NSR Query Results

Output year order : Descending
Format : Normal

NSR database version of April 11, 2024.

Search: Author = K.D.Launey

Found 42 matches.

Back to query form

2024BU02      Phys.Rev. C 109, 014616 (2024)

M.Burrows, K.D.Launey, A.Mercenne, R.B.Baker, G.H.Sargsyan, T.Dytrych, D.Langr

Ab initio translationally invariant nucleon-nucleus optical potentials

doi: 10.1103/PhysRevC.109.014616
Citations: PlumX Metrics

2024LO02      Phys.Rev.Lett. 132, 142502 (2024)

B.Longfellow, A.T.Gallant, G.H.Sargsyan, M.T.Burkey, T.Y.Hirsh, G.Savard, N.D.Scielzo, L.Varriano, M.Brodeur, D.P.Burdette, J.A.Clark, D.Lascar, K.D.Launey, P.Mueller, D.Ray, K.S.Sharma, A.A.Valverde, G.L.Wilson, X.L.Yan

Improved Tensor Current Limit from 8B β Decay Including New Recoil-Order Calculations

RADIOACTIVITY 8B(β+) [from 6Li(3He, n)8B, E not given]; measured decay products, Eα, Iα, Eβ, Iβ, α-α-β-coin.; deduced β-ν angular correlation coefficient impacted by 2+ intruder state, Gamow-Teller decays. Comparison with new ab initio symmetry-adapted no-core shell-model calculations, available data. The Beta-decay Paul Trap, Argonne National Laboratory, the ATLAS facility.

doi: 10.1103/PhysRevLett.132.142502
Citations: PlumX Metrics

2023HE12      Phys.Rev. C 108, 024304 (2023)

N.D.Heller, G.H.Sargsyan, K.D.Launey, C.W.Johnson, T.Dytrych, J.P.Draayer

New insights into backbending in the symmetry-adapted shell-model framework

NUCLEAR STRUCTURE 48Cr, 20Ne; calculated levels, J, π, backbending, excitation energy vs angular momentum for rotational bands, yrast bands structure, moments of inertia. Symmetry-adapted no-core shell model (SA-NCSM) with the NNLO chiral potential and symmetry-adapted shell model (SA-SM) with the GXPF1 interaction. Comparison to experimental values.

doi: 10.1103/PhysRevC.108.024304
Citations: PlumX Metrics

2023SA50      Phys.Rev. C 108, 054303 (2023)

G.H.Sargsyan, K.D.Launey, R.M.Shaffer, S.T.Marley, N.Dudeck, A.Mercenne, T.Dytrych, J.P.Draayer

Ab initio single-neutron spectroscopic overlaps in lithium isotopes

doi: 10.1103/PhysRevC.108.054303
Citations: PlumX Metrics

2022BU16      Phys.Rev.Lett. 128, 202502 (2022)

M.T.Burkey, G.Savard, A.T.Gallant, N.D.Scielzo, J.A.Clark, T.Y.Hirsh, L.Varriano, G.H.Sargsyan, K.D.Launey, M.Brodeur, D.P.Burdette, E.Heckmaier, K.Joerres, J.W.Klimes, K.Kolos, A.Laminack, K.G.Leach, A.F.Levand, B.Longfellow, B.Maass, S.T.Marley, G.E.Morgan, P.Mueller, R.Orford, S.W.Padgett, A.Perez Galvan, J.R.Pierce, D.Ray, R.Segel, K.Siegl, K.S.Sharma, B.S.Wang

Improved Limit on Tensor Currents in the Weak Interaction from 8Li β Decay

RADIOACTIVITY 8Li(β-); measured decay products, Eβ, Iβ; deduced tensor currents in the low-energy regime by examining the β-ν correlation of trapped 8Li ions with the Beta-decay Paul Trap. Comparison with the standard model prediction.

doi: 10.1103/PhysRevLett.128.202502
Citations: PlumX Metrics

Data from this article have been entered in the XUNDL database. For more information, click here.

