PhysRevC.89.014314
Citations: PlumX Metrics


2014LO04      Phys.Rev. C 89, 025804 (2014)

A.Lovato, O.Benhar, S.Gandolfi, C.Losa

Neutral-current interactions of low-energy neutrinos in dense neutron matter

doi: 10.1103/PhysRevC.89.025804
Citations: PlumX Metrics


2014LO06      Phys.Rev.Lett. 112, 182502 (2014)

A.Lovato, S.Gandolfi, J.Carlson, Steven C.Pieper, R.Schiavilla

Neutral Weak Current Two-Body Contributions in Inclusive Scattering from 12C

NUCLEAR STRUCTURE 12C; calculated sum rules of the neutral weak response functions. Ab initio model.

doi: 10.1103/PhysRevLett.112.182502
Citations: PlumX Metrics


2014LY02      Phys.Rev.Lett. 113, 192501 (2014)

J.E.Lynn, J.Carlson, E.Epelbaum, S.Gandolfi, A.Gezerlis, A.Schwenk

Quantum Monte Carlo Calculations of Light Nuclei Using Chiral Potentials

NUCLEAR STRUCTURE 3,4He, 2,3H; calculated one- and two-body proton distributions, nuclear radii, binding energies; deduced the necessity of a three-body force.

doi: 10.1103/PhysRevLett.113.192501
Citations: PlumX Metrics


2013BO19      Comput.Phys.Commun. 184, 085101 (2013)

S.Bogner, A.Bulgac, J.Carlson, J.Engel, G.Fann, R.J.Furnstahl, S.Gandolfi, G.Hagen, M.Horoi, C.Johnson, M.Kortelainen, E.Lusk, P.Maris, H.Nam, P.Navratil, W.Nazarewicz, E.Ng, G.P.A.Nobre, E.Ormand, T.Papenbrock, J.Pei, S.C.Pieper, S.Quaglioni, K.J.Roche, J.Sarich, N.Schunck, M.Sosonkina, J.Terasaki, I.Thompson, J.P.Vary, S.M.Wild

Computational nuclear quantum many-body problem: The UNEDF project

NUCLEAR REACTIONS 3He(d, p), 7Be(p, γ), E<1MeV; 172Yb, 188Os, 238U(γ, X), E<24 MeV; calculated σ. Comparison with experimental data.

NUCLEAR STRUCTURE 100Zr; calculated quadrupole deformation parameter, radii, neutron separation energy.

doi: 10.1016/j.cpc.2013.05.020
Citations: PlumX Metrics


2013GE03      Phys.Rev.Lett. 111, 032501 (2013)

A.Gezerlis, I.Tews, E.Epelbaum, S.Gandolfi, K.Hebeler, A.Nogga, A.Schwenk

Quantum Monte Carlo Calculations with Chiral Effective Field Theory Interactions

doi: 10.1103/PhysRevLett.111.032501
Citations: PlumX Metrics


2013LO03      Phys.Rev. C 87, 041303 (2013)

D.Lonardoni, S.Gandolfi, F.Pederiva

Effects of the two-body and three-body hyperon-nucleon interactions in Λ hypernuclei

NUCLEAR STRUCTURE A=5-91; 5He, 17O, 41Ca, 91Zr; calculated hyperon separation energies for closed-shell hypernuclei, binding energies using auxiliary field diffusion Monte Carlo (AFDMC) method. Necessity of inclusion of the three-body hyperon-NN interaction. Comparison with experimental data.

doi: 10.1103/PhysRevC.87.041303
Citations: PlumX Metrics


2013LO09      Phys.Rev.Lett. 111, 092501 (2013)

A.Lovato, S.Gandolfi, R.Butler, J.Carlson, E.Lusk, Steven C.Pieper, R.Schiavilla

Charge Form Factor and Sum Rules of Electromagnetic Response Functions in 12C

NUCLEAR REACTIONS 12C(E, E), (E, E'), E<350 MeV; calculated ground-state wave function, elastic form factor. Green's function Monte Carlo, comparison with available data.

doi: 10.1103/PhysRevLett.111.092501
Citations: PlumX Metrics


2013LO10      Nucl.Phys. A914, 243c (2013)

D.Lonardoni, F.Pederiva, S.Gandolfi

Auxiliary Field Diffusion Monte Carlo study of the hyperon-nucleon interaction in Λ-hypernuclei

NUCLEAR STRUCTURE 4H, 4,5,6,7He, 13C, 17O, 41Ca; calculated Λ separation energy, Q using AFDMC with nuclear AV4' potential plus two-body ΛN interaction and the same core potential with two- and three-body ΛNforces. Compared to data.

doi: 10.1016/j.nuclphysa.2012.12.001
Citations: PlumX Metrics


2013MA38      Phys.Rev. C 87, 054318 (2013)

P.Maris, J.P.Vary, S.Gandolfi, J.Carlson, S.C.Pieper

Properties of trapped neutrons interacting with realistic nuclear Hamiltonians

doi: 10.1103/PhysRevC.87.054318
Citations: PlumX Metrics


2013SH10      Phys.Rev. C 87, 025802 (2013)

