NSR Query Results


Output year order : Descending
Format : Normal

NSR database version of May 22, 2024.

Search: Author = I.Tews

Found 29 matches.

Back to query form



2024PA12      Phys.Rev. C 109, 025807 (2024)

P.T.H.Pang, L.Sivertsen, R.Somasundaram, T.Dietrich, S.Sen, I.Tews, M.W.Coughlin, Ch.Van Den Broeck

Probing quarkyonic matter in neutron stars with the Bayesian nuclear-physics multimessenger astrophysics framework

doi: 10.1103/PhysRevC.109.025807
Citations: PlumX Metrics


2024SO07      Phys.Rev. C 109, 034005 (2024)

R.Somasundaram, J.E.Lynn, L.Huth, A.Schwenk, I.Tews

Maximally local two-nucleon interactions at N3LO in Δ-less chiral effective field theory

doi: 10.1103/PhysRevC.109.034005
Citations: PlumX Metrics


2023MA41      Phys.Rev. C 108, L031304 (2023)

J.D.Martin, S.J.Novario, D.Lonardoni, J.Carlson, S.Gandolfi, I.Tews

Auxiliary field diffusion Monte Carlo calculations of magnetic moments of light nuclei with chiral effective field theory interactions

doi: 10.1103/PhysRevC.108.L031304
Citations: PlumX Metrics


2023RO11      Phys.Rev. C 108, 025811 (2023)

H.Rose, N.Kunert, T.Dietrich, P.T.H.Pang, R.Smith, C.Van Den Broeck, S.Gandolfi, I.Tews

Revealing the strength of three-nucleon interactions with the proposed Einstein Telescope

doi: 10.1103/PhysRevC.108.025811
Citations: PlumX Metrics


2023SO04      Phys.Rev. C 107, 025801 (2023)

R.Somasundaram, I.Tews, J.Margueron

Investigating signatures of phase transitions in neutron-star cores

doi: 10.1103/PhysRevC.107.025801
Citations: PlumX Metrics


2023SO08      Phys.Rev. C 107, L052801 (2023)

R.Somasundaram, I.Tews, J.Margueron

Perturbative QCD and the neutron star equation of state

doi: 10.1103/PhysRevC.107.L052801
Citations: PlumX Metrics


2022AL20      Phys.Rev. C 106, 055804 (2022)

M.G.Alford, L.Brodie, A.Haber, I.Tews

Relativistic mean-field theories for neutron-star physics based on chiral effective field theory

doi: 10.1103/PhysRevC.106.055804
Citations: PlumX Metrics


2022SC17      J.Phys.(London) G49, 110502 (2022)