2022MO10      Phys.Rev. C 105, 034306 (2022)

O.M.Molchanov, K.D.Launey, A.Mercenne, G.H.Sargsyan, T.Dytrych, J.P.Draayer

Machine learning approach to pattern recognition in nuclear dynamics from the ab initio symmetry-adapted no-core shell model

NUCLEAR STRUCTURE 4He, 16O, 20Ne, 24Si, 20,22,24,26,28,30,32,34,36,38,40,42Mg, 166,168Er, 236U; calculated probability amplitudes of dominant configurations for ground states, shape coexistence and structure patterns using machine learning on ab initio symmetry-adapted no-core shell model calculations. Neural networks with training sets that include only the s- and p-shell nuclei.

doi: 10.1103/PhysRevC.105.034306
Citations: PlumX Metrics

2022SA23      Phys.Rev.Lett. 128, 202503 (2022)

G.H.Sargsyan, K.D.Launey, M.T.Burkey, A.T.Gallant, N.D.Scielzo, G.Savard, A.Mercenne, T.Dytrych, D.Langr, L.Varriano, B.Longfellow, T.Y.Hirsh, J.P.Draayer

Impact of Clustering on the 8Li β Decay and Recoil Form Factors

RADIOACTIVITY 8Li(β-), 8Be(2α); analyzed available data; calculated 8Be low-lying 0+ states, unprecedented constraints on recoil corrections, strong correlation between them and the 8Li ground state quadrupole moment using large-scale ab initio calculations.

doi: 10.1103/PhysRevLett.128.202503
Citations: PlumX Metrics

2022SC17      J.Phys.(London) G49, 110502 (2022)

H.Schatz, A.D.Becerril Reyes, A.Best, E.F.Brown, K.Chatziioannou, K.A.Chipps, C.M.Deibel, R.Ezzeddine, D.K.Galloway, C.J.Hansen, F.Herwig, A.P.Ji, M.Lugaro, Z.Meisel, D.Norman, J.S.Read, L.F.Roberts, A.Spyrou, I.Tews, F.X.Timmes, C.Travaglio, N.Vassh, C.Abia, P.Adsley, S.Agarwal, M.Aliotta, W.Aoki, A.Arcones, A.Aryan, A.Bandyopadhyay, A.Banu, D.W.Bardayan, J.Barnes, A.Bauswein, T.C.Beers, J.Bishop, T.Boztepe, B.Cote, M.E.Caplan, A.E.Champagne, J.A.Clark, M.Couder, A.Couture, S.E.de Mink, S.Debnath, R.J.deBoer, J.den Hartogh, P.Denissenkov, V.Dexheimer, I.Dillmann, J.E.Escher, M.A.Famiano, R.Farmer, R.Fisher, C.Frohlich, A.Frebel, C.Fryer, G.Fuller, A.K.Ganguly, S.Ghosh, B.K.Gibson, T.Gorda, K.N.Gourgouliatos, V.Graber, M.Gupta, W.C.Haxton, A.Heger, W.R.Hix, W.C.G.Ho, E.M.Holmbeck, A.A.Hood, S.Huth, G.Imbriani, R.G.Izzard, R.Jain, H.Jayatissa, Z.Johnston, T.Kajino, A.Kankainen, G.G.Kiss, A.Kwiatkowski, M.La Cognata, A.M.Laird, L.Lamia, P.Landry, E.Laplace, K.D.Launey, D.Leahy, G.Leckenby, A.Lennarz, B.Longfellow, A.E.Lovell, W.G.Lynch, S.M.Lyons, K.Maeda, E.Masha, C.Matei, J.Merc, B.Messer, F.Montes, A.Mukherjee, M.R.Mumpower, D.Neto, B.Nevins, W.G.Newton, L.Q.Nguyen, K.Nishikawa, N.Nishimura, F.M.Nunes, E.O'Connor, B.W.O'Shea, W.-J.Ong, S.D.Pain, M.A.Pajkos, M.Pignatari, R.G.Pizzone, V.M.Placco, T.Plewa, B.Pritychenko, A.Psaltis, D.Puentes, Y.-Z.Qian, D.Radice, D.Rapagnani, B.M.Rebeiro, R.Reifarth, A.L.Richard, N.Rijal, I.U.Roederer, J.S.Rojo, J.S K, Y.Saito, A.Schwenk, M.L.Sergi, R.S.Sidhu, A.Simon, T.Sivarani, A.Skuladottir, M.S.Smith, A.Spiridon, T.M.Sprouse, S.Starrfield, A.W.Steiner, F.Strieder, I.Sultana, R.Surman, T.Szucs, A.Tawfik, F.Thielemann, L.Trache, R.Trappitsch, M.B.Tsang, A.Tumino, S.Upadhyayula, J.O.Valle Martinez, M.Van der Swaelmen, C.Viscasillas Vazquez, A.Watts, B.Wehmeyer, M.Wiescher, C.Wrede, J.Yoon, R.G.T.Zegers, M.A.Zermane, M.Zingale, the Horizon 2020 Collaborations

