NSR Query Results


Output year order : Descending
Format : Normal

NSR database version of April 11, 2024.

Search: Author = J.E.Escher

Found 48 matches.

Back to query form



2023GO06      Phys.Rev. C 107, 044612 (2023)

O.C.Gorton, J.E.Escher

Cross sections for neutron-induced reactions from surrogate data: Reexamining the Weisskopf-Ewing approximation for (n, n') and (n, 2n) reactions

NUCLEAR REACTIONS 90Zr(n, X), E=4.94-19.86 MeV; 157Gd(n, X), E=6.85-14.77 MeV; 283U(n, X), E=5.95-15.15 MeV; 92Zr(p, d), E=28.5 MeV; 95Mo(d, p), E=12.4 MeV; calculated spin-parity distributions for compound nuclei, probabilities for neutron emission from the 91Zr, 158Gd and 283U compound nucleus as function of excitation energy. 90Zr(n, n'), (n, 2n)E<35 MeV; 157Gd, 283U(n, n'), (n, 2n)E<25 MeV; calculated σ from simulated surrogate reaction data using the Weisskopf-Ewing assumption and various schematic spin-parity distributions. Investigated potential use of the Weisskopf-Ewing approximation for determining (n, n') and (n, 2n) cross sections from surrogate reaction data.

doi: 10.1103/PhysRevC.107.044612
Citations: PlumX Metrics


2023HE08      J.Phys.(London) G50, 060501 (2023)

C.Hebborn, F.M.Nunes, G.Potel, W.H.Dickhoff, J.W.Holt, M.C.Atkinson, R.B.Baker, C.Barbieri, G.Blanchon, M.Burrows, R.Capote, P.Danielewicz, M.Dupuis, C.Elster, J.E.Escher, L.Hlophe, A.Idini, H.Jayatissa, B.P.Kay, K.Kravvaris, J.J.Manfredi, A.Mercenne, B.Morillon, G.Perdikakis, C.D.Pruitt, G.H.Sargsyan, I.J.Thompson, M.Vorabbi, T.R.Whitehead

Optical potentials for the rare-isotope beam era

doi: 10.1088/1361-6471/acc348
Citations: PlumX Metrics


2023PR03      Phys.Rev. C 107, 014602 (2023)

C.D.Pruitt, J.E.Escher, R.Rahman

Uncertainty-quantified phenomenological optical potentials for single-nucleon scattering

NUCLEAR REACTIONS 24Mg(n, n), E=3.4-14.83 MeV; Mg(n, n), E=1.969-21.6 MeV; 27Al(n, n), E=3.2-136 MeV; 28Si(n, n), E=21.7 MeV; Si(n, n), E=5.44-75 MeV; 31P(n, n), E=3.5-9.05 MeV; 32S(n, n), E=21.7 MeV; S(n, n), E=3-40.3 MeV; Cl(n, n), E=14.1 MeV; K(n, n), E=3-7.91 MeV; Ar(n, n), E=7.75, 14 MeV; 40Ca(n, n), E=2.06-40.0 MeV; Ca(n, n), E=65.0 MeV; 45Sc(n, n), E=2.62-10.0 MeV; Ti(n, n), E=4.5-13.95 MeV; 51V(n, n), E=5.44-14.37 MeV; 52Cr(n, n), E=3.0-21.6 MeV; 54Fe(n, n), E=7.0-26 MeV; 55Mn(n, n), E=2.47-11.01 MeV; Fe(n, n), E=55.0-75.0 MeV; 56Fe(n, n), E=4.6-26 MeV; 58Ni(n, n), E=7.904-24.0 MeV; Ni(n, n), E=3.0-21.6 MeV; 59Co(n, n), E=2.0-23.0 MeV; 60Ni(n, n), E=4.34-24.0 MeV; 63Cu(n, n), E=5.5-13.92 MeV; Cu(n, n), E=1.6-155 MeV; Ge(n, n), E=7.55 MeV; As(n, n), E=8.05 MeV; Se(n, n), E=1.0-14.1 MeV; 80Se(n, n), E=4.0-10.0 MeV; Sr(n, n), E=3.2-14.76 MeV; 88Sr(n, n), E=11.0 MeV; 89Y(n, n), E=3.83-21.6 MeV; 90Zr(n, n), E=2.0-24.0 MeV; 91Zr(n, n), E=8.0-24.0 MeV; Zr(n, n), E=55.0-75.0 MeV; 92Mo(n, n), E=1.5-26.0 MeV; 92Zr(n, n), E=2.0-24.0 MeV; 93Nb(n, n), E=2.55-20.0 MeV; 94Zr(n, n), E=1.5-24.0 MeV; 96,100Mo(n, n), E=1.5-26.0 MeV; 98Mo(n, n), E=1.8-26.0 MeV; 103Rh(n, n), E=1.5-9.995 MeV; Pd(n, n), E=1.5-8.03 MeV; 107Ag(n, n), E=1.6-4.0 MeV; Ag(n, n), E=4.51-9.99 MeV; Cd(n, n), E=2.25-96.0 MeV; In(n, n), E=4.5-14.0 MeV; 116Sn(n, n), E=9.945-24.0 MeV; 118Sn(n, n), E=11.0-24.0 MeV; Sn(n, n), E=6.04-65.0 MeV; 120Sn(n, n), E=1.55-16.905 MeV; 123Sb(n, n), E=1.55-14.0 MeV; 124Sn(n, n), E=11.0-24.0 MeV; 127I(n, n), E=4.0-16.1 MeV; Te(n, n), E=3.2-14.0 MeV; Ba(n, n), E=1.0-5.0 MeV; La(n, n), E=2.545-3.578 MeV; Ce(n, n), E=0.98-21.6 MeV; 141Pr(n, n), E=1.2-8.0 MeV; 142,144Nd(n, n), E=7.0 MeV; Nd(n, n), E=0.98 MeV; 148Sm(n, n), E=2.47-7.0 MeV; 197Au(n, n), E=4.1-8.05 MeV; Hg(n, n), E=3.0-16.0 MeV; 206Pb(n, n), E=7.0-21.6 MeV; Pb(n, n), E=155 MeV; 208Pb(n, n), E=1.8-136.0 MeV; 209Bi(n, n), E=2-24 MeV; 27Al(polarized n, n), E=7.62, 14, 17 MeV; 40Ca(polarized n, n), E=9.91, 11.91, 13.9, 16.923 MeV; 54Fe(polarized n, n), E=9.941, 13.937, 16.93 MeV; 58Ni(polarized n, n), E=9.906, 13.94, 16.934 MeV; 65Cu(polarized n, n), E=9.96, 13.9 MeV; 89Y(polarized n, n), E=9.954, 13.934, 16.93 MeV; 93Nb(polarized n, n), E=9.941, 13.915 MeV; 120Sn(polarized n, n), E=9.907, 13.894 MeV; 208Pb(polarized n, n), E=1.8, 5.969, 6.967, 7.962, 8.958, 9.95 MeV; 209Bi(polarized n, n), E=4.5, 6, 9 MeV; Mg(n, X), E=0.008-39.807, 5.293-297.8 MeV; 27Al(n, X), E=0.935, 0.25-19.286, 1.999-80.62, 5.293-297.772 MeV; Si(n, X), E=0.187-47.68, 1.996-79.828, 5.293-297.772 MeV; S(n, X), E=0.102, 2.259-14.888, 5.293-297.8 MeV; 40Ca(n, X), E=0.04-6.058, 5.293-297.772 MeV; 48Ti(n, X), E=0.974-4.025, 5.293-297.8 MeV; Cr(n, X), E=0.185-29.306; 52Cr(n, X), E=0.021, 1.0-4.15, 5.293-297.8 MeV; Fe(n, X), E=2.268 MeV; 56Fe(n, X), E=0.187-48.608, 5.293-297.8, 1.0-18.026 MeV; 58Ni(n, X), E=0.003-67.481, 0.5-19.54, 5.293-297.8 MeV; Cu(n, X), E=1.2-4.5, 5.293-297.772 MeV; 89Y(n, X), E=1.822-19.52, 5.293-297.8 MeV; 90Zr(n, X), E=2.349, 0.433-1.54, 0.933-5.054, 5.293-297.772 MeV; 93Nb(n, X), E=0.75-3.963, 0.215-1.32, 5.293-297.772 MeV; Mo(n, X), E=2.253-14.713, 0.103-1.105, 0.215-1.32, 1.822-19.28, 0.985-4.195, 5.293-297.8 MeV; Sn(n, X), E=0.002, 0.215-1.35, 5.293-297.772 MeV; Ce(n, X), E=0.182, 1.013, 2.26-14.866, 17.5-27.8, 2.253-56.92, 160.0-280.0 MeV; 197Au(n, X), E=0.048-4.389, 5.293-297.8 MeV; Hg(n, X), E=0.04, 1.007-2.007, 2.255-14.873, 5.293-297.8 MeV; 208Pb(n, X), E=17.665, 0.717-1.719, 2.491-14.137, 5.293-297.772; 209Bi(n, X), E=0.011-1.013, 1.237-3.353, 2.376-13.977, 69.547, 5.293-297.772 MeV; analyzed experimental data taken from the EXFOR database for neutron differential elastic σ(E), neutron analyzing powers, and neutron total σ(E) for Koning-Delaroche (KD), uncertainty-quantification (KDUQ) using Markov-chain Monte Carlo (MMCC) method for parameter inference; deduced uncertainty-quantified phenomenological optical potentials and tools for forward uncertainty propagation.

