NSR Query Results

Output year order : Descending
Format : Normal

NSR database version of April 11, 2024.

Search: Author = M.R.Mumpower

Found 50 matches.

Back to query form

2024LI09      Phys.Lett. B 848, 138385 (2024)

M.Li, T.M.Sprouse, B.S.Meyer, M.R.Mumpower

Atomic masses with machine learning for the astrophysical r process

NUCLEAR STRUCTURE N<160; analyzed available data; deduced mass deviations between Machine-Learning (ML) approach and HFB-32 model, neutron separation energies, abundances, β-decay rates. Comparison with AME 2020 data.

doi: 10.1016/j.physletb.2023.138385
Citations: PlumX Metrics

2024VA02      Phys.Rev.Lett. 132, 052701 (2024)

N.Vassh, X.Wang, M.Lariviere, T.Sprouse, M.R.Mumpower, R.Surman, Zh.Liu, G.C.McLaughlin, P.Denissenkov, F.Herwig

Thallium-208: A Beacon of In Situ Neutron Capture Nucleosynthesis

doi: 10.1103/PhysRevLett.132.052701
Citations: PlumX Metrics

2023CL04      Eur.Phys.J. A 59, 204 (2023)

J.Clark, G.Savard, M.Mumpower, A.Kankainen

Precise mass measurements of radioactive nuclides for astrophysics

doi: 10.1140/epja/s10050-023-01037-0
Citations: PlumX Metrics

2023HO02      Eur.Phys.J. A 59, 28 (2023)

E.M.Holmbeck, T.M.Sprouse, M.R.Mumpower

Nucleosynthesis and observation of the heaviest elements

doi: 10.1140/epja/s10050-023-00927-7
Citations: PlumX Metrics

2023HO14      Phys.Rev.Lett. 131, 262701 (2023)

D.E.M.Hoff, K.Kolos, G.W.Misch, D.Ray, B.Liu, A.A.Valverde, M.Brodeur, D.P.Burdette, N.Callahan, J.A.Clark, A.T.Gallant, F.G.Kondev, G.E.Morgan, M.R.Mumpower, R.Orford, W.S.Porter, F.Rivero, G.Savard, N.D.Scielzo, K.S.Sharma, K.Sieja, T.M.Sprouse, L.Varriano

Direct Mass Measurements to Inform the Behavior of 128mSb in Nucleosynthetic Environments

ATOMIC MASSES 128,128mSb; measured cyclotron frequencies; deduced mass excesses, isomer excitation energy. Comparison with AME2020, NUBASE2020, state-of-the-art shell model calculations using the GCN5082 interaction. The phase-imaging ion-cyclotron resonance (PI-ICR) technique with the Canadian Penning Trap (CPT) mass spectrometer at the Californium Rare Isotope Breeder Upgrade facility.

doi: 10.1103/PhysRevLett.131.262701
Citations: PlumX Metrics

Data from this article have been entered in the XUNDL database. For more information, click here.

2023LU01      Astrophys.J. 944, 144 (2023)

K.A.Lund, J.Engel, G.C.McLaughlin, M.R.Mumpower, E.M.Ney, R.Surman

The Influence of β-decay Rates on r-process Observables

doi: 10.3847/1538-4357/acaf56
Citations: PlumX Metrics

2023MU06      Phys.Rev. C 107, 034606 (2023)

M.R.Mumpower, D.Neudecker, H.Sasaki, T.Kawano, A.E.Lovell, M.W.Herman, I.Stetcu, M.Dupuis

Collective enhancement in the exciton model

NUCLEAR REACTIONS 239Pu(n, 2n), E=6-24 MeV; calculated σ(E). 239Pu(n, xn), E=14 MeV; 181Ta, 165(n, xn), E=20 MeV; calculated neutron emission spectra. Calculation with statistical model framework CoH3 with increased one-particle-one-hole state density used in the exciton model. Comparison to experimental data and ENDF/B-VIII.0.

NUCLEAR STRUCTURE 239Pu; calculated 1p-1h state densities.

doi: 10.1103/PhysRevC.107.034606
Citations: PlumX Metrics

2022KI23      Astrophys.J. 936, 107 (2022)

G.G.Kiss, A.Vitez-Sveiczer, Y.Saito, A.Tarifeno-Saldivia, M.Pallas, J.L.Tain, I.Dillmann, J.Agramunt, A.Algora, C.Domingo-Pardo, A.Estrade, C.Appleton, J.M.Allmond, P.Aguilera, H.Baba, N.T.Brewer, C.Bruno, R.Caballero-Folch, F.Calvino, P.J.Coleman-Smith, G.Cortes, T.Davinson, N.Fukuda, Z.Ge, S.Go, C.J.Griffin, R.K.Grzywacz, O.Hall, A.Horvath, J.Ha, L.J.Harkness-Brennan, T.Isobe, D.Kahl, T.T.King, A.Korgul, S.Kovacs, R.Krucken, S.Kubono, M.Labiche, J.Liu, J.Liang, M.Madurga, K.Miernik, F.Molina, A.I.Morales, M.R.Mumpower, E.Nacher, A.Navarro, N.Nepal, S.Nishimura, M.Piersa-Silkowska, V.Phong, B.C.Rasco, B.Rubio, K.P.Rykaczewski, J.Romero-Barrientos, H.Sakurai, L.Sexton, Y.Shimizu, M.Singh, T.Sprouse, T.Sumikama, R.Surman, H.Suzuki, T.N.Szegedi, H.Takeda, A.Tolosa, K.Wang, M.Wolinska-Cichocka, P.Woods, R.Yokoyama, Z.Xu

Measuring the β-decay Properties of Neutron-rich Exotic Pm, Sm, Eu, and Gd Isotopes to Constrain the Nucleosynthesis Yields in the Rare-earth Region

NUCLEAR REACTIONS 9Be(238U, X), E=345 MeV/nucleon; measured reaction products, TOF, Eβ, Iβ. 159,160,161,162,163,164,165,166Pm, 161,162,163,164,165,166,167,168Sm, 165,166,167,168,169,170Eu, 167,168,169,170,171,172Gd; deduced new isotopes T1/2 and β-delayed neutron emission probabilities, relative r-process abundance pattern for the neutron-star merger scenario. RIKEN Nishina Center, the Advanced Implantation Detector Array (AIDA) and the BRIKEN neutron detector array.

doi: 10.3847/1538-4357/ac80fc
Citations: PlumX Metrics

Data from this article have been entered in the XUNDL database. For more information, click here.