Horizons: nuclear astrophysics in the 2020s and beyond

doi: https://dx.doi.org/10.1088/1361-6471/ac8890
Citations: PlumX Metrics

2022TE06      Few-Body Systems 63, 67 (2022)

I.Tews, Z.Davoudi, A.Ekstrom, J.D.Holt, K.Becker, R.Briceno, D.J.Dean, W.Detmold, C.Drischler, T.Duguet, E.Epelbaum, A.Gasparyan, J.Gegelia, J.R.Green, H.W.Griesshammer, A.D.Hanlon, M.Heinz, H.Hergert, M.Hoferichter, M.Illa, D.Kekejian, A.Kievsky, S.Konig, H.Krebs, K.D.Launey, D.Lee, P.Navratil, A.Nicholson, A.Parreno, D.R.Phillips, M.Ploszajczak, X.-L.Ren, T.R.Richardson, C.Robin, G.H.Sargsyan, M.J.Savage, M.R.Schindler, P.E.Shanahan, R.P.Springer, A.Tichai, U.van Kolck, M.L.Wagman, A.Walker-Loud, C.-J.Yang, X.Zhang

Nuclear Forces for Precision Nuclear Physics: A Collection of Perspectives

doi: 10.1007/s00601-022-01749-x
Citations: PlumX Metrics

2021BA24      Phys.Rev. C 103, 054314 (2021)

R.B.Baker, M.Burrows, Ch.Elster, K.D.Launey, P.Maris, G.Popa, S.P.Weppner

Nuclear spin features relevant to ab initio nucleon-nucleus elastic scattering

NUCLEAR STRUCTURE 4,6,8He; calculated neutron and proton spin-projected, one-body momentum distributions using NNLOopt chiral interaction, magnetic moments of the 2+ excited states in the ground state rotational bands; deduced spin content of a J=0 wave function, connection between reaction observables such as analyzing powers and structure observables such as magnetic moments in the framework of the spectator expansion with no-core shell model. Relevance to effective interactions for elastic nucleon-nucleus scattering.

doi: 10.1103/PhysRevC.103.054314
Citations: PlumX Metrics

2021SA18      Phys.Rev. C 103, 044305 (2021)

G.H.Sargsyan, K.D.Launey, R.B.Baker, T.Dytrych, J.P.Draayer

SU(3)-guided realistic nucleon-nucleon interactions for large-scale calculations

NUCLEAR STRUCTURE 12C; calculated excitation energies of the first 2+ and 4+ states, rms radius of the ground state, B(E2) for the first 2+ state, probability amplitudes for configurations that make up the ground state, energies of the proton-neutron system for the positive-parity lowest-lying states up to 5+. SU(3)-coupled or Sp(3, R)-coupled ab initio symmetry-adapted no-core shell model (SA-NCSM) calculation with realistic NN interactions. Comparison with experimental values.

doi: 10.1103/PhysRevC.103.044305
Citations: PlumX Metrics

2020BA35      Phys.Rev. C 102, 014320 (2020)

R.B.Baker, K.D.Launey, S.Bacca, N.N.Dinur, T.Dytrych

Benchmark calculations of electromagnetic sum rules with a symmetry-adapted basis and hyperspherical harmonics

NUCLEAR STRUCTURE 4He; calculated ground state energy, point-proton rms radius, nonenergy and energy weighted sum rules for monopole and dipole transitions, electric dipole polarizability, quadrupole sum rule. Calculations used ab initio symmetry-adapted no-core shell model (SA-NCSM) with the Lanczos algorithm, and JISP16 and N3LO-EM nucleon-nucleon interactions. Comparison with other model predictions.

doi: 10.1103/PhysRevC.102.014320
Citations: PlumX Metrics

2020BU11      Phys.Rev. C 102, 034606 (2020)