NUCLEAR REACTIONS 27Al(p, p), E=17.0-183.0 MeV; 28Si(p, p), (polarized p, p), E=17.8-180.0 MeV; 40Ca(p, p), (polarized p, p), E=16.0-201.4 MeV; 54Fe(p, p), E=9.69-65.0 MeV; 54Fe(polarized p, p), E=9.69-24.6 MeV; Fe(p, p), E=182.4 MeV; 54Fe(polarized p, p), E=155, 179 MeV; 56Fe(p, p), E=16.0-156.0 MeV; 56Fe(polarized p, p), E=14-65 MeV; 58Ni(p, p), E=10.7-192.0 MeV; 58Ni(polarized p, p), E=18.6-192.0 MeV; Ni(polarized p, p), E=155 MeV; 60Ni(p, p), E=14.4-65.0 MeV; 60Ni(polarized p, p), E=20.4-65 MeV; 90Zr, 120Sn(p, p), E=9.7-160.0 MeV; 90Zr, 120Sn(polarized p, p), E=9.7-40.0 MeV; 208Pb, 209Bi(p, p), E=16.0-200.0 MeV; 208Pb(polarized p, p), E=26.3-200 MeV; 27Al(p, X), E=8.8-234 MeV; Si(p, X), E=20.7-65.5 MeV; 40Al(p, X), E=10.34-65.5 MeV; Ca(p, X), E=99.3, 179.6 MeV; Fe(p, X), E=8.8-230 MeV; 56Fe(p, X), E=14.5-60.8 MeV; 63Cu(p, X), E=6.75-14.5 MeV; Cu(p, X), E=8.78-225 MeV; 90Zr(p, X), E=14.5, 30-60.8 MeV; Zr(p, X), E=9.2-98.8 MeV; Sn(p, X), E=9.99-221 MeV; 120Sn(p, X), E=14.5-65.5 MeV; Pb(p, X), E=9.92-226 MeV; 208Pb(p, X), E=21.1-65.5 MeV; analyzed experimental data taken from the EXFOR database for proton differential elastic σ(E), proton analyzing powers, and proton total σ(E) for Koning-Delaroche (KD), uncertainty-quantification (KDUQ) using Markov-chain Monte Carlo (MCMC) for parameter inference; deduced uncertainty-quantified phenomenological optical model potentials and tools for forward uncertainty propagation and tools for forward uncertainty propagation.

NUCLEAR REACTIONS 40Ca(n, n), E=13.905, 16.916 MeV; Ca, 51V, 55Mn, 59Co, 88Sr, 89Y, 90Zr, 93Nb, 122Sn, 165Ho, 206Pb, 209Bi(n, n), E=11.01 MeV; 54Fe(n, n), E=9.94-26.0 MeV; 56Fe(n, n), E=11.0-26.0 MeV; 58,60Ni(n, n), E=9.958, 13.941 MeV; 65Cu(n, n), E=9.94, 13.92 MeV; 92,96,98,100Mo(n, n), E=11.0-26.0 MeV; 116Sn(n, n), E=9.945-24.0 MeV; 118,124Sn(n, n), E=11.0, 24.0 MeV; 120Sn(n, n), E=9.943-16.905 MeV; 208Pb(n, n), E=11.0-26.0 MeV; 40Ca(polarized n, n), E=10.935, 13.904, 16.923 MeV; 58Ni(polarized n, n), E=9.92, 13.91 MeV; 116,120Sn(polarized n, n), E=9.907, 13.894 MeV; 208Pb(polarized n, n), E=9.97, 13.9 MeV; 40Ca, 59Co, 208Pb(p, p), E=40.0, 65.0 MeV; 44,48Ca, 89Y, 98,100Mo, 209Bi(p, p), E=65.0 MeV; 48,50Ti(p, p), E=16.0, 65.0 MeV; 54Fe, 58,60Ni, 90Zr(p, p), E=16.0-65.0 MeV; 56Fe(p, p), E=17.2-65.0 MeV; 62Ni(p, p), E=20.4-65.0 MeV; 63,65Cu, 76,82Se, 134,136,138Ba(p, p), E=16.0 MeV; 64Ni(p, p), E=20.4, 65.0 MeV; 64,66,70Zn, 118,122Sn(p, p), E=20.4 MeV; 68Zn(p, p), E=20.4, 40.0 MeV; 72,74Ge, 106,108,116Cd(p, p), E=22.3 MeV; 78,80Se(p, p), E=16.0, 22.3 MeV; 86,88Sr(p, p), E=24.6 MeV; 110,112,114Cd(p, p), E=20.4, 22.3 MeV; 116,124Sn(p, p), E=16.0, 20.4 MeV; 120Sn(p, p), E=16.0-40.0 MeV; 40,44,48Ca, 46,48,50Ti, 59Co, 64Ni, 89Y, 90Zr, 98,100Mo, 144Sm, 208Pb, 209Bi(polarized p, p), E=65.0 MeV; 48,50Ti, 63,65Cu, 76,78,80,82Se, 90Zr, 116,124Sn, 134,136,138Ba(polarized p, p), E=16.0 MeV; 54Fe, 58,60Ni(polarized p, p), E=16.0-65.0 MeV; 56Fe(polarized p, p), E=17.2-65.0 MeV; 59Co, 68Zn(polarized p, p), E=40.0 MeV; 62Ni(polarized p, p), E=20.4-65.0 MeV; 64Ni, 64,66,68,70Zn, 110,112,114Cd, 118,122,124Sn(polarized p, p), E=20.4 MeV; 72,74Ge, 78,80Se, 106,108,110,112,114,116Cd(polarized p, p), E=22.3 MeV; 86,88Sr(polarized p, p), E=24.6 MeV; 120Sn(polarized p, p), E=16.0-40.0 MeV; analyzed experimental data taken from the EXFOR database for neutron and proton differential elastic σ(E), and neutron and proton analyzing powers for Chapel Hill'89 (CH89), uncertainty-quantification (CHUQ) using Markov-chain Monte Carlo (MCMC) for parameter inference; deduced uncertainty-quantified phenomenological optical model potentials and tools for forward uncertainty propagation.