2022KO12      Phys. Rev. Res. 4, 021001 (2022)

K.Kolos, V.Sobes, R.Vogt, C.E.Romano, M.S.Smith, L.A.Bernstein, D.A.Brown, M.T.Burkey, Y.Danon, M.A.Elsawi, B.L.Goldblum, L.H.Heilbronn, S.L.Hogle, J.Hutchinson, B.Loer, E.A.McCutchan, M.R.Mumpower, E.M.O'Brien, C.Percher, P.N.Peplowski, J.J.Ressler, N.Schunck, N.W.Thompson, A.S.Voyles, W.Wieselquist, M.Zerkle

Current nuclear data needs for applications

doi: 10.1103/PhysRevResearch.4.021001
Citations: PlumX Metrics

2022LI20      Phys.Rev.Lett. 128, 152701 (2022)

H.F.Li, S.Naimi, T.M.Sprouse, M.R.Mumpower, Y.Abe, Y.Yamaguchi, D.Nagae, F.Suzaki, M.Wakasugi, H.Arakawa, W.B.Dou, D.Hamakawa, S.Hosoi, Y.Inada, D.Kajiki, T.Kobayashi, M.Sakaue, Y.Yokoda, T.Yamaguchi, R.Kagesawa, D.Kamioka, T.Moriguchi, M.Mukai, A.Ozawa, S.Ota, N.Kitamura, S.Masuoka, S.Michimasa, H.Baba, N.Fukuda, Y.Shimizu, H.Suzuki, H.Takeda, D.S.Ahn, M.Wang, C.Y.Fu, Q.Wang, S.Suzuki, Z.Ge, Y.A.Litvinov, G.Lorusso, P.M.Walker, Z.Podolyak, T.Uesaka

First Application of Mass Measurements with the Rare-RI Ring Reveals the Solar r-Process Abundance Trend at A=122 and A=123

ATOMIC MASSES 123Pd, 125Cd, 126In; measured frequencies; deduced mass excess values with low uncertainties. Comparison with calculations. Radioactive Isotope Beam Factory (RIBF) in RIKEN.

doi: 10.1103/PhysRevLett.128.152701
Citations: PlumX Metrics

2022LO09      Phys.Rev. C 106, 014305 (2022)

A.E.Lovell, A.T.Mohan, T.M.Sprouse, M.R.Mumpower

Nuclear masses learned from a probabilistic neural network

ATOMIC MASSES Z=20-110, N=16-160; calculated atomic masses and S(n) using the probabilistic Mixture Density Network (MDN) for six models: M2, MS2, MS6, MS8, MS10, and MS12, and compared with evaluated atomic masses in AME2016 and theoretical masses in Moller's FRDM2012. Relevance to accuracy of the match to the training data, and providing physically meaningful extrapolations beyond the limits of experimental data.

doi: 10.1103/PhysRevC.106.014305
Citations: PlumX Metrics

2022MU14      Phys.Rev. C 106, L021301 (2022)

M.R.Mumpower, T.M.Sprouse, A.E.Lovell, A.T.Mohan

Physically interpretable machine learning for nuclear masses

ATOMIC MASSES 137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162Nd; calculated masses. Results obtained with probabilistic machine learning algorithm. Comparison to AME2016.

doi: 10.1103/PhysRevC.106.L021301
Citations: PlumX Metrics

2022MU18      Phys.Rev. C 106, 065805 (2022)

M.R.Mumpower, T.Kawano, T.M.Sprouse

β-delayed fission in the coupled quasiparticle random-phase approximation plus Hauser-Feshbach approach

RADIOACTIVITY 282Bk(β-F); calculated probabilities for neutron, γ, and fission channels, and total transmission coefficient sum. 290Am, 295Fm(β-n), (β-F); calculated probabilities for delayed neutron and delayed fission as a function of j-th neutrons emitted from the daughter nuclei. Z=94, A=254-324(β-n), (β-F); Z=97, A=257-327(β-n), (β-F); calculated cumulative probabilities for emitting neutrons or fission after β- decay, S(n) and maximum fission barriers. Z=85-120, N=160-230(β-n), (β-F); calculated average neutron multiplicities, average β--delayed neutron emission energies, cumulative probability of β--delayed fission (βdf). 244,246Pa, 248,250Np, 252,254Am, 256,258,259Bk, 261Cf, 262,263Es, 264,266,267Md, 269No, 268,269,270,271Lr, 271,273Rf, 272,273,274,275Db, 280,281,282,283Bh, 285Hs, 284,285,286,287Mt(β-F); calculated β-delayed fission (βdf) branching ratios greater than 1% among 72 model variations. Z=80, A=207-266; Z=81, A=210-268; Z=82, A=211-273; Z=83, A=212-276; Z=84, A=215, 217-279; Z=85, A=216-282; Z=86, A=221, 223-286; Z=87, A=222-289; Z=88, A=225, 227, 229-292; Z=89, A=224, 226, 228-295; Z=90, A=233-299; Z=91, A=230, 232, 234-302; Z=92, A=239-305; Z=93, A=236, 238, 240-308; Z=94, A=243, 245-312; Z=95, A=242, 244-315; Z=96, A=249, 251-318; Z=97, A=248, 250-321; Z=98, A=253, 255, 257-325; Z=99, A=252, 254-328; Z=100, A=261, 263-331; Z=101, A=260, 262-334; Z=102, A=265, 267-338; Z=103, A=264, 266-339; Z=104, A=269, 271, 273, 275-339; Z=105, A=270, 272-339; Z=106, A=279, 281-339; Z=107, A=274, 276, 278, 280-339; Z=108, A=285, 287-339; Z=109, A=282, 284-339; Z=110, A=291, 293-339; Z=111, A=288, 290-339; Z=112, A=295, 297-339; Z=113, A=294, 296-339; Z=114, A=301, 303, 305-339; Z=115, A=300, 302, 304-339; Z=116, A=309, 313, 315-339; Z=117, A=306, 308, 310-339; Z=118, A=323-339; Z=119, A=312, 316-339; Z=120, A=323, 325, 327-339; Z=121, A=320, 322, 324-339; Z=122, A=329, 331, 335-339; Z=123, A=326, 328-339; Z=124, A=337; Z=125, A=332, 334, 336-339; Z=127, A=338; calculated j-neutron emission probabilities (%β-xn or Pxn up to x=0-10), average neutron emission energies, average neutron multiplicities, and j-th neutron beta-delayed fission (βdf) probabilities after β- decay for 2436 neutron-rich nuclei, with numerical values listed in Supplemental Material. Los Alamos coupled quasiparticle random-phase approximation plus Hauser-Feshbach (QRPA+HF) approach.