H.Schatz, A.D.Becerril Reyes, A.Best, E.F.Brown, K.Chatziioannou, K.A.Chipps, C.M.Deibel, R.Ezzeddine, D.K.Galloway, C.J.Hansen, F.Herwig, A.P.Ji, M.Lugaro, Z.Meisel, D.Norman, J.S.Read, L.F.Roberts, A.Spyrou, I.Tews, F.X.Timmes, C.Travaglio, N.Vassh, C.Abia, P.Adsley, S.Agarwal, M.Aliotta, W.Aoki, A.Arcones, A.Aryan, A.Bandyopadhyay, A.Banu, D.W.Bardayan, J.Barnes, A.Bauswein, T.C.Beers, J.Bishop, T.Boztepe, B.Cote, M.E.Caplan, A.E.Champagne, J.A.Clark, M.Couder, A.Couture, S.E.de Mink, S.Debnath, R.J.deBoer, J.den Hartogh, P.Denissenkov, V.Dexheimer, I.Dillmann, J.E.Escher, M.A.Famiano, R.Farmer, R.Fisher, C.Frohlich, A.Frebel, C.Fryer, G.Fuller, A.K.Ganguly, S.Ghosh, B.K.Gibson, T.Gorda, K.N.Gourgouliatos, V.Graber, M.Gupta, W.C.Haxton, A.Heger, W.R.Hix, W.C.G.Ho, E.M.Holmbeck, A.A.Hood, S.Huth, G.Imbriani, R.G.Izzard, R.Jain, H.Jayatissa, Z.Johnston, T.Kajino, A.Kankainen, G.G.Kiss, A.Kwiatkowski, M.La Cognata, A.M.Laird, L.Lamia, P.Landry, E.Laplace, K.D.Launey, D.Leahy, G.Leckenby, A.Lennarz, B.Longfellow, A.E.Lovell, W.G.Lynch, S.M.Lyons, K.Maeda, E.Masha, C.Matei, J.Merc, B.Messer, F.Montes, A.Mukherjee, M.R.Mumpower, D.Neto, B.Nevins, W.G.Newton, L.Q.Nguyen, K.Nishikawa, N.Nishimura, F.M.Nunes, E.O'Connor, B.W.O'Shea, W.-J.Ong, S.D.Pain, M.A.Pajkos, M.Pignatari, R.G.Pizzone, V.M.Placco, T.Plewa, B.Pritychenko, A.Psaltis, D.Puentes, Y.-Z.Qian, D.Radice, D.Rapagnani, B.M.Rebeiro, R.Reifarth, A.L.Richard, N.Rijal, I.U.Roederer, J.S.Rojo, J.S K, Y.Saito, A.Schwenk, M.L.Sergi, R.S.Sidhu, A.Simon, T.Sivarani, A.Skuladottir, M.S.Smith, A.Spiridon, T.M.Sprouse, S.Starrfield, A.W.Steiner, F.Strieder, I.Sultana, R.Surman, T.Szucs, A.Tawfik, F.Thielemann, L.Trache, R.Trappitsch, M.B.Tsang, A.Tumino, S.Upadhyayula, J.O.Valle Martinez, M.Van der Swaelmen, C.Viscasillas Vazquez, A.Watts, B.Wehmeyer, M.Wiescher, C.Wrede, J.Yoon, R.G.T.Zegers, M.A.Zermane, M.Zingale, the Horizon 2020 Collaborations

Horizons: nuclear astrophysics in the 2020s and beyond

doi: https://dx.doi.org/10.1088/1361-6471/ac8890
Citations: PlumX Metrics


2022TE06      Few-Body Systems 63, 67 (2022)

I.Tews, Z.Davoudi, A.Ekstrom, J.D.Holt, K.Becker, R.Briceno, D.J.Dean, W.Detmold, C.Drischler, T.Duguet, E.Epelbaum, A.Gasparyan, J.Gegelia, J.R.Green, H.W.Griesshammer, A.D.Hanlon, M.Heinz, H.Hergert, M.Hoferichter, M.Illa, D.Kekejian, A.Kievsky, S.Konig, H.Krebs, K.D.Launey, D.Lee, P.Navratil, A.Nicholson, A.Parreno, D.R.Phillips, M.Ploszajczak, X.-L.Ren, T.R.Richardson, C.Robin, G.H.Sargsyan, M.J.Savage, M.R.Schindler, P.E.Shanahan, R.P.Springer, A.Tichai, U.van Kolck, M.L.Wagman, A.Walker-Loud, C.-J.Yang, X.Zhang

Nuclear Forces for Precision Nuclear Physics: A Collection of Perspectives

doi: 10.1007/s00601-022-01749-x
Citations: PlumX Metrics


2021ES07      Phys.Rev.Lett. 127, 192701 (2021)

R.Essick, I.Tews, P.Landry, A.Schwenk

Astrophysical Constraints on the Symmetry Energy and the Neutron Skin of 208Pb with Minimal Modeling Assumptions

NUCLEAR STRUCTURE 208Pb; analyzed available data; deduced astrophysical constraints on the symmetry energy and the neutron skin.

doi: 10.1103/PhysRevLett.127.192701
Citations: PlumX Metrics


2021ES10      Phys.Rev. C 104, 065804 (2021)

R.Essick, P.Landry, A.Schwenk, I.Tews

Detailed examination of astrophysical constraints on the symmetry energy and the neutron skin of 208Pb with minimal modeling assumptions

NUCLEAR STRUCTURE 208Pb; analyzed correlations between selected nuclear properties such as symmetry energy, slope parameter, curvature, 208Pb skin and electric dipole polarizability using nonparametric equation of state (EOS) representation based on Gaussian processes to constrain the symmetry energy, slope parameter, and 208Pb skin from observations of neutron stars with minimal modeling assumptions, and by combining astrophysical data from heavy pulsar masses, LIGO/Virgo, and NICER with chiral effective field theory (χEFT) and constraints from PREX-II experiment for 208Pb skin thickness, and using Monte Carlo implementation of a hierarchical Bayesian inference. Relevance to neutron-skin thickness of nuclei to the crust thickness and the radius of neutron stars.