NUCLEAR REACTIONS 27Al(n, n), E=15.431 MeV; 28Si(n, n), E=15.43, 18.9 MeV; 32S(n, n), E=7.96-18.9 MeV; Ar(n, n), E=6.0 MeV; 40Ca(n, n), E=11.9-225.0 MeV; 48Ca(n, n), E=11.9, 16.8 MeV; 54Fe(n, n), E=2.0-6.0 MeV; Fe(n, n), E=1.75, 8.17 MeV; 56Fe(n, n), E=1.3-96.0 MeV; 59Co(n, n), E=9.953-18.862 MeV; Cu(n, n), E=6.95-14.18 MeV; 89Y(n, n), E=96.0 MeV; 112,124Sn(n, n), E=11.0, 17.0 MeV; Gd(n, n), E=0.334-9.99 MeV; 181Ta(n, n), E=0.323-9.99 MeV; W(n, n), E=7.19-14.1 MeV; Re(n, n), E=0.352-9.99 MeV; 197Au(n, n), E=4.51-9.99 MeV; Pb(n, n), E=2.24-4.02 MeV; 208Pb(n, n), E=30.4-225.0 MeV; 209Bi(n, n), E=3.99 MeV; 27Al(polarized n, n), E=15.425 MeV; 28Si(polarized n, n), E=15.4, 18.6 MeV; 32S(polarized n, n), E=9.9-16.9 MeV; 59Co(polarized n, n), E=15.273 MeV; S(n, X), E=14.1 MeV; 40,48Ca(n, X), E=12.04-276.13 MeV; Ti(n, X), E=0.4-24.75, 0.401-24.69 MeV; Ni, 58,64Ni, 103Rh, Pb(n, X), E=2.505-290.209 MeV; Zr(n, X), E=0.4-24.74 MeV; Sn, 112,124Sn(n, X), E=3.006-299.233 MeV; In, Te, Pb(n, X), E=14.1 MeV; Ta(n, X), E=0.2-9.121, 0.732-1.853 MeV; 181Ta(n, X), E=0.4-24.72 MeV; 182,184,186W(n, X), E=5.48-299.34 MeV; 197Au(n, X), E=0.2-9.121 MeV; 204Pb(n, X), E=26.993 MeV; 209Bi(n, X), E=0.682 MeV; 24Mg(p, p), E=7.4 MeV; 58Ni(p, p), E=172.0, 250.0 MeV; 64Zn(p, p), E=24.0 MeV; 116,118,122,124Sn(p, p), E=295.0 MeV; 120Sn(p, p), E=200.0-300.0 MeV; 58Ni(polarized p, p), E=172.0, 250.0; 58Ni, 116,118,122,124Sn, 204,206,208Pb(polarized p, p), E=295.0 MeV; 120Sn(polarized p, p), E=200.0-300.0 MeV; 40Ca, 90Zr, 208Pb(p, X), E=81.0-180.0 MeV; 58Ni(p, X), E=81.0 MeV; analyzed experimental data taken from the EXFOR database after the publication of the original CH89 and KD treatments for neutron and proton differential elastic σ(E), and neutron and proton analyzing powers for uncertainty-quantification using Markov-chain Monte Carlo (MCMC) for parameter inference; deduced uncertainty-quantified phenomenological optical model potentials parameters and tools for forward uncertainty propagation.

doi: 10.1103/PhysRevC.107.014602
Citations: PlumX Metrics


2022SC17      J.Phys.(London) G49, 110502 (2022)

H.Schatz, A.D.Becerril Reyes, A.Best, E.F.Brown, K.Chatziioannou, K.A.Chipps, C.M.Deibel, R.Ezzeddine, D.K.Galloway, C.J.Hansen, F.Herwig, A.P.Ji, M.Lugaro, Z.Meisel, D.Norman, J.S.Read, L.F.Roberts, A.Spyrou, I.Tews, F.X.Timmes, C.Travaglio, N.Vassh, C.Abia, P.Adsley, S.Agarwal, M.Aliotta, W.Aoki, A.Arcones, A.Aryan, A.Bandyopadhyay, A.Banu, D.W.Bardayan, J.Barnes, A.Bauswein, T.C.Beers, J.Bishop, T.Boztepe, B.Cote, M.E.Caplan, A.E.Champagne, J.A.Clark, M.Couder, A.Couture, S.E.de Mink, S.Debnath, R.J.deBoer, J.den Hartogh, P.Denissenkov, V.Dexheimer, I.Dillmann, J.E.Escher, M.A.Famiano, R.Farmer, R.Fisher, C.Frohlich, A.Frebel, C.Fryer, G.Fuller, A.K.Ganguly, S.Ghosh, B.K.Gibson, T.Gorda, K.N.Gourgouliatos, V.Graber, M.Gupta, W.C.Haxton, A.Heger, W.R.Hix, W.C.G.Ho, E.M.Holmbeck, A.A.Hood, S.Huth, G.Imbriani, R.G.Izzard, R.Jain, H.Jayatissa, Z.Johnston, T.Kajino, A.Kankainen, G.G.Kiss, A.Kwiatkowski, M.La Cognata, A.M.Laird, L.Lamia, P.Landry, E.Laplace, K.D.Launey, D.Leahy, G.Leckenby, A.Lennarz, B.Longfellow, A.E.Lovell, W.G.Lynch, S.M.Lyons, K.Maeda, E.Masha, C.Matei, J.Merc, B.Messer, F.Montes, A.Mukherjee, M.R.Mumpower, D.Neto, B.Nevins, W.G.Newton, L.Q.Nguyen, K.Nishikawa, N.Nishimura, F.M.Nunes, E.O'Connor, B.W.O'Shea, W.-J.Ong, S.D.Pain, M.A.Pajkos, M.Pignatari, R.G.Pizzone, V.M.Placco, T.Plewa, B.Pritychenko, A.Psaltis, D.Puentes, Y.-Z.Qian, D.Radice, D.Rapagnani, B.M.Rebeiro, R.Reifarth, A.L.Richard, N.Rijal, I.U.Roederer, J.S.Rojo, J.S K, Y.Saito, A.Schwenk, M.L.Sergi, R.S.Sidhu, A.Simon, T.Sivarani, A.Skuladottir, M.S.Smith, A.Spiridon, T.M.Sprouse, S.Starrfield, A.W.Steiner, F.Strieder, I.Sultana, R.Surman, T.Szucs, A.Tawfik, F.Thielemann, L.Trache, R.Trappitsch, M.B.Tsang, A.Tumino, S.Upadhyayula, J.O.Valle Martinez, M.Van der Swaelmen, C.Viscasillas Vazquez, A.Watts, B.Wehmeyer, M.Wiescher, C.Wrede, J.Yoon, R.G.T.Zegers, M.A.Zermane, M.Zingale, the Horizon 2020 Collaborations

Horizons: nuclear astrophysics in the 2020s and beyond

doi: https://dx.doi.org/10.1088/1361-6471/ac8890
Citations: PlumX Metrics


2020DR03      Phys.Rev. C 102, 044608 (2020)

A.C.Dreyfuss, K.D.Launey, J.E.Escher, G.H.Sargsyan, R.B.Baker, T.Dytrych, J.P.Draayer

Clustering and α-capture reaction rate from ab initio symmetry-adapted descriptions of 20Ne

NUCLEAR REACTIONS 16O(α, γ)20Ne, E(cm)=1.33 MeV; calculated bound state wave functions and spectroscopic amplitudes for resonances, α partial widths, asymptotic normalization coefficient (ANC) for 20Ne g.s., astrophysical reaction rates at temperatures of 1-10 GK. Calculations of overlap between the 16O+α cluster configuration and states in 20Ne using the ab initio symmetry-adapted no-core shell model (SA-NCSM). Comparison with experimental data.

doi: 10.1103/PhysRevC.102.044608
Citations: PlumX Metrics


2020OL07      Phys.Rev. C 102, 055806 (2020)

O.Olivas-Gomez, A.Simon, O.Gorton, J.E.Escher, E.Churchman, P.Millican, R.Kelmar, C.S.Reingold, A.M.Clark, N.Cooper, C.Harris, S.L.Henderson, S.E.Kelly, F.Naqvi, A.Palmisano, D.Robertson, E.Stech, A.Spyrou, W.P.Tan

Measurements of proton capture in the A = 100-100 mass region: Constraints on the 111In(γ, p)/(γ, n) branching point relevant to the γ process

NUCLEAR REACTIONS 102Pd(p, γ)103Ag, E=4-8 MeV; 108Cd(p, γ)109In, E=3.5=7 MeV; 110Cd(p, γ)111In, E=3-6 MeV; measured Eγ, Iγ, summed γ spectra using a high efficiency total absorption spectrometer and γ-summing technique at the 10-MV FN Tandem Van de Graaff accelerator of the University of Notre Dame; deduced capture σ(E) for the ground states, total σ(E), constrain Hauser-Feshbach parameters used in TALYS 1.9. Comparison with theoretical predictions from the NON-SMOKER code, and with Hauser-Feshbach statistical calculations. Recommended (γ, p) and (γ, n) stellar photodissociation decay rates for 103Ag, 109In and 111In for T=1-10 GK. Relevance to γ process is an explosive astrophysical scenario.

doi: 10.1103/PhysRevC.102.055806
Citations: PlumX Metrics

Data from this article have been entered in the EXFOR database. For more information, access X4 datasetC2602.