doi: 10.1103/PhysRevC.106.065805
Citations: PlumX Metrics

2022OR02      Phys.Rev. C 105, L052802 (2022)

R.Orford, N.Vassh, J.A.Clark, G.C.McLaughlin, M.R.Mumpower, D.Ray, G.Savard, R.Surman, F.Buchinger, D.P.Burdette, M.T.Burkey, D.A.Gorelov, J.W.Klimes, W.S.Porter, K.S.Sharma, A.A.Valverde, L.Varriano, X.L.Yan

Searching for the origin of the rare-earth peak with precision mass measurements across Ce-Eu isotopic chains

ATOMIC MASSES 152,153,154Ce, 152,153,154,156,157Pr, 157Nd, 161Pm, 163,165Eu; measured cyclotron frequency; deduced mass excess, solar abundances of rare-earth elements. Comparison to AME2016 and AME2020 evaluations, previous experimental data and calculations using Markov chain Monte Carlo (MCMC) technique. Canadian Penning Trap (CPT) with low-energy ion beams from the Californium Rare Isotope Breeder Upgrade(CARIBU) facility at Argonne National Laboratory. Systematics of CPT mass-measurements for Ce, Pr, Nd, Pm, Sm, Eu (Z=58-63).

doi: 10.1103/PhysRevC.105.L052802
Citations: PlumX Metrics

2022SC17      J.Phys.(London) G49, 110502 (2022)

H.Schatz, A.D.Becerril Reyes, A.Best, E.F.Brown, K.Chatziioannou, K.A.Chipps, C.M.Deibel, R.Ezzeddine, D.K.Galloway, C.J.Hansen, F.Herwig, A.P.Ji, M.Lugaro, Z.Meisel, D.Norman, J.S.Read, L.F.Roberts, A.Spyrou, I.Tews, F.X.Timmes, C.Travaglio, N.Vassh, C.Abia, P.Adsley, S.Agarwal, M.Aliotta, W.Aoki, A.Arcones, A.Aryan, A.Bandyopadhyay, A.Banu, D.W.Bardayan, J.Barnes, A.Bauswein, T.C.Beers, J.Bishop, T.Boztepe, B.Cote, M.E.Caplan, A.E.Champagne, J.A.Clark, M.Couder, A.Couture, S.E.de Mink, S.Debnath, R.J.deBoer, J.den Hartogh, P.Denissenkov, V.Dexheimer, I.Dillmann, J.E.Escher, M.A.Famiano, R.Farmer, R.Fisher, C.Frohlich, A.Frebel, C.Fryer, G.Fuller, A.K.Ganguly, S.Ghosh, B.K.Gibson, T.Gorda, K.N.Gourgouliatos, V.Graber, M.Gupta, W.C.Haxton, A.Heger, W.R.Hix, W.C.G.Ho, E.M.Holmbeck, A.A.Hood, S.Huth, G.Imbriani, R.G.Izzard, R.Jain, H.Jayatissa, Z.Johnston, T.Kajino, A.Kankainen, G.G.Kiss, A.Kwiatkowski, M.La Cognata, A.M.Laird, L.Lamia, P.Landry, E.Laplace, K.D.Launey, D.Leahy, G.Leckenby, A.Lennarz, B.Longfellow, A.E.Lovell, W.G.Lynch, S.M.Lyons, K.Maeda, E.Masha, C.Matei, J.Merc, B.Messer, F.Montes, A.Mukherjee, M.R.Mumpower, D.Neto, B.Nevins, W.G.Newton, L.Q.Nguyen, K.Nishikawa, N.Nishimura, F.M.Nunes, E.O'Connor, B.W.O'Shea, W.-J.Ong, S.D.Pain, M.A.Pajkos, M.Pignatari, R.G.Pizzone, V.M.Placco, T.Plewa, B.Pritychenko, A.Psaltis, D.Puentes, Y.-Z.Qian, D.Radice, D.Rapagnani, B.M.Rebeiro, R.Reifarth, A.L.Richard, N.Rijal, I.U.Roederer, J.S.Rojo, J.S K, Y.Saito, A.Schwenk, M.L.Sergi, R.S.Sidhu, A.Simon, T.Sivarani, A.Skuladottir, M.S.Smith, A.Spiridon, T.M.Sprouse, S.Starrfield, A.W.Steiner, F.Strieder, I.Sultana, R.Surman, T.Szucs, A.Tawfik, F.Thielemann, L.Trache, R.Trappitsch, M.B.Tsang, A.Tumino, S.Upadhyayula, J.O.Valle Martinez, M.Van der Swaelmen, C.Viscasillas Vazquez, A.Watts, B.Wehmeyer, M.Wiescher, C.Wrede, J.Yoon, R.G.T.Zegers, M.A.Zermane, M.Zingale, the Horizon 2020 Collaborations

Horizons: nuclear astrophysics in the 2020s and beyond

doi: https://dx.doi.org/10.1088/1361-6471/ac8890
Citations: PlumX Metrics

2022SP02      Astrophys.J. 929, 22 (2022)

T.M.Sprouse, G.W.Misch, M.R.Mumpower

Isochronic Evolution and the Radioactive Decay of r-process Nuclei

doi: 10.3847/1538-4357/ac470f
Citations: PlumX Metrics

2021HA19      Phys.Lett. B 816, 136266 (2021)