doi: 10.1103/PhysRevC.104.065804
Citations: PlumX Metrics


2021SO13      Phys.Rev. C 103, 045803 (2021)

R.Somasundaram, C.Drischler, I.Tews, J.Margueron

Constraints on the nuclear symmetry energy from asymmetric-matter calculations with chiral NN and 3N interactions

doi: 10.1103/PhysRevC.103.045803
Citations: PlumX Metrics


2020ES04      Phys.Rev. C 102, 055803 (2020)

R.Essick, I.Tews, P.Landry, S.Reddy, D.E.Holz

Direct astrophysical tests of chiral effective field theory at supranuclear densities

doi: 10.1103/PhysRevC.102.055803
Citations: PlumX Metrics


2020LO09      Phys. Rev. Res. 2, 022033 (2020)

D.Lonardoni, I.Tews, S.Gandolfi, J.Carlson

Nuclear and neutron-star matter from local chiral interactions

doi: 10.1103/PhysRevResearch.2.022033
Citations: PlumX Metrics


2019GA36      J.Phys.(London) G46, 103001 (2019)

S.Gandolfi, J.Lippuner, A.W.Steiner, I.Tews, X.Du, M.Al-Mamun

From the microscopic to the macroscopic world: from nucleons to neutron stars

doi: 10.1088/1361-6471/ab29b3
Citations: PlumX Metrics


2019TE02      Eur.Phys.J. A 55, 97 (2019)

I.Tews, J.Margueron, S.Reddy

Confronting gravitational-wave observations with modern nuclear physics constraints

doi: 10.1140/epja/i2019-12774-6
Citations: PlumX Metrics


2018TE03      Phys.Rev. C 98, 024001 (2018)

I.Tews, L.Huth, A.Schwenk

Large-cutoff behavior of local chiral effective field theory interactions

doi: 10.1103/PhysRevC.98.024001
Citations: PlumX Metrics


2018TE05      Phys.Rev. C 98, 045804 (2018)

I.Tews, J.Margueron, S.Reddy

Critical examination of constraints on the equation of state of dense matter obtained from GW170817

doi: 10.1103/PhysRevC.98.045804
Citations: PlumX Metrics


2017HU17      Phys.Rev. C 96, 054003 (2017)

L.Huth, I.Tews, J.E.Lynn, A.Schwenk

Analyzing the Fierz rearrangement freedom for local chiral two-nucleon potentials

NUCLEAR STRUCTURE 2H, 4He; calculated binding energies, radii, phase-shifts in the framework of Chiral effective field theory (EFT), by constructing leading order (LO) and next-to-leading order (NLO) potentials for all possible LO-operator pairs.Calculated energy of neutron matter at different densities.

doi: 10.1103/PhysRevC.96.054003
Citations: PlumX Metrics


2017LY01      Phys.Rev. C 96, 054007 (2017)

J.E.Lynn, I.Tews, J.Carlson, S.Gandolfi, A.Gezerlis, K.E.Schmidt, A.Schwenk

Quantum Monte Carlo calculations of light nuclei with local chiral two- and three-nucleon interactions

NUCLEAR STRUCTURE 2H; calculated deuteron wave functions, binding energy, asymptotic D/S ratio, quadrupole moment, root-mean-square (rms) matter radius, momentum distributions and tensor polarization at N2LO, deuteron energy at LO, NLO, and N2LO as function of radius. 3H, 3,4He; calculated wave functions for AV18+UIX at N22LO, energies using Green's function Monte Carlo (GFMC) method, kinetic and potential energy contributions to the GFMC energy, point-proton radii at LO, NLO, and N2LO, one-body proton and neutron distributions for 3,4He at N2LO, longitudinal charge form factor for 4He. Quantum Monte Carlo (QMC) calculations for light nuclei with local chiral NN and 3N interactions.

doi: 10.1103/PhysRevC.96.054007
Citations: PlumX Metrics


2017TE01      Phys.Rev. C 95, 015803 (2017)

