NSR Query Results


Output year order : Descending
Format : Normal

NSR database version of May 10, 2024.

Search: Author = W.G.Newton

Found 20 matches.

Back to query form



2023NE03      Phys.Rev.Lett. 130, 112701 (2023)

D.Neill, R.Preston, W.G.Newton, D.Tsang

Constraining the Nuclear Symmetry Energy with Multimessenger Resonant Shattering Flares

doi: 10.1103/PhysRevLett.130.112701
Citations: PlumX Metrics


2022NE01      Phys.Rev. C 105, 025806 (2022)

W.G.Newton, S.Cantu, S.Wang, A.Stinson, M.A.Kaltenborn, J.R.Stone

Glassy quantum nuclear pasta in neutron star crusts

doi: 10.1103/PhysRevC.105.025806
Citations: PlumX Metrics


2022NE05      Eur.Phys.J. A 58, 69 (2022)

W.G.Newton, L.Balliet, S.Budimir, G.Crocombe, B.Douglas, T.Head, Z.Langford, L.Rivera, J.Sanford

Ensembles of unified crust and core equations of state in a nuclear-multimessenger astrophysics environment

doi: 10.1140/epja/s10050-022-00710-0
Citations: PlumX Metrics


2022NE11      Phys.Lett. B 834, 137481 (2022)

W.G.Newton, R.Preston, L.Balliet, M.Ross

From neutron skins and neutron matter to the neutron star crust

NUCLEAR STRUCTURE 208Pb; analyzed available data; deduced the first Bayesian inference of neutron star crust properties to incorporate neutron skin data, including the recent PREX measurement of the neutron skin of 208Pb, combined with recent chiral effective field theory predictions of pure neutron matter with statistical errors.

doi: 10.1016/j.physletb.2022.137481
Citations: PlumX Metrics


2022SC17      J.Phys.(London) G49, 110502 (2022)

H.Schatz, A.D.Becerril Reyes, A.Best, E.F.Brown, K.Chatziioannou, K.A.Chipps, C.M.Deibel, R.Ezzeddine, D.K.Galloway, C.J.Hansen, F.Herwig, A.P.Ji, M.Lugaro, Z.Meisel, D.Norman, J.S.Read, L.F.Roberts, A.Spyrou, I.Tews, F.X.Timmes, C.Travaglio, N.Vassh, C.Abia, P.Adsley, S.Agarwal, M.Aliotta, W.Aoki, A.Arcones, A.Aryan, A.Bandyopadhyay, A.Banu, D.W.Bardayan, J.Barnes, A.Bauswein, T.C.Beers, J.Bishop, T.Boztepe, B.Cote, M.E.Caplan, A.E.Champagne, J.A.Clark, M.Couder, A.Couture, S.E.de Mink, S.Debnath, R.J.deBoer, J.den Hartogh, P.Denissenkov, V.Dexheimer, I.Dillmann, J.E.Escher, M.A.Famiano, R.Farmer, R.Fisher, C.Frohlich, A.Frebel, C.Fryer, G.Fuller, A.K.Ganguly, S.Ghosh, B.K.Gibson, T.Gorda, K.N.Gourgouliatos, V.Graber, M.Gupta, W.C.Haxton, A.Heger, W.R.Hix, W.C.G.Ho, E.M.Holmbeck, A.A.Hood, S.Huth, G.Imbriani, R.G.Izzard, R.Jain, H.Jayatissa, Z.Johnston, T.Kajino, A.Kankainen, G.G.Kiss, A.Kwiatkowski, M.La Cognata, A.M.Laird, L.Lamia, P.Landry, E.Laplace, K.D.Launey, D.Leahy, G.Leckenby, A.Lennarz, B.Longfellow, A.E.Lovell, W.G.Lynch, S.M.Lyons, K.Maeda, E.Masha, C.Matei, J.Merc, B.Messer, F.Montes, A.Mukherjee, M.R.Mumpower, D.Neto, B.Nevins, W.G.Newton, L.Q.Nguyen, K.Nishikawa, N.Nishimura, F.M.Nunes, E.O'Connor, B.W.O'Shea, W.-J.Ong, S.D.Pain, M.A.Pajkos, M.Pignatari, R.G.Pizzone, V.M.Placco, T.Plewa, B.Pritychenko, A.Psaltis, D.Puentes, Y.-Z.Qian, D.Radice, D.Rapagnani, B.M.Rebeiro, R.Reifarth, A.L.Richard, N.Rijal, I.U.Roederer, J.S.Rojo, J.S K, Y.Saito, A.Schwenk, M.L.Sergi, R.S.Sidhu, A.Simon, T.Sivarani, A.Skuladottir, M.S.Smith, A.Spiridon, T.M.Sprouse, S.Starrfield, A.W.Steiner, F.Strieder, I.Sultana, R.Surman, T.Szucs, A.Tawfik, F.Thielemann, L.Trache, R.Trappitsch, M.B.Tsang, A.Tumino, S.Upadhyayula, J.O.Valle Martinez, M.Van der Swaelmen, C.Viscasillas Vazquez, A.Watts, B.Wehmeyer, M.Wiescher, C.Wrede, J.Yoon, R.G.T.Zegers, M.A.Zermane, M.Zingale, the Horizon 2020 Collaborations