M.Burrows, R.B.Baker, Ch.Elster, S.P.Weppner, K.D.Launey, P.Maris, G.Popa

Ab initio leading order effective potentials for elastic nucleon-nucleus scattering

NUCLEAR REACTIONS 1H(n, n), (p, p), E=100, 200 MeV; calculated Wolfenstein amplitudes as function of the scatting angle and momentum transfer for NNLOopt chiral interaction, and CD-Bonn potential. 4,6,8He, 12C, 16O(p, p), (polarized p, p), E=65, 71, 100, 122, 200 MeV; calculated differential σ(θ, E), analyzing powers Ay(θ, E) with NNLOopt chiral interaction; deduced leading order ab initio effective potential for nucleon-nucleus elastic scattering using the spectator expansion of multiple scattering theory. 12C, 16O(n, n), E=60-210 MeV; calculated σ(E). Comparison with experimental data.

doi: 10.1103/PhysRevC.102.034606
Citations: PlumX Metrics

2020DR03      Phys.Rev. C 102, 044608 (2020)

A.C.Dreyfuss, K.D.Launey, J.E.Escher, G.H.Sargsyan, R.B.Baker, T.Dytrych, J.P.Draayer

Clustering and α-capture reaction rate from ab initio symmetry-adapted descriptions of 20Ne

NUCLEAR REACTIONS 16O(α, γ)20Ne, E(cm)=1.33 MeV; calculated bound state wave functions and spectroscopic amplitudes for resonances, α partial widths, asymptotic normalization coefficient (ANC) for 20Ne g.s., astrophysical reaction rates at temperatures of 1-10 GK. Calculations of overlap between the 16O+α cluster configuration and states in 20Ne using the ab initio symmetry-adapted no-core shell model (SA-NCSM). Comparison with experimental data.

doi: 10.1103/PhysRevC.102.044608
Citations: PlumX Metrics

2020DY01      Phys.Rev.Lett. 124, 042501 (2020)

T.Dytrych, K.D.Launey, J.P.Draayer, D.J.Rowe, J.L.Wood, G.Rosensteel, C.Bahri, D.Langr, R.B.Baker

Physics of Nuclei: Key Role of an Emergent Symmetry

NUCLEAR STRUCTURE 6Li, 8He, 20Ne; calculated excitation energies of the ground-state rotational band using first-principles of nuclear structure that the special nature of the strong nuclear force determines highly regular patterns unrecognized in nuclei that can be tied to an emergent approximate sy mmetry.

doi: 10.1103/PhysRevLett.124.042501
Citations: PlumX Metrics

2020LA13      Eur.Phys.J. Special Topics 229, 2429 (2020)

K.D.Launey, T.Dytrych, G.H.Sargsyan, R.B.Baker, J.P.Draayer

Emergent symplectic symmetry in atomic nuclei; Ab initio symmetry-adapted no-core shell model

NUCLEAR STRUCTURE 20Ne, 12C; calculated B(E2), deformation parameters, level energies. Comparison with available data.

doi: 10.1140/epjst/e2020-000178-3
Citations: PlumX Metrics

2020PA38      Phys.Rev. C 102, 044306 (2020)

F.Pan, Y.He, Y.Wu, Y.Wang, K.D.Launey, J.P.Draayer

Neutron-proton pairing correction in the extended isovector and isoscalar pairing model

NUCLEAR STRUCTURE 18,20,22O, 18,20F, 18,20,22,24Ne, 20,22,24Na, 20,22,24,26Mg, 22,24,26,28Si, 24,26Al; calculated binding energies, energies of 0+ states with isospin T=1-3, isovector np, nn, and pp pairing contributions to the binding energies. Extended isovector and isoscalar pairing model. Comparison with experimental values.

doi: 10.1103/PhysRevC.102.044306
Citations: PlumX Metrics

2019BU09      Phys.Rev. C 99, 044603 (2019)

M.Burrows, Ch.Elster, S.P.Weppner, K.D.Launey, P.Maris, A.Nogga, G.Popa

Ab initio folding potentials for nucleon-nucleus scattering based on no-core shell-model one-body densities