O.Hall, T.Davinson, A.Estrade, J.Liu, G.Lorusso, F.Montes, S.Nishimura, V.H.Phong, P.J.Woods, J.Agramunt, D.S.Ahn, A.Algora, J.M.Allmond, H.Baba, S.Bae, N.T.Brewer, C.G.Bruno, R.Caballero-Folch, F.Calvino, P.J.Coleman-Smith, G.Cortes, I.Dillmann, C.Domingo-Pardo, A.Fijalkowska, N.Fukuda, S.Go, C.J.Griffin, R.Grzywacz, J.Ha, L.J.Harkness-Brennan, T.Isobe, D.Kahl, L.H.Khiem, G.G.Kiss, A.Korgul, S.Kubono, M.Labiche, I.Lazarus, J.Liang, Z.Liu, K.Matsui, K.Miernik, B.Moon, A.I.Morales, P.Morrall, M.R.Mumpower, N.Nepal, R.D.Page, M.Piersa, V.F.E.Pucknell, B.C.Rasco, B.Rubio, K.P.Rykaczewski, H.Sakurai, Y.Shimizu, D.W.Stracener, T.Sumikama, H.Suzuki, J.L.Tain, H.Takeda, A.Tarifeno-Saldivia, A.Tolosa-Delgado, M.Wolinska-Cichocka, R.Yokoyama

β-delayed neutron emission of r-process nuclei at the N = 82 shell closure

RADIOACTIVITY 115,116Tc, 116,117,118,119,120,121Ru, 118,119,120,121,122,123,124Rh, 121,122,123,124,125,126,127,128Pd, 124,125,126,127,128,129Ag, 127,128,129,130Cd(β-n) [from 9Be(238U, X), E=345 MeV/nucleon]; measured decay products, Eβ, Iβ, En, In; deduced β-delayed neutron emission probabilities, T1/2. RIKEN using the Advanced Implantation Detector Array (AIDA) and the BRIKEN neutron detector array.

doi: 10.1016/j.physletb.2021.136266
Citations: PlumX Metrics

Data from this article have been entered in the XUNDL database. For more information, click here.

2021HO13      Astrophys.J. 909, 21 (2021)

E.M.Holmbeck, A.Frebel, G.C.McLaughlin, R.Surman, R.Fernandez, B.D.Metzger, M.R.Mumpower, T.M.Sprouse

Reconstructing Masses of Merging Neutron Stars from Stellar r-process Abundance Signatures

doi: 10.3847/1538-4357/abd720
Citations: PlumX Metrics

2021LO02      Phys.Rev. C 103, 014615 (2021)

A.E.Lovell, T.Kawano, S.Okumura, I.Stetcu, M.R.Mumpower, P.Talou

Extension of the Hauser-Feshbach fission fragment decay model to multichance fission

NUCLEAR REACTIONS 235U(n, F), E=0-20 MeV; calculated multichance fission probabilities, average excitation energy causing fission for first-, second-, third-, and fourth-chance fission, pre-neutron-emission mass yields, total kinetic energy (TKE) and average prompt neutron and γ-ray multiplicities as function of incident neutron energy, average neutron multiplicity as a function of fragment mass, prompt fission γ-ray spectrum, independent and cumulative fission mass yields, average number of delayed neutrons emitted in fission. Extended deterministic Hauser-Feshbach fission fragment decay model (HF3D) within the code BeoH to calculate prompt and delayed particle emission from fission fragments. Comparison with experimental data.

doi: 10.1103/PhysRevC.103.014615
Citations: PlumX Metrics

2021MI02      Astrophys.J.Suppl.Ser. 252, 2 (2021)

G.W.Misch, S.K.Ghorui, P.Banerjee, Y.Sun, M.R.Mumpower

Astromers: Nuclear Isomers in Astrophysics

RADIOACTIVITY 26Al, 34Cl, 85Kr, 121Sn(IT), 121,123,125,127Sn, 128Sb, 170Ho, 176Lu, 182Hf(IT), 58Mn, 113Cd(β-); calculated thermally mediated transition rates between the ground state and long-lived isomers in nuclei; deduced delimiting a thermalization temperature above which a nucleus may be considered a single species and below which it must be treated as two separate species: a ground-state species and an astrophysical isomer ("astromer") species.

doi: 10.3847/1538-4365/abc41d
Citations: PlumX Metrics

2021MI12      Astrophys.J. 913, L2 (2021)

G.W.Misch, T.M.Sprouse, M.R.Mumpower

Astromers in the Radioactive Decay of r-process Nuclei

RADIOACTIVITY 69,71Zn, 79,81Se, 83,85Kr, 93,95,97Nb, 99Tc, 113,115,117Cd, 115,117,119In, 119,121,129Sn, 126,128,130Sb, 125,127,129,131,133Te, 131,133Xe, 137Ba, 144Pr, 166Ho, 189Os, 191,195Ir, 195Pt(IT); analyzed available data; deduced the dynamic population of nuclear isomers in the r process.

doi: 10.3847/2041-8213/abfb74
Citations: PlumX Metrics

2021SP05      Phys.Rev. C 104, 015803 (2021)

T.M.Sprouse, M.R.Mumpower, R.Surman

Following nuclei through nucleosynthesis: A novel tracing technique

NUCLEAR STRUCTURE A=80-240; calculated relative contributions to final isotopic abundances by terminating all the fission channels for different conditions of neutron star merger, relative contributions to final isotopic abundances for the β-delayed and neutron-induced fission products of neptunium and plutonium isotopes, comparison of fission yield to final traced abundances for the neutron-induced fission of 290Np and β-delayed fission of 270Bk. N=158-205; calculated integrated β-delayed and neutron-induced fission flows for individual nuclides during the cold tidal-tail ejecta conditions of neutron star merger. A=126-210; calculated isotopic abundances based on tracing β- decay of 152,176,186Nd. Z=40-80, N=50-134; calculated traced abundances of individual β-decays for Z=40-80 isotopes. Nucleosynthesis tracing framework for the r process, starting with system of coupled differential equations, and by quantifying relative fraction of nuclear abundances that pass through individual nuclear reaction, decay, and fission processes during nucleosynthesis.

doi: 10.1103/PhysRevC.104.015803
Citations: PlumX Metrics

2021VE03      Phys.Rev. C 103, 034617 (2021)