I.Tews

Spectrum of shear modes in the neutron-star crust: Estimating the nuclear-physics uncertainties

doi: 10.1103/PhysRevC.95.015803
Citations: PlumX Metrics


2016DY01      Phys.Rev. C 94, 034001 (2016)

A.Dyhdalo, R.J.Furnstahl, K.Hebeler, I.Tews

Regulator artifacts in uniform matter for chiral interactions

doi: 10.1103/PhysRevC.94.034001
Citations: PlumX Metrics


2016KL06      Phys.Rev. C 94, 054005 (2016)

P.Klos, J.E.Lynn, I.Tews, S.Gandolfi, A.Gezerlis, H.-W.Hammer, M.Hoferichter, A.Schwenk

Quantum Monte Carlo calculations of two neutrons in finite volume

NUCLEAR STRUCTURE 2n; calculated ground state, energy and nodal surface of the first excited state for a two neutron-system in a box; extracted low-energy S-wave scattering parameters from ground- and excited-state energies for different box sizes using Luscher formula. Auxiliary-field diffusion Monte Carlo (AFDMC) calculations, and chiral EFT interactions. Relevance to effective field theories of strong interaction.

doi: 10.1103/PhysRevC.94.054005
Citations: PlumX Metrics


2016LY02      Phys.Rev.Lett. 116, 062501 (2016)

J.E.Lynn, I.Tews, J.Carlson, S.Gandolfi, A.Gezerlis, K.E.Schmidt, A.Schwenk

Chiral Three-Nucleon Interactions in Light Nuclei, Neutron-α Scattering, and Neutron Matter

NUCLEAR STRUCTURE 4He; analyzed available data; deduced binding and ground-state energies. Quantum Monte Carlo calculations of light nuclei using local two- and three-nucleon (3N) interactions derived from chiral effective field theory up to next-to-next-to-leading order (N2LO).

doi: 10.1103/PhysRevLett.116.062501
Citations: PlumX Metrics


2016TE01      Phys.Rev. C 93, 024305 (2016)

I.Tews, S.Gandolfi, A.Gezerlis, A.Schwenk

Quantum Monte Carlo calculations of neutron matter with chiral three-body forces

doi: 10.1103/PhysRevC.93.024305
Citations: PlumX Metrics


2014GE06      Phys.Rev. C 90, 054323 (2014)

A.Gezerlis, I.Tews, E.Epelbaum, M.Freunek, S.Gandolfi, K.Hebeler, A.Nogga, A.Schwenk

Local chiral effective field theory interactions and quantum Monte Carlo applications

NUCLEAR STRUCTURE 2H; calculated binding energy, quadrupole moment, magnetic moment, asymptotic D/S ratio, rms radius, asymptotic s-wave factor, and the d-state probability using the local chiral potentials. Calculated ground-state energy for a 66-neutron matter system. Local chiral effective field theory interactions to next-to-next-to-leading order and Monte Carlo calculations for neutron matter.

doi: 10.1103/PhysRevC.90.054323
Citations: PlumX Metrics


2013GE03      Phys.Rev.Lett. 111, 032501 (2013)

A.Gezerlis, I.Tews, E.Epelbaum, S.Gandolfi, K.Hebeler, A.Nogga, A.Schwenk

Quantum Monte Carlo Calculations with Chiral Effective Field Theory Interactions

doi: 10.1103/PhysRevLett.111.032501
Citations: PlumX Metrics


2013KR10      Phys.Rev. C 88, 025802 (2013)

T.Kruger, I.Tews, K.Hebeler, A.Schwenk

Neutron matter from chiral effective field theory interactions

doi: 10.1103/PhysRevC.88.025802
Citations: PlumX Metrics


2013TE01      Phys.Rev.Lett. 110, 032504 (2013)

I.Tews, T.Kruger, K.Hebeler, A.Schwenk

Neutron Matter at Next-to-Next-to-Next-to-Leading Order in Chiral Effective Field Theory

NUCLEAR STRUCTURE 208Pb; calculated neutron matter energy, energy per particle vs. density using N3LO potentials. Comparison with available data.

doi: 10.1103/PhysRevLett.110.032504
Citations: PlumX Metrics


Back to query form