2019HU07      Phys.Rev. C 99, 024310 (2019)

A.M.Hurst, A.Sweet, B.L.Goldblum, R.B.Firestone, M.S.Basunia, L.A.Bernstein, Zs.Revay, L.Szentmiklosi, T.Belgya, J.E.Escher, I.Harsanyi, M.Krticka, B.W.Sleaford, J.Vujic

Radiative-capture cross sections for the 139La (n, γ) reaction using thermal neutrons and structural properties of 140La

NUCLEAR REACTIONS 139La(n, γ), E=thermal and cold; measured Eγ, Iγ, at the Prompt Gamma Activation Analysis facility of Budapest Research Reactor. 140La; deduced levels, J, π, S(n) for 140La, partial γ-ray production σ(γ) relative to those for 35Cl(n, γ), total radiative thermal neutron capture σ. Monte Carlo statistical-decay code DICEBOX calculations. Comparison with previous experimental data in the ENSDF database and other literature.

doi: 10.1103/PhysRevC.99.024310
Citations: PlumX Metrics

Data from this article have been entered in the EXFOR database. For more information, access X4 dataset31795.


2019RA04      Phys.Rev.Lett. 122, 052502 (2019)

A.Ratkiewicz, J.A.Cizewski, J.E.Escher, G.Potel, J.T.Burke, R.J.Casperson, M.McCleskey, R.A.E.Austin, S.Burcher, R.O.Hughes, B.Manning, S.D.Pain, W.A.Peters, S.Rice, T.J.Ross, N.D.Scielzo, C.Shand, K.Smith

Towards Neutron Capture on Exotic Nuclei: Demonstrating (d, pγ) as a Surrogate Reaction for (n, γ)

NUCLEAR REACTIONS 95Mo(d, p), E=12.4 MeV; measured reaction products, Eγ, Iγ; deduced σ. Comparison with theoretical calculations.

doi: 10.1103/PhysRevLett.122.052502
Citations: PlumX Metrics

Data from this article have been entered in the XUNDL database. For more information, click here.


2018ES05      Phys.Rev.Lett. 121, 052501 (2018)

J.E.Escher, J.T.Burke, R.O.Hughes, N.D.Scielzo, R.J.Casperson, S.Ota, H.I.Park, A.Saastamoinen, T.J.Ross

Constraining Neutron Capture Cross Sections for Unstable Nuclei with Surrogate Reaction Data and Theory

NUCLEAR REACTIONS 87Y(n, γ), E<10 MeV; analyzed available data; deduced σ using surrogate reaction data. Comparison with TENDL 2015 and ROSFOND 2010 libraries. 89Y, 92Zr(p, d), E*=6-12 MeV; calculated σ(E, θ), probability of observing specific γ-ray in coincidence with outgoing deuteron; compared with available data.

doi: 10.1103/PhysRevLett.121.052501
Citations: PlumX Metrics


2017AR04      Prog.Part.Nucl.Phys. 94, 1 (2017)

A.Arcones, D.W.Bardayan, T.C.Beers, L.A.Bernstein, J.C.Blackmon, B.Messer, B.A.Brown, E.F.Brown, C.R.Brune, A.E.Champagne, A.Chieffi, A.J.Couture, P.Danielewicz, R.Diehl, M.El Eid, J.E.Escher, B.D.Fields, C.Frohlich, F.Herwig, W.R.Hix, C.Iliadis, W.G.Lynch, G.C.McLaughlin, B.S.Meyer, A.Mezzacappa, F.Nunes, B.W.O'Shea, M.Prakash, B.Pritychenko, S.Reddy, E.Rehm, G.Rogachev, R.E.Rutledge, H.Schatz, M.S.Smith, I.H.Stairs, A.W.Steiner, T.E.Strohmayer, F.X.Timmes, D.M.Townsley, M.Wiescher, R.G.T.Zegers, M.Zingale

White paper on nuclear astrophysics and low energy nuclear physics Part 1: Nuclear astrophysics

doi: 10.1016/j.ppnp.2016.12.003
Citations: PlumX Metrics


2017PO13      Eur.Phys.J. A 53, 178 (2017)

G.Potel, G.Perdikakis, B.V.Carlson, M.C.Atkinson, W.H.Dickhoff, J.E.Escher, M.S.Hussein, J.Lei, W.Li, A.O.Macchiavelli, A.M.Moro, F.M.Nunes, S.D.Pain, J.Rotureau

Toward a complete theory for predicting inclusive deuteron breakup away from stability

NUCLEAR REACTIONS 93Nb(d, pn), E=10, 25.5 MeV; calculated σ(ln), σ(θn) assuming both elastic and nonelastic breakup. Compared with published calculations. 40,48,60Ca(d, pn), E=20, 40 MeV; calculated σ(Ep) vs En and vs ln using both elastic and nonelastic breakup and using Hussein-McVoy theory.

doi: 10.1140/epja/i2017-12371-9
Citations: PlumX Metrics


2016HU02      Phys.Rev. C 93, 024315 (2016)

R.O.Hughes, J.T.Burke, R.J.Casperson, J.E.Escher, S.Ota, J.J.Ressler, N.D.Scielzo, R.A.E.Austin, B.Abromeit, N.J.Foley, E.McCleskey, M.McCleskey, H.I.Park, T.J.Ross, A.Saastamoinen

Investigation of 88Y via (p, dγ) reactions

NUCLEAR REACTIONS 89Y(p, d), E=28.5 MeV; measured E(d), I(d), Eγ, Iγ, dγ-, dγγ-coin, dγ(t) using STARLiTeR array of Si detectors for deuteron detection and five HPGe clover detectors for γ rays at Texas A and M Cyclotron Institute. 88Y; deduced levels, J, π, level population intensities. Discussed effect of γ-branching ratios in 88Y on determination of 87Y(n, γ) cross section via surrogate method.

doi: 10.1103/PhysRevC.93.024315
Citations: PlumX Metrics

Data from this article have been entered in the XUNDL database. For more information, click here.


2015HU07      Phys.Rev. C 92, 034615 (2015)

A.M.Hurst, R.B.Firestone, L.Szentmiklosi, B.W.Sleaford, M.S.Basunia, T.Belgya, J.E.Escher, M.Krticka, Zs.Revay, N.C.Summers

Radiative thermal neutron-capture cross sections for the 180W (n, γ) reaction and determination of the neutron-separation energy

NUCLEAR REACTIONS 180W(n, γ), E=cold neutron beam; measured prompt Eγ, Iγ, partial γ-ray production σ, total radiative thermal neutron-capture σ, 365.6-keV, 5/2- isomer σ at Budapest Research Reactor. Enriched 180W target. 181W; deduced levels, J, π, S(n). Analysis by Monte Carlo statistical-decay code using DICEBOX; deduced s-wave capture-state radiative widths with various models for level density and photon strength function. Comparison with previous experimental results and ENSDF evaluations.

doi: 10.1103/PhysRevC.92.034615
Citations: PlumX Metrics

Data from this article have been entered in the EXFOR database. For more information, access X4 dataset31752. Data from this article have been entered in the XUNDL database. For more information, click here.