NUCLEAR REACTIONS 4,6He, 12C, 16O(p, p), (polarized p, p), E=100, 122, 135, 150, 160, 200 MeV; 16O(n, n), E=60-200 MeV; calculated σ(E, θ), Ay(θ, E), and point-proton rms radii using Lippmann-Schwinger equation with folding potential obtained from translationally invariant no-core shell model (NCSM) one-body density and the off-shell Wolfenstein amplitudes, with chiral next-to-next-to-leading order (NNLO) interaction. Comparison with experimental data.

doi: 10.1103/PhysRevC.99.044603
Citations: PlumX Metrics

2019MI22      Phys.Rev. C 100, 064310 (2019)

M.E.Miora, K.D.Launey, D.Kekejian, F.Pan, J.P.Draayer

Exact isovector pairing in a shell-model framework: Role of proton-neutron correlations in isobaric analog states

NUCLEAR STRUCTURE 10He, 10,12Be, 10,12B, 10,12,14C, 12,14N, 12,14,18,20,22O, 18,20F, 18,20,22Ne, 22Na, 20,22Mg, 22,34Si, 34,36S, 34Cl, 34,38Ar, 36,38K, 34,36,38,42,44,46Ca, 42,44Sc, 36,42,44,46,50Ti, 46,50V, 44,46,50,52Cr, 50,52Mn, 46,50,52,54Fe, 54,58Co, 50,52,54,58,60,62Ni, 58,60,62Zn, 62Ga, 60,62Ge; calculated energies of 0+, T=0-3 states, binding energies and lowest isobaric analog 0+, T=0-3 excited states, staggering amplitudes for the total energy, total isovector pairing gaps. Shell-model Hamiltonian giving exact solutions for the lowest isobaric analog 0+, T=0-3 states using 16O, 40Ca and 56Ni as core nuclei. Comparison with experimental data. Discussed proton-neutron pairing correlations in nuclei, of relevance for waiting-point nuclei for the rp nucleosynthesis.

doi: 10.1103/PhysRevC.100.064310
Citations: PlumX Metrics

2019PA38      Chin.Phys.C 43, 074106 (2019)

F.Pan, D.Zhou, S.Yang, G.Sargsyan, Y.He, K.D.Launey, J.P.Draayer

A close look at the competition of isovector and isoscalar pairing in A=18 and 20 even-even N ≈ Z nuclei

NUCLEAR STRUCTURE 18,20O, 18,20F, 18,20Ne, 20Na; calculated energy levels, J, π using using the mean-field plus dynamic QQ, pairing and particle-hole interaction model.

doi: 10.1088/1674-1137/43/7/074106
Citations: PlumX Metrics

2019RU02      Phys.Rev. C 99, 051301 (2019)

P.Ruotsalainen, J.Henderson, G.Hackman, G.H.Sargsyan, K.D.Launey, A.Saxena, P.C.Srivastava, S.R.Stroberg, T.Grahn, J.Pakarinen, G.C.Ball, R.Julin, P.T.Greenlees, J.Smallcombe, C.Andreoiu, N.Bernier, M.Bowry, M.Buckner, R.Caballero-Folch, A.Chester, S.Cruz, L.J.Evitts, R.Frederick, A.B.Garnsworthy, M.Holl, A.Kurkjian, D.Kisliuk, K.G.Leach, E.McGee, J.Measures, D.Mucher, J.Park, F.Sarazin, J.K.Smith, D.Southall, K.Starosta, C.E.Svensson, K.Whitmore, M.Williams, C.Y.Wu

Isospin symmetry in B(E2) values: Coulomb excitation study of 21Mg

NUCLEAR REACTIONS 196Pt(21Mg, 21Mg'), E=95 MeV; 110Pd(21Mg, 21Mg'), E=67 MeV; measured Eγ, Iγ, (particle)γ-coin, Coulomb excitation yields, half-life of the 1/2+ state in 21Mg using BAMBINO array for particle detection, and TIGRESS array for γ rays from Coulomb excited 21Mg states at TRIUMF-ISAC-II facility. 21Mg; deduced levels, J, π, Coulomb-excitation yields, E2 matrix elements, B(E2). GOSIA least-squares fit analysis. Systematics of 5/2+ to 1/2+ B(E2) values in T=-3/2 and +3/2 mirror nuclei: 21Mg, 21Fl; 25Si, 25Na; 29S, 29Al; 33Ar, 33P; 37Ca, 37Cl. Comparison with shell-model calculations with isospin conserving and breaking USD interactions, and using modern ab initio approach.

doi: 10.1103/PhysRevC.99.051301
Citations: PlumX Metrics

Data from this article have been entered in the XUNDL database. For more information, click here.