M.Verriere, M.R.Mumpower

Improvements to the macroscopic-microscopic approach of nuclear fission

NUCLEAR REACTIONS 233,235U(n, F), E=thermal; calculated fission fragment charge yields, isobaric fragment charge yields and the independent charge yields after prompt neutron emission, fragment mass and charge yields before prompt neutron emission, scission probabilities. Semiclassical method based on the macroscopic finite-range liquid-drop model (FRLDM) with microscopic corrections or enhanced finite-range liquid-drop model (eFRLDM), with Lipkin-Nogami equations. Comparison with experimental data.

doi: 10.1103/PhysRevC.103.034617
Citations: PlumX Metrics

2021ZH02      Astrophys.J. 906, 94 (2021)

Y.L.Zhu, K.A.Lund, J.Barnes, T.M.Sprouse, N.Vassh, G.C.McLaughlin, M.R.Mumpower, R.Surman

Modeling Kilonova Light Curves: Dependence on Nuclear Inputs

RADIOACTIVITY 254Cf, 254Cm, 258,259Fm, 267,269,270,271Rf, 273Db, 288Hs(SF); calculated total spontaneous fission heating, electron fractions using HFB22, HFB27, FRDM2012, UNEDF1 and ETFSI models.

doi: 10.3847/1538-4357/abc69e
Citations: PlumX Metrics

2020MU06      Phys.Rev. C 101, 054607 (2020)

M.R.Mumpower, P.Jaffke, M.Verriere, J.Randrup

Primary fission fragment mass yields across the chart of nuclides

NUCLEAR REACTIONS 226Th, 235U, 259Md, 276No(n, F)227Th/236U/260Md/277No, T=0.5-1.5 MeV; 229Th, 237Np, 239Pu, 245Cm, 255,257Fm(n, F)230Th/238Np/240Pu/246Cm/256Fm/258Fm, E*=5.8-6.8 MeV; 205At, 208Rn, 209Fr, 211Ra, 216Ac, 222Th, 230Pa, 233U(n, F)206At/209Rn/210Fr/212Ra/217Ac/223Th/231Pa/234U, E*=11 MeV; calculated mass yield distributions. 236U, 240Pu, 234Cm; calculated projected potential energy surfaces. Z=80-130, A=171-330: calculated mass yield distributions for 3800 nuclei listed as tabular text files in the supplementary material. Finite-Range Liquid-Drop Model (FRLDM). Comparison with experimental data.

doi: 10.1103/PhysRevC.101.054607
Citations: PlumX Metrics

2020SP04      Phys.Rev. C 101, 055803 (2020)

T.M.Sprouse, R.Navarro-Perez, R.Surman, M.R.Mumpower, G.C.McLaughlin, N.Schunck

Propagation of statistical uncertainties of Skyrme mass models to simulations of r-process nucleosynthesis

ATOMIC MASSES Z=1-120; calculated atomic mass tables within the nuclear density functional theory (DFT) approach to nuclear structure with Skyrme energy density functionals (EDFs), and UNEDF1 parametrization. A=120-200; analyzed propagation of uncertainties in the Skyrme mass models using Bayesian statistics for the simulated r-process abundance patterns, by considering nuclear masses and the influence of the masses on β-decay and neutron capture rates.

doi: 10.1103/PhysRevC.101.055803
Citations: PlumX Metrics

2020TA03      Phys.Rev.Lett. 124, 062502 (2020)

T.L.Tang, B.P.Kay, C.R.Hoffman, J.P.Schiffer, D.K.Sharp, L.P.Gaffney, S.J.Freeman, M.R.Mumpower, A.Arokiaraj, E.F.Baader, P.A.Butler, W.N.Catford, G.de Angelis, F.Flavigny, M.D.Gott, E.T.Gregor, J.Konki, M.Labiche, I.H.Lazarus, P.T.MacGregor, I.Martel, R.D.Page, Zs.Podolyak, O.Poleshchuk, R.Raabe, F.Recchia, J.F.Smith, S.V.Szwec, J.Yang

First Exploration of Neutron Shell Structure below Lead and beyond N=126

NUCLEAR REACTIONS 2H(206Hg, p), E=7.38 MeV/nucleon; measured reaction products, Ep, Ip. 207Hg; deduced excitation energies, J, π, σ(θ). Comparison with theoretical calculations.

doi: 10.1103/physrevlett.124.062502
Citations: PlumX Metrics

Data from this article have been entered in the XUNDL database. For more information, click here.

2020VI04      Phys.Rev. C 101, 034312 (2020)

M.Vilen, J.M.Kelly, A.Kankainen, M.Brodeur, A.Aprahamian, L.Canete, R.P.de Groote, A.de Roubin, T.Eronen, A.Jokinen, I.D.Moore, M.R.Mumpower, D.A.Nesterenko, J.O'Brien, A.Pardo Perdomo, H.Penttila, M.Reponen, S.Rinta-Antila, R.Surman

Exploring the mass surface near the rare-earth abundance peak via precision mass measurements at JYFLTRAP

ATOMIC MASSES 154Nd, 161Pm, 163Sm, 162,162m,163,164,165Eu, 163,163m,167Gd, 165,166,167,168Tb; measured time-of-flight ion-cyclotron-resonances (TOF-ICR) and phase-imaging ion-cyclotron-resonances (PI-ICR), frequency ratios, mass excesses using the JYFLTRAP double penning trap at the IGISOL facility of University of Jyvaskyla; deduced S(n), S(2n), pairing-gap energies, and average proton neutron interaction of valence nucleons. 162mEu, 163mGd; deduced absolute energies of the isomers. Comparison with previous experimental measurements, and with evaluated data in AME2016. Isotopes formed in U(p, F), E=25 MeV reaction. Discussed impact on solar r-process abundances as a function of the mass number.

doi: 10.1103/PhysRevC.101.034312
Citations: PlumX Metrics

Data from this article have been entered in the XUNDL database. For more information, click here.