2015HU10      Nucl.Instrum.Methods Phys.Res. B362, 38 (2015)

A.M.Hurst, N.C.Summers, L.Szentmiklosi, R.B.Firestone, M.S.Basunia, J.E.Escher, B.W.Sleaford

Determination of the effective sample thickness via radiative capture

NUCLEAR REACTIONS 182,186W(n, γ), E thermal; measured reaction products, Eγ, Iγ; deduced σ and uncertainties.

doi: 10.1016/j.nimb.2015.09.003
Citations: PlumX Metrics


2015OT02      Phys.Rev. C 92, 054603 (2015)

S.Ota, J.T.Burke, R.J.Casperson, J.E.Escher, R.O.Hughes, J.J.Ressler, N.D.Scielzo, I.J.Thompson, R.A.E.Austin, B.Abromeit, N.J.Foley, E.McCleskey, M.McCleskey, H.I.Park, A.Saastamoinen, T.J.Ross

Spin differences in the 90Zr compound nucleus induced by (p, p'), (p, d), and (p, t) surrogate reactions

NUCLEAR REACTIONS 90Zr(p, p'), (p, np), 91Zr(p, d), 92Zr(p, t), E=28.56 MeV; measured light-ion particle spectra, angular distributions, Eγ, Iγ, (particle)γ-coin, using STARLiTeR detector system at Texas A and M cyclotron facility; deduced γ-decay probabilities as functions of 90Zr excitation energy, angular momentum, and particle scattering angle. Enriched targets. 89,90Zr; deduced levels, J, π. 89Zr(n, γ); discussed relevance to determination of σ by surrogate reaction approach.

doi: 10.1103/PhysRevC.92.054603
Citations: PlumX Metrics


2014BA32      Nucl.Data Sheets 119, 88 (2014)

M.S.Basunia, R.B.Firestone, Zs.Revay, H.D.Choi, T.Belgya, J.E.Escher, A.M.Hurst, M.Krticka, L.Szentmiklosi, B.Sleaford, N.C.Summers

Determination of the 151Eu(n, γ)152m1, gEu and 53Eu(n, γ)154Eu Reaction Cross Sections at Thermal Neutron Energy

NUCLEAR REACTIONS 151,153Eu(n, γ), E=thermal; measured prompt Eγ, Iγ using Compton-suppressed HPGe and LEPS (low-energy photon detector); deduced level population, σ using DICEBOX. Compared with other data. Preliminary.

doi: 10.1016/j.nds.2014.08.025
Citations: PlumX Metrics

Data from this article have been entered in the EXFOR database. For more information, access X4 dataset31751.


2014CA31      Phys.Rev. C 90, 034601 (2014)

R.J.Casperson, J.T.Burke, N.D.Scielzo, J.E.Escher, E.McCleskey, M.McCleskey, A.Saastamoinen, A.Spiridon, A.Ratkiewicz, A.Blanc, M.Kurokawa, R.G.Pizzone

Measurement of the 240Am (n, f) cross section using the surrogate-ratio method

NUCLEAR REACTIONS 243Am, 238U(p, F)3H, 243Am, 238U(p, p'), (p, d), E=38.4 MeV; measured particle and fission fragment spectra, (particle)(fission fragment)-coin using STARLiTeR array of Si detectors at Texas A and M facility. 235U, 240Am(n, F), E=200 keV-14 MeV; deduced σ(E) using results for surrogate reactions 243Am, 238U(p, F)3H. Comparison with previous experimental results. Comparison with several evaluated libraries shows disagreement and a need for re-evaluation.

doi: 10.1103/PhysRevC.90.034601
Citations: PlumX Metrics

Data from this article have been entered in the EXFOR database. For more information, access X4 dataset14397.


2014CH20      Nucl.Sci.Eng. 177, 219 (2014)

H.D.Choi, R.B.Firestone, M.S.Basunia, A.Hurst, B.Sleaford, N.Summers, J.E.Escher, Zs.Revay, L.Szentmiklosi, T.Belgya, M.Krticka

Radiative Capture Cross Sections of 155, 157Gd for Thermal Neutrons

NUCLEAR REACTIONS 155,157Gd(n, γ), E thermal; measured reaction products, Eγ, Iγ; deduced σ, average level spacing. Comparison with theoretical calculations, available data.

doi: 10.13182/NSE13-49
Citations: PlumX Metrics

Data from this article have been entered in the EXFOR database. For more information, access X4 dataset31746.


2014ES03      Phys.Rev. C 89, 054605 (2014)

J.E.Escher, I.J.Thompson, G.Arbanas, Ch.Elster, V.Eremenko, L.Hlophe, F.M.Nunes

Reexamining surface-integral formulations for one-nucleon transfers to bound and resonance states

NUCLEAR REACTIONS 90Zr(d, p), E=11 MeV; 48Ca(d, p), E=13, 19.3, 56 MeV; 20O(d, p), E=21 MeV; calculated σ(θ, E), interior, surface, and exterior contributions to the transfer reaction for bound states and resonances. Improvements to surface-integral approach. R-matrix theory, and finite range distorted-wave Born approximation (DWBA) calculations using reaction code FRESCO. Comparison with experimental data.

doi: 10.1103/PhysRevC.89.054605
Citations: PlumX Metrics


2014FI14      Nucl.Data Sheets 119, 79 (2014)

R.B.Firestone, K.Abusaleem, M.S.Basunia, F.Becvar, T.Belgya, L.A.Bernstein, H.D.Choi, J.E.Escher, C.Genreith, A.M.Hurst, M.Krticka, P.R.Renne, Zs.Revay, A.M.Rogers, M.Rossbach, S.Siem, B.Sleaford, N.C.Summers, L.Szentmiklosi, K.van Bibber, M.Wiedeking

EGAF: Measurement and Analysis of Gamma-ray Cross Sections

COMPILATION Z=1-82(n, γ), E=thermal[two targets not included: He and Pm]; calculated, evaluated prompt γ energy spectra for activation analysis.

doi: 10.1016/j.nds.2014.08.024
Citations: PlumX Metrics


2014HL01      Phys.Rev. C 90, 061602 (2014)

L.Hlophe, V.Eremenko, Ch.Elster, F.M.Nunes, G.Arbanas, J.E.Escher, I.J.Thompson, for the TORUS Collaboration

Separable representation of proton-nucleus optical potentials

NUCLEAR REACTIONS 12C, 48Ca(p, p), E=38 MeV; 208Pb(p, p), E=45 MeV; calculated S-matrix elements and σ(θ); deduced effects of the short-range Coulomb potential on the proton-nucleus form factor. Comparison with coordinate space calculations. Generalization of the Ernst-Shakin-Thaler (EST) scheme.

doi: 10.1103/PhysRevC.90.061602
Citations: PlumX Metrics


2014HU02      Phys.Rev. C 89, 014606 (2014)

A.M.Hurst, R.B.Firestone, B.W.Sleaford, N.C.Summers, Zs.Revay, L.Szentmiklosi, M.S.Basunia, T.Belgya, J.E.Escher, M.Krticka

Investigation of the tungsten isotopes via thermal neutron capture

NUCLEAR REACTIONS 182,183,184,186W(n, γ), E AP 4.2 meV; measured Eγ, Iγ, radiative capture σ, prompt and delayed γ rays at Budapest Research Reactor facility. Enriched and natural tungsten targets. 183,184,186,187W; deduced levels, J, π, S(n). Analysis by Monte Carlo statistical-decay using DICEBOX computer code. Comparison with previous experimental results and ENSDF evaluations.

RADIOACTIVITY 187W(β-)[from 186W(n, γ), E=thermal]; measured Eγ, Iγ. 187Re; deduced levels, J, π, photon emission probabilities.

doi: 10.1103/PhysRevC.89.014606
Citations: PlumX Metrics

Data from this article have been entered in the EXFOR database. For more information, access X4 dataset31735. Data from this article have been entered in the XUNDL database. For more information, click here.