2019WI07      Phys.Rev. C 100, 014322 (2019)

J.Williams, G.C.Ball, A.Chester, T.Domingo, A.B.Garnsworthy, G.Hackman, J.Henderson, R.Henderson, R.Krucken, A.Kumar, K.D.Launey, J.Measures, O.Paetkau, J.Park, G.H.Sargsyan, J.Smallcombe, P.C.Srivastava, K.Starosta, C.E.Svensson, K.Whitmore, M.Williams

Structure of 28Mg and influence of the neutron pf shell

NUCLEAR REACTIONS 12C(18O, 2p), E=48 MeV; measured Eγ, Iγ, γγ-coin, γ(θ), Ep, Ip, level half-lives by DSAM using the TIGRESS array and CsI(Tl) scintillator array for charged particle detection at ISACII-TRIUMF. 28Mg; deduced levels, intruder orbitals, J, π, B(E2). Systematics of yrast states in 24,26,28,30Mg, 30Si, 32S. Comparison with ab initio symmetry adapted no-core shell model (SA-NCSM) calculations using the SDPF-MU interaction, and with evaluated data in the ENSDF database.

NUCLEAR STRUCTURE 28Mg; calculated levels, intruder orbitals, J, π, neutron occupancies in the pf shell, B(M1), B(M2), proton and neutron effective single-particle energies. Ab initio symmetry adapted no-core shell model (SA-NCSM) calculations using the SDPF-MU, USDB(sd) and SDPF(U) interactions. Comparison with experimental data.

doi: 10.1103/PhysRevC.100.014322
Citations: PlumX Metrics

Data from this article have been entered in the XUNDL database. For more information, click here.

2018BU04      Phys.Rev. C 97, 024325 (2018)

M.Burrows, Ch.Elster, G.Popa, K.D.Launey, A.Nogga, P.Maris

Ab initio translationally invariant nonlocal one-body densities from no-core shell-model theory

NUCLEAR STRUCTURE 4He, 6Li, 12C, 16O; calculated translationally invariant local one-body densities, and K=0 components of the translationally invariant nonlocal one-body density from ab initio no-core shell-model (NCSM) and symmetry-adapted NCSM (SA-NCSM) calculations using the JISP16 nucleon-nucleon interaction; formulation for removing center-of-mass contributions from nonlocal one-body densities.

doi: 10.1103/PhysRevC.97.024325
Citations: PlumX Metrics

2018HE12      Phys.Lett. B 782, 468 (2018)

J.Henderson, G.Hackman, P.Ruotsalainen, S.R.Stroberg, K.D.Launey, J.D.Holt, F.A.Ali, N.Bernier, M.A.Bentley, M.Bowry, R.Caballero-Folch, L.J.Evitts, R.Frederick, A.B.Garnsworthy, P.E.Garrett, B.Jigmeddorj, A.I.Kilic, J.Lassen, J.Measures, D.Muecher, B.Olaizola, E.O'Sullivan, O.Paetkau, J.Park, J.Smallcombe, C.E.Svensson, R.Wadsworth, C.Y.Wu

Testing microscopically derived descriptions of nuclear collectivity: Coulomb excitation of 22Mg

NUCLEAR REACTIONS 110Pd(22Mg, 22Mg'), (22Ne, 22Ne'), E=83.4, 92.4 MeV; measured reaction products, Eγ, Iγ. 22Ne, 22Mg; deduced γ-ray energies, B(E2) values and quadrupole moments. Comparison with the state-of-the-art no-core symplectic shell model calculations.

doi: 10.1016/j.physletb.2018.05.064
Citations: PlumX Metrics

Data from this article have been entered in the XUNDL database. For more information, click here.