2020WU04      Phys.Rev. C 101, 042801 (2020)

J.Wu, S.Nishimura, P.Moller, M.R.Mumpower, R.Lozeva, C.B.Moon, A.Odahara, H.Baba, F.Browne, R.Daido, P.Doornenbal, Y.F.Fang, M.Haroon, T.Isobe, H.S.Jung, G.Lorusso, B.Moon, Z.Patel, S.Rice, H.Sakurai, Y.Shimizu, L.Sinclair, P.-A.Soderstrom, T.Sumikama, H.Watanabe, Z.Y.Xu, A.Yagi, R.Yokoyama, D.S.Ahn, F.L.Bello Garrote, J.M.Daugas, F.Didierjean, N.Fukuda, N.Inabe, T.Ishigaki, D.Kameda, I.Kojouharov, T.Komatsubara, T.Kubo, N.Kurz, K.Y.Kwon, S.Morimoto, D.Murai, H.Nishibata, H.Schaffner, T.M.Sprouse, H.Suzuki, H.Takeda, M.Tanaka, K.Tshoo, Y.Wakabayashi

β-decay half-lives of 55 neutron-rich isotopes beyond the N = 82 shell gap

RADIOACTIVITY 134,135,136,137,138,139Sn, 134,135,136,137,138,139,140,141,142Sb, 137,138,139,140,141,142,143,144Te, 140,141,142,143,144,145,146I, 142,143,144,145,146,147,148Xe, 145,146,147,148,149,150,151Cs, 148,149,150,151,152,153Ba, 151,152,153,154,155La(β-)[from 9Be(238U, F), E=345 MeV/nucleon, followed by separation of fragments using BigRIPS separator at RIBF-RIKEN]; measured β and γ radiations, half-lives by (implant)β and (implant)βγ correlations using the Wide range Active Silicon-Strip Stop per Array for Beta and ion (WAS3ABi) detection system and Euroball RIKEN Cluster Array (EURICA) of 84 Ge cluster detectors. Comparison with previously available experimental half-lives, and with theoretical calculations using FRDM+QRPA, KTUY+GT2, RHB+pn-RQRPA, and DF+CQRPA models. 141Te(β-); calculated half-life and Gamow-Teller strengths using FRDM+QRPA(2019) model, and compared with experimental data. Discussed and calculated effects of new half-life data on r-process abundance.

doi: 10.1103/PhysRevC.101.042801
Citations: PlumX Metrics

Data from this article have been entered in the XUNDL database. For more information, click here.

2019HO18      J.Phys.(London) G46, 083001 (2019)

C.J.Horowitz, A.Arcones, B.Cote, I.Dillmann, W.Nazarewicz, I.U.Roederer, H.Schatz, A.Aprahamian, D.Atanasov, A.Bauswein, T.C.Beers, J.Bliss, M.Brodeur, J.A.Clark, A.Frebel, F.Foucart, C.J.Hansen, O.Just, A.Kankainen, G.C.McLaughlin, J.M.Kelly, S.N.Liddick, D.M.Lee, J.Lippuner, D.Martin, J.Mendoza-Temis, B.D.Metzger, M.R.Mumpower, G.Perdikakis, J.Pereira, B.W.O'Shea, R.Reifarth, A.M.Rogers, D.M.Siegel, A.Spyrou, R.Surman, X.Tang, T.Uesaka, M.Wang

r-process nucleosynthesis: connecting rare-isotope beam facilities with the cosmos

doi: 10.1088/1361-6471/ab0849
Citations: PlumX Metrics

2019LY02      Phys.Rev. C 100, 025806 (2019)

S.Lyons, A.Spyrou, S.N.Liddick, F.Naqvi, B.P.Crider, A.C.Dombos, D.L.Bleuel, B.A.Brown, A.Couture, L.Crespo Campo, J.Engel, M.Guttormsen, A.C.Larsen, R.Lewis, P.Moller, S.Mosby, M.R.Mumpower, E.M.Ney, A.Palmisano, G.Perdikakis, C.J.Prokop, T.Renstrom, S.Siem, M.K.Smith, S.J.Quinn

69, 71Co β-decay strength distributions from total absorption spectroscopy

RADIOACTIVITY 69,71Co(β-)[from 9Be(86Kr, X), E=140 MeV/nucleon, followed by in flight separation of fragments by the A1900 fragment separator at NSCL-MSU]; measured Eγ, Iγ, Eβ, βγ-coin, half-lives of decays of 69,71Co decays, total absorption spectra using Summing NaI(Tl) (SuN) detector for γ rays and double-sided silicon strip detector (DSSD) for β; deduced cumulative Iβ distributions and compared to QRPA and Skyrme QRPA calculations, Gamow-Teller (GT) strength distribution. Comparison of decay half-lives with ENSDF values, and theoretical calculations using shell mode, QRPA and Skyrme QRPA. Relevance to r process in nucleosynthesis.

doi: 10.1103/PhysRevC.100.025806
Citations: PlumX Metrics

Data from this article have been entered in the XUNDL database. For more information, click here.

2019MO01      At.Data Nucl.Data Tables 125, 1 (2019)

P.Moller, M.R.Mumpower, T.Kawano, W.D.Myers

Nuclear properties for astrophysical and radioactive-ion-beam applications (II)

NUCLEAR STRUCTURE Z=8-136; calculated the ground-state odd-proton and odd-neutron spins and parities, proton and neutron pairing gaps, one- and two-neutron separation energies, quantities related to β-delayed one- and two-neutron emission probabilities, average energy and average number of emitted neutrons, β-decay energy release and T1/2 with respect to Gamow-Teller decay with a phenomenological treatment of first-forbidden decays, one- and two-proton separation energies, and α-decay energy release and half-life.

doi: 10.1016/j.adt.2018.03.003
Citations: PlumX Metrics

2018MU17      Astrophys.J. 869, 14 (2018)

M.R.Mumpower, T.Kawano, T.M.Sprouse, N.Vassh, E.M.Holmbeck, R.Surman, P.Moller

β-delayed Fission in r-process Nucleosynthesis

doi: 10.3847/1538-4357/aaeaca
Citations: PlumX Metrics

2018OR02      Phys.Rev.Lett. 120, 262702 (2018)

R.Orford, N.Vassh, J.A.Clark, G.C.McLaughlin, M.R.Mumpower, G.Savard, R.Surman, A.Aprahamian, F.Buchinger, M.T.Burkey, D.A.Gorelov, T.Y.Hirsh, J.W.Klimes, G.E.Morgan, A.Nystrom, K.S.Sharma

Precision Mass Measurements of Neutron-Rich Neodymium and Samarium Isotopes and Their Role in Understanding Rare-Earth Peak Formation