2014HU12      Phys.Rev. C 90, 014304 (2014)

R.O.Hughes, C.W.Beausang, T.J.Ross, J.T.Burke, R.J.Casperson, N.Cooper, J.E.Escher, K.Gell, E.Good, P.Humby, M.McCleskey, A.Saastimoinen, T.D.Tarlow, I.J.Thompson

236Pu(n, f), 237Pu(n, f), and 238Pu(n, f) cross sections deduced from (p, t), (p, d), and (p, p') surrogate reactions

NUCLEAR REACTIONS 235U, 239Pu(p, t), (p, d), (p, p'), E=28.5 MeV; measured particle and γ spectra, (particle)γ-, (particle)(particle)-, (d)(fission)-coin, cross sections using STARLiTeR array at Texas A-M cyclotron facility. 232,233U, 236,237Pu(n, F), E=0.5-7.5 MeV; deduced σ(E) ratios. 238Pu(n, F), E=0.5-10.5 MeV; deduced σ(E) from (p, p') and σ for 234U(n, F) in ENDF/B-VII evaluation. Surrogate ratio method. Comparison with ENSDF/B-VII evaluations, and some previous experimental results.

doi: 10.1103/PhysRevC.90.014304
Citations: PlumX Metrics

Data from this article have been entered in the EXFOR database. For more information, access X4 dataset14396.


2014HU14      Nucl.Data Sheets 119, 91 (2014)

A.M.Hurst, R.B.Firestone, L.Szentmiklosi, Zs.Revay, M.S.Basunia, T.Belgya, J.E.Escher, M.Krticka, N.C.Summers, B.W.Sleaford

New Measurement of the Thermal-capture Cross Section for the Minor Isotope 180W

NUCLEAR REACTIONS 180W(n, γ), E=thermal; measured prompt Eγ, Iγ using HPGe of Prompt Gamma Activation Analysis; deduced σ to ground state and to low-lying excited states; calculated σ0 using statistical code DICEBOX with various models for level density and for γ ray Lorentzian; deduced radiation widths Γγ to individual levels.

doi: 10.1016/j.nds.2014.08.026
Citations: PlumX Metrics

Data from this article have been entered in the EXFOR database. For more information, access X4 dataset31752.


2014RO25      Phys.Rev. C 90, 044323 (2014)

T.J.Ross, R.O.Hughes, J.M.Allmond, C.W.Beausang, C.T.Angell, M.S.Basunia, D.L.Bleuel, J.T.Burke, R.J.Casperson, J.E.Escher, P.Fallon, R.Hatarik, J.Munson, S.Paschalis, M.Petri, L.W.Phair, J.J.Ressler, N.D.Scielzo

Spectroscopy of 153Gd and 157Gd using the (p, dγ) reaction

NUCLEAR REACTIONS 154,158Gd(p, d), E=25 MeV; measured Eγ, Iγ, E(d), I(d), dγ-, dγγ-coin, d(θ) in coincidence with γ rays using STARS and LIBERACE arrays at LBNL cyclotron facility. 153,157Gd; deduced levels, J, π, L-transfers, Nilsson assignments. DWBA analysis of angular distribution data. Comparison with previous experimental results. Discussed residual effects of a neutron subshell closure at N=64.

doi: 10.1103/PhysRevC.90.044323
Citations: PlumX Metrics

Data from this article have been entered in the EXFOR database. For more information, access X4 datasetC2138. Data from this article have been entered in the XUNDL database. For more information, click here.


2014TH05      Nucl.Data Sheets 118, 292 (2014)

I.J.Thompson, J.E.Escher, G.Arbanas

Coupled-Channel Models of Direct-Semidirect Capture via Giant-Dipole Resonances

NUCLEAR REACTIONS 208Pb(n, γ), E=1-20 MeV; calculated capture σ using second-order DWBA implemented in FRESSCO and in CUPIDO codes. Compared with data. 130Sn(n, γ), E=0.01-6 MeV; calculated direct-semidirect σ using CUPIDO code with phenomenological optical model potential. Compared with other calculations.

doi: 10.1016/j.nds.2014.04.061
Citations: PlumX Metrics


2014UP02      Phys.Rev. C 90, 014615 (2014)

N.J.Upadhyay, V.Eremenko, L.Hlophe, F.M.Nunes, Ch.Elster, G.Arbanas, J.E.Escher, I.J.Thompson

Coulomb problem in momentum space without screening

NUCLEAR REACTIONS 2H(12C, p), E(cm)=30 MeV; 2H(48Ca, p), E(cm)=36 MeV; 2H(208Pb, p), E(cm)=36, 39 MeV; calculated Coulomb-distorted form factors for (d, p) reactions and dependence on charge, angular momentum, and energy. Regularization techniques using a separable interaction derived from realistic nucleon-nucleus optical potential

doi: 10.1103/PhysRevC.90.014615
Citations: PlumX Metrics


2013HL01      Phys.Rev. C 88, 064608 (2013)

L.Hlophe, Ch.Elster, R.C.Johnson, N.J.Upadhyay, F.M.Nunes, G.Arbanas, V.Eremenko, J.E.Escher, I.J.Thompson

Separable representation of phenomenological optical potentials of Woods-Saxon type

NUCLEAR REACTIONS 48Ca, 132Sn, 208Pb(n, X), E=0-50 MeV; calculated partial wave S matrices, separable representations of two-body transition matrix elements and potentials. Ernst-Shakin-Thaler (EST) scheme with CH89 potential.

doi: 10.1103/PhysRevC.88.064608
Citations: PlumX Metrics


2013RO23      Phys.Rev. C 88, 031301 (2013)

T.J.Ross, R.O.Hughes, C.W.Beausang, J.M.Allmond, C.T.Angell, M.S.Basunia, D.L.Bleuel, J.T.Burke, R.J.Casperson, J.E.Escher, P.Fallon, R.Hatarik, J.Munson, S.Paschalis, M.Petri, L.W.Phair, J.J.Ressler, N.D.Scielzo

Remnants of spherical shell structures in deformed nuclei: The impact of an N=64 neutron subshell closure on the structure of N≈90 gadolinium nuclei

NUCLEAR REACTIONS 154,156,158Gd(p, d), E=25 MeV; measured deuteron and γ spectra, dγ-, γγ-coin, σ(θ) for deuterons using STARS and LIBERACE detector systems at LBNL facility. DWBA analysis of σ(θ) data. 153,155, 157Gd; deduced low-energy levels, J, π, Nilsson configurations, persistence of spherical shell structure.

doi: 10.1103/PhysRevC.88.031301
Citations: PlumX Metrics

Data from this article have been entered in the EXFOR database. For more information, access X4 datasetC2067. Data from this article have been entered in the XUNDL database. For more information, click here.


2012ES03      Rev.Mod.Phys. 84, 353 (2012)

J.E.Escher, J.T.Burke, F.S.Dietrich, N.D.Scielzo, I.J.Thompson, W.Younes

Compound-nuclear reaction cross sections from surrogate measurements

doi: 10.1103/RevModPhys.84.353
Citations: PlumX Metrics


2012HU01      Phys.Rev. C 85, 024613 (2012)

R.O.Hughes, C.W.Beausang, T.J.Ross, J.T.Burke, N.D.Scielzo, M.S.Basunia, C.M.Campbell, R.J.Casperson, H.L.Crawford, J.E.Escher, J.Munson, L.W.Phair, J.J.Ressler

Utilizing (p, d) and (p, t) reactions to obtain (n, f) cross sections in uranium nuclei via the surrogate-ratio method

NUCLEAR REACTIONS 236,238U(p, d), (p, t), E=28 MeV; measured E(d), I(d), E(t), I(t), fission spectra, (particle)(fission)-, (particle)γ-coin, fission fragment anisotropy ratios using STARS detector array at LBNL cyclotron facility; deduced σ[236U(n, F)]/σ[234U(n, F)], σ[235U(n, F)]/σ[233U(n, F)], σ[234U(n, F)]/σ[233U(n, F)], σ[236U(n, F)]/σ[235U(n, F)] reaction cross section ratios for E(n)=0-7 MeV. Surrogate-ratio method. Comparison with ENDF/B-VII evaluation.

doi: 10.1103/PhysRevC.85.024613
Citations: PlumX Metrics

Data from this article have been entered in the EXFOR database. For more information, access X4 dataset14316.