2018PA18      Nucl.Phys. A974, 86 (2018)

F.Pan, X.Ding, K.D.Launey, J.P.DraayerJ.P.Draayer

A simple procedure for construction of the orthonormal basis vectors of irreducible representations of O(5) in the OT(3) (X) ON (2) basis

doi: 10.1016/j.nuclphysa.2018.03.011
Citations: PlumX Metrics

2017DR03      Phys.Rev. C 95, 044312 (2017)

A.C.Dreyfuss, K.D.Launey, T.Dytrych, J.P.Draayer, R.B.Baker, C.M.Deibel, C.Bahri

Understanding emergent collectivity and clustering in nuclei from a symmetry-based no-core shell-model perspective

NUCLEAR STRUCTURE 12C; calculated levels, J, π, basis states, probability distribution for excitations of lowest 0+ and 4+ states, B(E2), M(E0), Hoyle state. 12C, 16,20O, 20,22Mg, 20,22Ne; calculated energies and B(E2) of first excited 0+ state, EGMR, and the lowest excited 2+ state. Symmetry-based no-core symplectic shell model (NCSpM) calculations for ground-state rotational band, the Hoyle state, and its 2+ and 4+ excitations, and the giant monopole 0+ resonance. Comparison with experimental data.

doi: 10.1103/PhysRevC.95.044312
Citations: PlumX Metrics

2016LA15      Prog.Part.Nucl.Phys. 89, 101 (2016)

K.D.Launey, T.Dytrych, J.P.Draayer

Symmetry-guided large-scale shell-model theory

doi: 10.1016/j.ppnp.2016.02.001
Citations: PlumX Metrics

2016PA05      Nucl.Phys. A947, 234 (2016)

F.Pan, X.Ding, K.D.Launey, H.Li, X.Xu, J.P.Draayer

An exactly solvable spherical mean-field plus extended monopole pairing model

NUCLEAR STRUCTURE 12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28O; calculated neutron single-particle energy, J, π using spherical shell model, pairing strength vs mass number, gs energy, mass excess vs mass number.

doi: 10.1016/j.nuclphysa.2016.01.004
Citations: PlumX Metrics

2016PA18      Nucl.Phys. A952, 70 (2016)

F.Pan, S.Yuan, K.D.Launey, J.P.Draayer

A new procedure for constructing basis vectors of SU(3) SO(3)

doi: 10.1016/j.nuclphysa.2016.04.024
Citations: PlumX Metrics

2016WA14      Nucl.Phys. A950, 1 (2016)

Y.Wang, F.Pan, K.D.Launey, Y.-A.Luo, J.P.Draayer

Angular momentum projection for a Nilsson mean-field plus pairing model

NUCLEAR STRUCTURE 18O, 18,20Ne, 24Mg; calculated low-spin levels, J, π, B(E2), electric quadrupole moment using angular momentum projection for axially deformed Nilsson mean-field plus MSP (Modified Standard Pairing) or NLP (nearest-level pairing). Compared to available data.

doi: 10.1016/j.nuclphysa.2016.03.012
Citations: PlumX Metrics

2015DY01      Phys.Rev. C 91, 024326 (2015)

T.Dytrych, A.C.Hayes, K.D.Launey, J.P.Draayer, P.Maris, J.P.Vary, D.Langr, T.Oberhuber

Electron-scattering form factors for 6Li in the ab initio symmetry-guided framework

NUCLEAR REACTIONS 6Li(e, e'), E not given; calculated longitudinal C0 form factors using ab initio symmetry-adapted no-core shell-model description (SA-NCSM) for the bare JISP16 and NNLOopt NN interactions, and for several SU(3)-selected spaces. Comparison with available experimental data.

doi: 10.1103/PhysRevC.91.024326
Citations: PlumX Metrics

2015GU19      Phys.Rev. C 92, 044303 (2015)

X.Guan, K.D.Launey, Y.Wang, F.Pan, J.P.Draayer

Ground-state properties of rare-earth nuclei in the Nilsson mean-field plus extended-pairing model

NUCLEAR STRUCTURE 152,153,154,155,156,157,158,159,160,161,162,163,164Er, 154,155,156,157,158,159,160,161,162,163,164,165,166Yb, 156,157,158,159,160,161,162,163,164,165,166,167,168Hf; calculated pairing interaction strengths, binding energies, even-odd mass differences, energies of the first pairing excitation states in A=156-164 Er, A=160-165 Yb and A=166-168 Hf nuclei, and moments of inertia for the ground-state bands. Dominance of s, d, and g valence nucleon pairs in the ground state. Nilsson mean-field using proton-proton and neutron-neutron pairing interactions. Comparison with experimental data.