ATOMIC MASSES 154,156,158,159,160Nd, 162,163,164Sm; measured cyclotron frequency ratios; deduced mass excess values. Comparison with AME16 evaluation.

doi: 10.1103/PhysRevLett.120.262702
Citations: PlumX Metrics

2018VI02      Phys.Rev.Lett. 120, 262701 (2018)

M.Vilen, J.M.Kelly, A.Kankainen, M.Brodeur, A.Aprahamian, L.Canete, T.Eronen, A.Jokinen, T.Kuta, I.D.Moore, M.R.Mumpower, D.A.Nesterenko, H.Penttila, I.Pohjalainen, W.S.Porter, S.Rinta-Antila, R.Surman, A.Voss, J.Aysto

Precision Mass Measurements on Neutron-Rich Rare-Earth Isotopes at JYFLTRAP: Reduced Neutron Pairing and Implications for r-Process Calculations

ATOMIC MASSES 156,158Nd, 158,160Pm, 162Sm, 162,163Eu, 163,164,165,166Gd, 164Tb; measured time-of-flight spectra, frequency ratios; deduced mass-excess values. Comparison with AME16 evaluation.

doi: 10.1103/PhysRevLett.120.262701
Citations: PlumX Metrics

2018ZH34      Astrophys.J. 863, L23 (2018)

Y.Zhu, R.T.Wollaeger, N.Vassh, R.Surman, T.M.Sprouse, M.R.Mumpower, P.Moller, G.C.McLaughlin, O.Korobkin, T.Kawano, P.J.Jaffke, E.M.Holmbeck, C.L.Fryer, W.P.Even, A.J.Couture, J.Barnes

Californium-254 and Kilonova Light Curves

RADIOACTIVITY 254Cf(SF); calculated abundance, fission product yields, heating rates, mid-IR light curves.

doi: 10.3847/2041-8213/aad5de
Citations: PlumX Metrics

2017MU08      J.Phys.(London) G44, 034003 (2017)

M.R.Mumpower, G.C.McLaughlin, R.Surman, A.W.Steiner

Reverse engineering nuclear properties from rare earth abundances in the r process

COMPILATION A<250; compiled experimental nuclear reaction and structure data.

doi: 10.1088/1361-6471/44/3/034003
Citations: PlumX Metrics

2017MU13      Phys.Rev. C 96, 024612 (2017)

M.R.Mumpower, T.Kawano, J.L.Ullmann, M.Krticka, T.M.Sprouse

Estimation of M1 scissors mode strength for deformed nuclei in the medium- to heavy-mass region by statistical Hauser-Feshbach model calculations

NUCLEAR REACTIONS 152,154,155,156,157,158Gd(n, γ), E=1 keV-4.5 MeV; calculated capture σ(E) with and without M1 scissors mode strength, capture γ-ray spectra, and compared with available experimental data. A=90-200; calculated capture cross sections at 200 keV with and without M1 scissors mode strength, and compared with evaluated cross sections in ENDF/B-VII.1 and JENDL-4 libraries; deduced additional M1 strength for nuclei in the fission product region nuclei required to reproduce evaluated capture cross section. A=50-250; calculated average photon width Γγ and compared with values in RIPL-3 database. Z=10-100, N=10-180; evaluated M1 enhancement of neutron capture reaction rates at a temperature of 1.0 GK. A=100-250; deduced isotopic abundances with the inclusion of M1 enhancement in the neutron capture rates relevant to r-process simulations. Impact of M1 scissors mode on neutron capture cross sections. Hauser-Feshbach calculation with a simple Lorentzian form for the M1 scissors mode.

doi: 10.1103/PhysRevC.96.024612
Citations: PlumX Metrics

2017SP03      J.Phys.(London) G44, 044002 (2017)

A.Spyrou, A.C.Larsen, S.N.Liddick, F.Naqvi, B.P.Crider, A.C.Dombos, M.Guttormsen, D.L.Bleuel, A.Couture, L.Crespo Campo, R.Lewis, S.Mosby, M.R.Mumpower, G.Perdikakis, C.J.Prokop, S.J.Quinn, T.Renstrom, S.Siem, R.Surman

Neutron-capture rates for explosive nucleosynthesis: the case of 68Ni(n, γ)69Ni

RADIOACTIVITY 69Co(β-); measured decay products, Eγ, Iγ; deduced the γ-ray strength function and the nuclear level density, T1/2. Comparison with available data.

doi: 10.1088/1361-6471/aa5ae7
Citations: PlumX Metrics

Data from this article have been entered in the EXFOR database. For more information, access X4 dataset14476. Data from this article have been entered in the XUNDL database. For more information, click here.

2016LI30      Phys.Rev.Lett. 116, 242502 (2016)

S.N.Liddick, A.Spyrou, B.P.Crider, F.Naqvi, A.C.Larsen, M.Guttormsen, M.Mumpower, R.Surman, G.Perdikakis, D.L.Bleuel, A.Couture, L.C.Campo, A.C.Dombos, R.Lewis, S.Mosby, S.Nikas, C.J.Prokop, T.Renstrom, B.Rubio, S.Siem, S.J.Quinn

Experimental Neutron Capture Rate Constraint Far from Stability

RADIOACTIVITY 70Co(β-) [from 9Be(86Kr, X), E=140 MeV/nucleon]; measured decay products, Eγ, Iγ; deduced nuclear level density as a function of excitation energy. Comparison with available data.