2012RO14      Phys.Rev. C 85, 051304 (2012)

T.J.Ross, C.W.Beausang, R.O.Hughes, J.M.Allmond, C.T.Angell, M.S.Basunia, D.L.Bleuel, J.T.Burke, R.J.Casperson, J.E.Escher, P.Fallon, R.Hatarik, J.Munson, S.Paschalis, M.Petri, L.Phair, J.J.Ressler, N.D.Scielzo, I.J.Thompson

Measurement of the entry-spin distribution imparted to the high excitation continuum region of gadolinium nuclei via (p, d) and (p, t) reactions

NUCLEAR REACTIONS 154,158Gd(p, d), (p, t), E=25 MeV; measured particle and γ spectra, pγ-, dγ-, tγ-coin, σ(θ) using STARS-LIBERACE array; deduced entry spin distribution for the highly excited quasicontinuum in light-ion transfer reactions. DWBA analysis of σ(θ) data. 153,156Gd; deduced levels, J, π, l-transfer.

doi: 10.1103/PhysRevC.85.051304
Citations: PlumX Metrics

Data from this article have been entered in the EXFOR database. For more information, access X4 datasetC2071.


2012RO42      Phys.Rev. C 86, 067301 (2012)

T.J.Ross, C.W.Beausang, R.O.Hughes, N.D.Scielzo, J.T.Burke, J.M.Allmond, C.T.Angell, M.S.Basunia, D.L.Bleuel, R.J.Casperson, J.E.Escher, P.Fallon, R.Hatarik, J.Munson, S.Paschalis, M.Petri, L.Phair, J.J.Ressler

Spectroscopy of 88Y by the (p, dγ) reaction

NUCLEAR REACTIONS 89Y(p, d), E=25 MeV; measured E(d), I(d), Eγ, Iγ, dγ-coin, yields using STARS array for deuterons and LIBERACE array for γ rays at LBNL cyclotron facility. 88Y; deduced levels, branching ratios. 89Y(p, p'), (p, p'n), E=25 MeV; measured Ep, Ip, pγ-coin.

doi: 10.1103/PhysRevC.86.067301
Citations: PlumX Metrics

Data from this article have been entered in the XUNDL database. For more information, click here.


2012SC10      Phys.Rev. C 85, 054619 (2012)

N.D.Scielzo, J.E.Escher, J.M.Allmond, M.S.Basunia, C.W.Beausang, L.A.Bernstein, D.L.Bleuel, J.T.Burke, R.M.Clark, F.S.Dietrich, P.Fallon, J.Gibelin, B.L.Goldblum, S.R.Lesher, M.A.McMahan, E.B.Norman, L.Phair, E.Rodriguez-Vieitez, S.A.Sheets, I.J.Thompson, M.Wiedeking

Statistical γ rays in the analysis of surrogate nuclear reactions

NUCLEAR REACTIONS 154,155,156,158Gd(p, p'), E=21.7 MeV; measured Ep, Ip, Eγ, Iγ, pγ-coin using STARS-LiBerACE at LBNL cyclotron facility; deduced γ-ray emission probability. 155,157Gd(n, γ), E<3.5 MeV; deduced cross section ratios by surrogate analyses using statistical and discrete γ-rays. Comparison with reaction theory. Surrogate nuclear reaction technique.

doi: 10.1103/PhysRevC.85.054619
Citations: PlumX Metrics

Data from this article have been entered in the EXFOR database. For more information, access X4 dataset14339.


2011BU11      J.Korean Phys.Soc. 59, 1892s (2011)

J.T.Burke, J.J.Ressler, J.E.Escher, N.D.Scielzo, I.J.Thompson, R.Henderson, J.Gostic, L.Bernstein, D.Bluel, M.Weideking, V.Meot, O.Roig, L.W.Phair, R.Hatarik, J.Munson, C.Angell, B.Goldblum, C.W.Beausang, T.Ross, R.Hughes, M.Aiche, G.Barreau, N.Cappelan, S.Czajkowski, B.Hass, B.Jurado, L.Mathieu, I.Companis

Experimental Approaches to Studying the Fission Process Using the Surrogate Reaction Technique

NUCLEAR REACTIONS 235,236U, 239Pu(α, α'), E=55 MeV; measured E(charged particle), I(charged particle), Eγ, Iγ(θ), γγ-coin, fission products using STARS (Silicon Telescope Array for Reaction Studies), LIBERACE, HYDRA; deduced σ 238Pu(n, F) below 20 MeV using surrogate reactions. Comparison with other data.

doi: 10.3938/jkps.59.1892
Citations: PlumX Metrics


2011ES04      J.Korean Phys.Soc. 59, 815s (2011)

J.E.Escher, F.S.Dietrich, N.D.Scielzo

Surrogate Approaches for Neutron Capture

NUCLEAR STRUCTURE 92Zr, 156Gd, 236U; calculated γ decay probabilities for excited nuclei.

NUCLEAR REACTIONS 91Zr, 155Gd, 235U(n, γ), E=0.02-5 MeV; analyzed σ from simulated surrogate experiments using different spin-parity distributions.

doi: 10.3938/jkps.59.815
Citations: PlumX Metrics


2011NO17      Phys.Rev. C 84, 064609 (2011)

G.P.A.Nobre, F.S.Dietrich, J.E.Escher, I.J.Thompson, M.Dupuis, J.Terasaki, J.Engel

Toward a microscopic reaction description based on energy-density-functional structure models

NUCLEAR REACTIONS 90Zr(n, X), E=10, 20, 30 MeV; 58Ni(n, X), E=20, 30 MeV; 58Ni(p, X), E=10-70 MeV; 48Ca(p, X), E=10-50 MeV; 40,48Ca, 58Ni, 144Sm(n, X), (p, X), E=30 MeV; 90Zr(p, X), E=20-70 MeV; calculated reaction cross section. 90Zr(p, p), E=40, 65 MeV; calculated σ(θ). Random-phase, Hartree-Fock-Bogoliubov (HFB) framework and Skyrme density functional with coupling to all RPA and QRPA inelastic channels including deuteron formation. Assessed effects of couplings between inelastic resonances from higher-order channels. Comparison with experimental data.

doi: 10.1103/PhysRevC.84.064609
Citations: PlumX Metrics


2011NO18      J.Phys.:Conf.Ser. 312, 082033 (2011)

G.P.A.Nobre, I.J.Thompson, J.E.Escher, F.S.Dietrich

Reaction cross-section predictions for nucleon induced reactions

NUCLEAR REACTIONS 58Ni(n, X), E=20, 30 MeV;90Zr(n, X), E=10, 20, 40 MeV;144Sm(n, X), E=30 MeV;40,48Ca, 58Ni(p, X), E=10, 20, 30, 40 MeV;90Zr(p, X), E=10, 20, 30, 40, 50, 60, 70 MeV;144Sm(p, X), E=30 MeV; calculated reaction σ using optical model with QRPA target excitations and coupling to inelastic and transfer channels. Proton reactions compared to data.

doi: 10.1088/1742-6596/312/4/082033
Citations: PlumX Metrics


2011RE09      Phys.Rev. C 83, 054610 (2011)

J.J.Ressler, J.T.Burke, J.E.Escher, C.T.Angell, M.S.Basunia, C.W.Beausang, L.A.Bernstein, D.L.Bleuel, R.J.Casperson, B.L.Goldblum, J.Gostic, R.Hatarik, R.Henderson, R.O.Hughes, J.Munson, L.W.Phair, T.J.Ross, N.D.Scielzo, E.Swanberg, I.J.Thompson, M.Wiedeking

Surrogate measurement of the 238Pu(n, f) cross section

NUCLEAR REACTIONS 239Pu(α, α'F), 235U(α, α'F), 236U(α, α'F), E=20-55 MeV; measured particle and fission fragment spectra, α-fission coincidences, cross sections, fission fragment anisotropy ratios. 238Pu, 234,235U(n, F), E=5-20 MeV; deduced fission cross sections using surrogate ratio method. Comparison with previous experimental data and evaluated libraries. Data needs for following reactions for next-generation reactors: 241Pu, 241,242Am, 243,244,245Cm(n, F), E.1 MeV. Potential surrogate and ratio reactions listed.

doi: 10.1103/PhysRevC.83.054610
Citations: PlumX Metrics

Data from this article have been entered in the EXFOR database. For more information, access X4 dataset14292.