Horizons: nuclear astrophysics in the 2020s and beyond

doi: https://dx.doi.org/10.1088/1361-6471/ac8890
Citations: PlumX Metrics


2021NE05      Phys.Rev. C 103, 064323 (2021)

W.G.Newton, G.Crocombe

Nuclear symmetry energy from neutron skins and pure neutron matter in a Bayesian framework

NUCLEAR STRUCTURE 48Ca, 112,114,116,118,120,122,124,126,128,130,132Sn, 208Pb; analyzed in Bayesian framework nuclear symmetry energy magnitudes from a combination of experimental data for neutron skin thicknesses on calcium, lead and tin isotopes from various experiments including electron scattering (PREX) experiments at Jefferson Laboratory, and theoretical information about pure neutron matter from chiral effective field theory calculations and theoretical neutron skin thicknesses from quantum Skyrme-Hartree-Fock approach using an extended Skyrme energy-density functional. Relevance to more direct modeling of the future experimental observables at Jefferson Laboratory and at Mainz about parity-violating asymmetry, electric dipole response, neutron distributions, etc.

doi: 10.1103/PhysRevC.103.064323
Citations: PlumX Metrics


2015CA14      Phys.Rev. C 92, 015802 (2015)

B.-J.Cai, F.J.Fattoyev, B.-A.Li, W.G.Newton

Critical density and impact of Δ (1232) resonance formation in neutron stars

doi: 10.1103/PhysRevC.92.015802
Citations: PlumX Metrics


2015HE03      Phys.Rev. C 91, 015810 (2015)

X.-T.He, F.J.Fattoyev, B.-A.Li, W.G.Newton

Impact of the equation-of-state-gravity degeneracy on constraining the nuclear symmetry energy from astrophysical observables

doi: 10.1103/PhysRevC.91.015810
Citations: PlumX Metrics


2015ST02      Phys.Rev. C 91, 015804 (2015)

A.W.Steiner, S.Gandolfi, F.J.Fattoyev, W.G.Newton

Using neutron star observations to determine crust thicknesses, moments of inertia, and tidal deformabilities

doi: 10.1103/PhysRevC.91.015804
Citations: PlumX Metrics


2014FA05      Eur.Phys.J. A 50, 45 (2014)

F.J.Fattoyev, W.G.Newton, B.-A.Li

Probing the high-density behavior of symmetry energy with gravitational waves

doi: 10.1140/epja/i2014-14045-6
Citations: PlumX Metrics


2014FA12      Phys.Rev. C 90, 022801 (2014)

F.J.Fattoyev, W.G.Newton, B.-A.Li

Quantifying correlations between isovector observables and the density dependence of the nuclear symmetry energy away from saturation density

NUCLEAR STRUCTURE 48Ca, 208Pb; calculated correlations between nuclear symmetry energy S(ρ) and its slope L(ρ), neutron skin thickness, radii of neutron stars, and the crust-core transition pressure for different densities using Skyrme models SLy4 and NRAPR.