NUCLEAR REACTIONS 69Ni(n, γ), E<10 GK; calculated nuclear reaction capture rates using experimental level densities and code TALYS.

doi: 10.1103/PhysRevLett.116.242502
Citations: PlumX Metrics

2016MU01      Prog.Part.Nucl.Phys. 86, 86 (2016); Erratum Prog.Part.Nucl.Phys. 87, 116 (2016)

M.R.Mumpower, R.Surman, G.C.McLaughlin, A.Aprahamian

The impact of individual nuclear properties on r-process nucleosynthesis

doi: 10.1016/j.ppnp.2015.09.001
Citations: PlumX Metrics

2016MU16      Phys.Rev. C 94, 064317 (2016)

M.R.Mumpower, T.Kawano, P.Moller

Neutron-γ competition for β delayed neutron emission

RADIOACTIVITY 70Co, 86Ga, 93As, 107Tc, 145Cs(β-), (β-n); calculated delayed neutron and γ spectra, Pn, neutron-γ competition in β daughter nuclei. Z=10-90, N=10-150(β-n); calculated average number of neutrons emitted after single β decay. Coupled quasiparticle random phase approximation and Hauser-Feshbach (QRPA+HF) model for delayed particle emission.

doi: 10.1103/PhysRevC.94.064317
Citations: PlumX Metrics

2016SH39      Phys.Rev. C 94, 055802 (2016)

T.Shafer, J.Engel, C.Frohlich, G.C.McLaughlin, M.Mumpower, R.Surman

β decay of deformed r-process nuclei near A=80 and A=160, including odd-A and odd-odd nuclei, with the Skyrme finite-amplitude method

RADIOACTIVITY 68,69,70,71,72Cr, 71,72,73,74,75Mn, 72,73,74,75,76Fe, 76,77Co, 80,81Cu, 84,85,86Zn, 86,87Ga, 86,87,88,89,90,91,92Ge, 89,90,91,92,93,94,95As, 92,93,94,95,96,97,98Se, 157,159,161,163,165,167Cs, 163,165,167,169,171,173,175La, 146,148,150,152,160,164,166,168,170,172,174,176Ce, 152,154,156,164,166,172,174,176,178Nd(β-); calculated half-lives using proton-neutron finite-amplitude method (pn-FAM) with Skyrme energy-density functionals (EDFs) in the quasiparticle random-phase approximation (QRPA), after optimizing the nuclear interaction to best fit the measured half-lives in A=80 and A=160 regions. Deduced r-process abundances. Comparison with other theoretical calculations and experimental values.

doi: 10.1103/PhysRevC.94.055802
Citations: PlumX Metrics

2016SP04      Phys.Rev.Lett. 117, 142701 (2016)

A.Spyrou, S.N.Liddick, F.Naqvi, B.P.Crider, A.C.Dombos, D.L.Bleuel, B.A.Brown, A.Couture, L.Crespo Campo, M.Guttormsen, A.C.Larsen, R.Lewis, P.Moller, S.Mosby, M.R.Mumpower, G.Perdikakis, C.J.Prokop, T.Renstrom, S.Siem, S.J.Quinn, S.Valenta

Strong Neutron-γ Competition above the Neutron Threshold in the Decay of 70Co

RADIOACTIVITY 70Co(β-) [9Be(86Kr, X)70Co, E=140 MeV/nucleon]; measured decay products, Eβ, Iβ, Eγ, Iγ; deduced β-decay intensity, the large fragmentation of the β intensity at high energies, as well as the strong competition between γ-rays and neutrons. Comparison with shell model calculations.

doi: 10.1103/PhysRevLett.117.142701
Citations: PlumX Metrics

2016SU08      Acta Phys.Pol. B47, 673 (2016)

R.Surman, M.Mumpower, A.Aprahamian

Uncorrelated Nuclear Mass Uncertainties and r-process Abundance Predictions

NUCLEAR STRUCTURE A=50-220; calculated isotopic yields and abundances of elements produced during the r-process.

doi: 10.5506/APhysPolB.47.673
Citations: PlumX Metrics

2015MO03      Phys.Rev. C 91, 024310 (2015)

P.Moller, A.J.Sierk, T.Ichikawa, A.Iwamoto, M.Mumpower

Fission barriers at the end of the chart of the nuclides

NUCLEAR STRUCTURE Z=60-130, N=90-230, A=171-330; calculated fission-barrier heights, saddle-point energies for 5239 nuclei between the proton and neutron drip lines. 171Nd; calculated shape at saddle point. 298Hs; calculated potential energy surface contour in (ϵ2, γ) plane. Macroscopic-microscopic finite-range liquid-drop model with a 2002 set of macroscopic-model parameters.

doi: 10.1103/PhysRevC.91.024310
Citations: PlumX Metrics

2015MU04      J.Phys.(London) G42, 034027 (2015)

M.Mumpower, R.Surman, D.L.Fang, M.Beard, A.Aprahamian

The impact of uncertain nuclear masses near closed shells on the r-process abundance pattern

doi: 10.1088/0954-3899/42/3/034027
Citations: PlumX Metrics

2015MU12      Phys.Rev. C 92, 035807 (2015)

M.R.Mumpower, R.Surman, D.-L.Fang, M.Beard, P.Moller, T.Kawano, A.Aprahamian

Impact of individual nuclear masses on r-process abundances

NUCLEAR STRUCTURE Z=30-75, N=60-130, A=120-210; calculated relevant Q values, neutron capture rates, photodissociation rates, β-decay rates, and β-delayed neutron emission probabilities using the 2012 version of the Finite-Range Droplet Model (FRDM), and by considering variations of individual nuclear masses; deduced influence of uncertainties in individual masses on the r-process abundance distribution.

doi: 10.1103/PhysRevC.92.035807
Citations: PlumX Metrics

2012MU06      Phys.Rev. C 85, 045801 (2012)

M.R.Mumpower, G.C.McLaughlin, R.Surman

Formation of the rare-earth peak: Gaining insight into late-time r-process dynamics

ATOMIC MASSES A=150-180, N=90-115; calculated effects of neutron capture rates, S(n) and β-decay rates on rare earth peak formation in elemental abundance plot using three nuclear data set simulations: ETFSI-Q, FRDM and HFB-17. R-process nucleosynthesis. Comparison between hot and cold r-process environments and with nuclear models.

doi: 10.1103/PhysRevC.85.045801
Citations: PlumX Metrics

2012MU11      Phys.Rev. C 86, 035803 (2012)

M.R.Mumpower, G.C.McLaughlin, R.Surman

Influence of neutron capture rates in the rare earth region on the r-process abundance pattern

NUCLEAR STRUCTURE Z=58-66, N=94-109, A=153-175; calculated sensitivity of rare earth elemental abundances to neutron capture rates in the rare earth region of the r-process abundance pattern. Introduced concepts of large nuclear flow and flow saturation.

doi: 10.1103/PhysRevC.86.035803
Citations: PlumX Metrics

Back to query form

Note: The following list of authors and aliases matches the search parameter M.R.Mumpower: , M.R.MUMPOWER