2010ES02      Phys.Rev. C 81, 024612 (2010)

J.E.Escher, F.S.Dietrich

Cross sections for neutron capture from surrogate measurements: An examination of Weisskopf-Ewing and ratio approximations

NUCLEAR REACTIONS 235U, 235mU(n, γ), E=0.01-4.5 MeV; 235U(n, f), E=0-20 MeV; analyzed yields of γ rays in the ground-state band of 236U to the total production of 236U, σ from experiments and ENSDF/B-VII, Weisskopf-Ewing estimates from surrogate experiments, external and internal surrogate ratio estimates from simulated surrogate experiments. 233U(n, γ), E=0-3.5 MeV; 155,157Gd(n, γ), E=0-4.5 MeV; analyzed Weisskopf-Ewing estimates from surrogate experiments. Discussed validity and limitations of Weisskopf-Ewing and ratio approximations for surrogate reactions.

NUCLEAR STRUCTURE 156,158Gd, 236U; calculated Jπ distributions, γ-decay probabilities of compound nuclei as function of spin-parity distributions and excitation energy.

doi: 10.1103/PhysRevC.81.024612
Citations: PlumX Metrics


2010HA03      Phys.Rev. C 81, 011602 (2010)

R.Hatarik, L.A.Bernstein, J.A.Cizewski, D.L.Bleuel, J.T.Burke, J.E.Escher, J.Gibelin, B.L.Goldblum, A.M.Hatarik, S.R.Lesher, P.D.O'Malley, L.Phair, E.Rodriguez-Vieitez, T.Swan, M.Wiedeking

Benchmarking a surrogate reaction for neutron capture

NUCLEAR REACTIONS 171,173Yb(d, pγ), E=18.5 MeV; measured Eγ, Iγ, particle spectra, (particle)γ-coin using STARS array for particles and HPGe detectors for γ rays; deduced intensity ratios of γ rays in 172Yb and 174Yb, cross sections, and comparison with DICEBOX simulations. 171,173Yb(n, γ), E=5-260 keV; comparison of neutron capture cross sections with those from (d, pγ) reaction using external surrogate ratio method.

doi: 10.1103/PhysRevC.81.011602
Citations: PlumX Metrics

Data from this article have been entered in the EXFOR database. For more information, access X4 dataset14258.


2010NO06      Phys.Rev.Lett. 105, 202502 (2010)

G.P.A.Nobre, F.S.Dietrich, J.E.Escher, I.J.Thompson, M.Dupuis, J.Terasaki, J.Engel

Coupled-Channel Calculation of Nonelastic Cross Sections Using a Density-Functional Structure Model

NUCLEAR REACTIONS 40,48Ca, 58Ni, 90Zr, 144Sm(p, X), (n, X), E<40 MeV; calculated total reaction σ. Complete microscopic calculation, comparison with experimental data.

doi: 10.1103/PhysRevLett.105.202502
Citations: PlumX Metrics


2010SC06      Phys.Rev. C 81, 034608 (2010)

N.D.Scielzo, J.E.Escher, J.M.Allmond, M.S.Basunia, C.W.Beausang, L.A.Bernstein, D.L.Bleuel, J.T.Burke, R.M.Clark, F.S.Dietrich, P.Fallon, J.Gibelin, B.L.Goldblum, S.R.Lesher, M.A.McMahan, E.B.Norman, L.Phair, E.Rodriquez-Vieitez, S.A.Sheets, I.J.Thompson, M.Wiedeking

Measurement of γ-emission branching ratios for 154, 156, 158Gd compound nuclei: Tests of surrogate nuclear reaction approximations for (n, γ) cross sections

NUCLEAR REACTIONS 154,156,158Gd(p, p'γ), E=22 MeV; measured Eγ, Iγ, proton spectra, γ-ray emission probabilities using STARS/LiBerACE array. 155,157Gd(n, γ), E=0.01-4 MeV; deduced σ by surrogate reaction method using Weisskopf-Ewing and ratio approximations.

doi: 10.1103/PhysRevC.81.034608
Citations: PlumX Metrics

Data from this article have been entered in the EXFOR database. For more information, access X4 dataset14268.


2009AL13      Phys.Rev. C 79, 054610 (2009)

J.M.Allmond, L.A.Bernstein, C.W.Beausang, L.Phair, D.L.Bleuel, J.T.Burke, J.E.Escher, K.E.Evans, B.L.Goldblum, R.Hatarik, H.B.Jeppesen, S.R.Lesher, M.A.McMahan, J.O.Rasmussen, N.D.Scielzo, M.Wiedeking

Relative 235U(n, γ) and (n, f) cross sections from 235U(d, pγ) and (d, pf)

NUCLEAR REACTIONS 235U(d, pγ), (d, pf), E=21 MeV; measured Eγ, Iγ, proton spectra, fission spectra, σ. Internal surrogate ratio method (ISRM). Model-independent method used for measurement of γ-channel yield.

doi: 10.1103/PhysRevC.79.054610
Citations: PlumX Metrics

Data from this article have been entered in the EXFOR database. For more information, access X4 dataset14230.


2009LE11      Phys.Rev. C 79, 044609 (2009)

S.R.Lesher, J.T.Burke, L.A.Bernstein, H.Ai, C.W.Beausang, D.L.Bleuel, R.M.Clark, F.S.Dietrich, J.E.Escher, P.Fallon, J.Gibelin, B.L.Goldblum, I.Y.Lee, A.O.Macchiavelli, M.A.McMahan, K.J.Moody, E.B.Norman, L.Phair, E.Rodriguez-Vieitez, N.D.Scielzo, M.Wiedeking

Surrogate ratio method in the actinide region using the (α, α'f) reaction

NUCLEAR REACTIONS 234,236U(α, α'f), E=55 MeV; measured fission spectra, α(fission)-coin, in-plane and out-of-plane fission ratios; deduced direct-reaction-induced fission probability ratio. 233,235U(n, f); compared cross sections. Comparison between fission probability ratio and ratio of cross sections. Surrogate ratio method (SRM). Application of SRM as a method of calculating unknown cross sections.

doi: 10.1103/PhysRevC.79.044609
Citations: PlumX Metrics

Data from this article have been entered in the EXFOR database. For more information, access X4 dataset14250.


2007DI12      Nucl.Phys. A787, 237c (2007)

F.S.Dietrich, J.E.Escher

Compound-nuclear reaction cross sections via surrogate reactions

NUCLEAR REACTIONS 233,235U(n, F), E=0-20 MeV; calculated fission σ. Hauser-Feshbach model with Weisskopf-Ewing treatment.

doi: 10.1016/j.nuclphysa.2006.12.038
Citations: PlumX Metrics


2007ES03      Nucl.Instrum.Methods Phys.Res. B261, 1075 (2007)

J.E.Escher, F.S.Dietrich, C.Forssen

Surrogate nuclear reaction methods for astrophysics

NUCLEAR REACTIONS 235U(n, X), E < 7 MeV; calculated fission probability and cross section using the surrogate technique.

doi: 10.1016/j.nimb.2007.04.223
Citations: PlumX Metrics


2006ES03      Phys.Rev. C 74, 054601 (2006)

J.E.Escher, F.S.Dietrich

Determining (n, f) cross sections for actinide nuclei indirectly: Examination of the surrogate ratio method

NUCLEAR REACTIONS 233,235,235mU(n, F), E ≈ 0-20 MeV; analyzed fission σ, pre-equilibrium effects, branching ratios. Validity of surrogate ratio method discussed.

doi: 10.1103/PhysRevC.74.054601
Citations: PlumX Metrics


Back to query form