G.Shen, S.Gandolfi, S.Reddy, J.Carlson

Spin response and neutrino emissivity of dense neutron matter

doi: 10.1103/PhysRevC.87.025802
Citations: PlumX Metrics


2012GA12      Phys.Rev. C 85, 032801 (2012)

S.Gandolfi, J.Carlson, S.Reddy

Maximum mass and radius of neutron stars, and the nuclear symmetry energy

doi: 10.1103/PhysRevC.85.032801
Citations: PlumX Metrics


2012SH28      Phys.Rev. C 86, 035503 (2012)

G.Shen, L.E.Marcucci, J.Carlson, S.Gandolfi, R.Schiavilla

Inclusive neutrino scattering off the deuteron from threshold to GeV energies

NUCLEAR REACTIONS 2H(ν, ν'), (ν-bar, ν-bar), (ν, e-), (ν-bar, e+), E=100-1000 MeV; calculated total σ(E) sections, logitudinal and transverse electromagnetic responses, differential σ(E). AV18 potential, and consistent nuclear electroweak currents with one- and two-body terms. comparison with experimental data. Relevance to interpretation of neutrino oscillation results in long baseline neutrino experiments.

doi: 10.1103/PhysRevC.86.035503
Citations: PlumX Metrics


2012TS04      Phys.Rev. C 86, 015803 (2012)

M.B.Tsang, J.R.Stone, F.Camera, P.Danielewicz, S.Gandolfi, K.Hebeler, C.J.Horowitz, J.Lee, W.G.Lynch, Z.Kohley, R.Lemmon, P.Moller, T.Murakami, S.Riordan, X.Roca-Maza, F.Sammarruca, A.W.Steiner, I.Vidana, S.J.Yennello

Constraints on the symmetry energy and neutron skins from experiments and theory

NUCLEAR STRUCTURE 208Pb; analyzed neutron-skin thickness, symmetry energy constraints. Contributions of three-body forces in neutron matter models.

doi: 10.1103/PhysRevC.86.015803
Citations: PlumX Metrics


2011GA01      Phys.Rev.Lett. 106, 012501 (2011)

S.Gandolfi, J.Carlson, S.C.Pieper

Cold Neutrons Trapped in External Fields

doi: 10.1103/PhysRevLett.106.012501
Citations: PlumX Metrics


2009GA14      Phys.Rev. C 79, 054005 (2009)

S.Gandolfi, A.Yu.Illarionov, K.E.Schmidt, F.Pederiva, S.Fantoni

Quantum Monte Carlo calculation of the equation of state of neutron matter

doi: 10.1103/PhysRevC.79.054005
Citations: PlumX Metrics


2009GA34      Phys.Rev. C 80, 045802 (2009)

S.Gandolfi, A.Yu.Illarionov, F.Pederiva, K.E.Schmidt, S.Fantoni

Equation of state of low-density neutron matter, and the 1S0 pairing gap

doi: 10.1103/PhysRevC.80.045802
Citations: PlumX Metrics


2008GA06      Eur.Phys.J. A 35, 207 (2008)

S.Gandolfi, F.Pederiva, S.a Beccara

Quantum Monte Carlo calculation for the neutron-rich Ca isotopes

NUCLEAR STRUCTURE 42,43,44,45,46,47,48Ca; calculated ground state energy and neutron density using the auxilliary field diffusion Monte Carlo method. Comparison with data.

doi: 10.1140/epja/i2008-10536-3
Citations: PlumX Metrics


2008GA22      Phys.Rev.Lett. 101, 132501 (2008)

S.Gandolfi, A.Yu.Illarionov, s.Fantoni, F.Pederiva, K.E.Schmidt

Equation of State of Superfluid Neutron Matter and the Calculation of the 1S0 Pairing Gap

doi: 10.1103/PhysRevLett.101.132501
Citations: PlumX Metrics


2007GA06      Phys.Rev.Lett. 98, 102503 (2007)

S.Gandolfi, F.Pederiva, S.Fantoni, K.E.Schmidt

Quantum Monte Carlo Calculations of Symmetric Nuclear Matter

doi: 10.1103/PhysRevLett.98.102503
Citations: PlumX Metrics


2007GA31      Phys.Rev.Lett. 99, 022507 (2007)

S.Gandolfi, F.Pederiva, S.Fantoni, K.E.Schmidt

Auxiliary Field Diffusion Monte Carlo Calculation of Nuclei with A ≤ 40 with Tensor Interactions

NUCLEAR STRUCTURE 4,8He, 16O, 40Ca; calculated ground state energy using the auxilliary field diffusion Monte Carlo method.

doi: 10.1103/PhysRevLett.99.022507
Citations: PlumX Metrics


2006GA16      Phys.Rev. C 73, 044304 (2006)

S.Gandolfi, F.Pederiva, S.Fantoni, K.E.Schmidt

Auxiliary field diffusion Monte Carlo calculation of properties of oxygen isotopes

NUCLEAR STRUCTURE 18,19,20,21,22O; calculated ground and excited states energies. Auxiliary field diffusion Monte Carlo techniques, comparison with data.

doi: 10.1103/PhysRevC.73.044304
Citations: PlumX Metrics


Back to query form


Note: The following list of authors and aliases matches the search parameter S.Gandolfi: , S.K.GANDOLFI