doi: 10.1103/PhysRevC.90.022801
Citations: PlumX Metrics


2014NE02      Eur.Phys.J. A 50, 41 (2014)

W.G.Newton, J.Hooker, M.Gearheart, K.Murphy, D.-H.Wen, F.J.Fattoyev, B.-A.Li

Constraints on the symmetry energy from observational probes of the neutron star crust

doi: 10.1140/epja/i2014-14041-x
Citations: PlumX Metrics


2014PA54      Phys.Rev. C 90, 065802 (2014)

H.Pais, W.G.Newton, J.R.Stone

Phase transitions in core-collapse supernova matter at sub-saturation densities

doi: 10.1103/PhysRevC.90.065802
Citations: PlumX Metrics


2013FA02      Phys.Rev. C 87, 015806 (2013)

F.J.Fattoyev, J.Carvajal, W.G.Newton, B.-A.Li

Constraining the high-density behavior of the nuclear symmetry energy with the tidal polarizability of neutron stars

doi: 10.1103/PhysRevC.87.015806
Citations: PlumX Metrics


2012FA09      Phys.Rev. C 86, 025804 (2012)

F.J.Fattoyev, W.G.Newton, J.Xu, B.-A.Li

Generic constraints on the relativistic mean-field and Skyrme-Hartree-Fock models from the pure neutron matter equation of state

NUCLEAR STRUCTURE 112,114,116,118,120,122,124,126,128,130,132Sn, 208Pb; calculated nuclear symmetry energy, neutron skin thickness. Microscopic pure neutron matter (PNM) calculations using relativistic mean-field (RMF) and Skyrme-Hartree-Fock (SHF) models with IU-FSU and SkIU-FSU parametrizations. 40,48Ca, 78Ni, 90Zr, 132Sn, 208Pb; analyzed relative deviation of the binding energies and charge radii. Comparison with experimental data. Discussed predictions of neutron skin thicknesses and neutron star radii.

doi: 10.1103/PhysRevC.86.025804
Citations: PlumX Metrics


2012WE01      Phys.Rev. C 85, 025801 (2012)

D.-H.Wen, W.G.Newton, B.-A.Li

Sensitivity of the neutron star r-mode instability window to the density dependence of the nuclear symmetry energy

doi: 10.1103/PhysRevC.85.025801
Citations: PlumX Metrics


2011LI54      J.Phys.:Conf.Ser. 312, 042006 (2011)

B.-A.Li, L.-W.Chen, M.Gearheart, J.Hooker, C.M.Ko, P.G.Krastev, W.-K.Lin, W.G.Newton, D.-H.Wen, C.Xu, J.Xu

Imprints of Nuclear Symmetry Energy on Properties of Neutron Stars

doi: 10.1088/1742-6596/312/4/042006
Citations: PlumX Metrics


2009NE06      Phys.Rev. C 79, 055801 (2009)

W.G.Newton, J.R.Stone

Modeling nuclear "pasta" and the transition to uniform nuclear matter with the 3D Skyrme-Hartree-Fock method at finite temperature: Core-collapse supernovae

NUCLEAR STRUCTURE 16O, 40Ca, 56Fe; calculated binding energies and rms radii. A=100-2000; calculated free energy functions versus nucleon number, neutron density profiles and energy deformation surfaces. Implications for Core-collapse supernovae. Three-dimensional finite temperature Skyrme-Hatree-Fock+BCS calculations for inhomogeneous phase of bulk nuclear matter using computer code TAMAR.

doi: 10.1103/PhysRevC.79.055801
Citations: PlumX Metrics


2009NE15      Phys.Rev. C 80, 065809 (2009)

W.G.Newton, B.-A.Li

Constraining the gravitational binding energy of PSR J0737-3039B using terrestrial nuclear data

doi: 10.1103/PhysRevC.80.065809
Citations: PlumX Metrics


2004ST06      Int.J.Mod.Phys. E13, 181 (2004)

P.D.Stevenson, M.R.Strayer, J.Rikovska Stone, W.G.Newton

Giant resonances from TDHF

NUCLEAR STRUCTURE 16O; calculated giant resonance strength functions. TDHF approach.

doi: 10.1142/S0218301304001928
Citations: PlumX Metrics


Back to query form