doi: 10.1103/PhysRevC.92.044303
Citations: PlumX Metrics

2015LA10      Int.J.Mod.Phys. E24, 1530005 (2015)

K.D.Launey, J.P.Draayer, T.Dytrych, G.-H.Sun, S.-H.Dong

Approximate symmetries in atomic nuclei from a large-scale shell-model perspective

NUCLEAR STRUCTURE 8Be, 12C, 18,20,22Ne, 20,22,24Mg, 28Si; analyzed available data; deduced shell-model spaces expansion beyond the current limits to accommodate particle excitations.

doi: 10.1142/S0218301315300052
Citations: PlumX Metrics

2014TO04      Phys.Rev. C 89, 034312 (2014)

G.K.Tobin, M.C.Ferriss, K.D.Launey, T.Dytrych, J.P.Draayer, A.C.Dreyfuss, C.Bahri

Symplectic no-core shell-model approach to intermediate-mass nuclei

NUCLEAR STRUCTURE 20O, 20,22,24Ne, 20,22Mg, 24Si; calculated levels, J, π, B(E2), matter rms radii, quadrupole moments, rotational bands, collective features, elongation β and γ asymmetric configurations. No-core symplectic shell model (NCSpM) with schematic effective many-nucleon long-range interaction. Comparison with experimental data.

doi: 10.1103/PhysRevC.89.034312
Citations: PlumX Metrics

2013DR10      Phys.Lett. B 727, 511 (2013)

A.C.Dreyfuss, K.D.Launey, T.Dytrych, J.P.Draayer, C.Bahri

Hoyle state and rotational features in Carbon-12 within a no-core shell-model framework

NUCLEAR STRUCTURE 12C; calculated point-particle rms matter radii and electric quadrupole moments, level energies, J, π, probability distributions of the ground and Hoyle states; deduced guidance for ab initio shell model calculations. No-core shell model.

doi: 10.1016/j.physletb.2013.10.048
Citations: PlumX Metrics

2013DY04      Phys.Rev.Lett. 111, 252501 (2013) `

T.Dytrych, K.D.Launey, J.P.Draayer, P.Maris, J.P.Vary, E.Saule, U.Catalyurek, M.Sosonkina, D.Langr, M.A.Caprio

Collective Modes in Light Nuclei from First Principles

NUCLEAR STRUCTURE 6Li, 6He, 8Be; calculated B(E2), magnetic dipole moments, rms matter radii. ab initio analyses, comparison with available data.

doi: 10.1103/PhysRevLett.111.252501
Citations: PlumX Metrics

2013GU31      Phys.Rev. C 88, 044325 (2013)

X.Guan, K.D.Launey, J.Gu, F.Pan, J.P.Draayer

Level statistical properties of the spherical mean-field plus standard pairing model

NUCLEAR STRUCTURE 48,49,50,51,52,53Ca; calculated level spacing distribution, spectral rigidity, statistical energy spectra. 42,43,44,45,46,47,48,49,50,51,52Ca; calculated pairing gap and compared with experimental data. Spherical mean-field plus standard pairing model calculations, with pairing strength deduced from experimental data. Comparison with Gaussian orthogonal ensemble (GOE) predictions, and Poisson distribution.

doi: 10.1103/PhysRevC.88.044325
Citations: PlumX Metrics

2012DR12      J.Phys.:Conf.Ser. 387, 012017 (2012)

J.P.Draayer, T.Dytrych, K.D.Launey, D.Langr, A.C.Dreyfuss, C.Bahri

Symmetry-Adopted Ab Initio Open Core Shell Model Theory

NUCLEAR STRUCTURE 12C; calculated levels, J, π, 2+1 TO ground state γ strength using NCSpM (no-core symplectic model). Compared with data.

doi: 10.1088/1742-6596/387/1/012017
Citations: PlumX Metrics

2012DR13      J.Phys.:Conf.Ser. 366, 012014 (2012)

J.P.Draayer, T.Dytrych, K.D.Launey, D.Langr

Symmetry-Adapted Ab Initio Shell Model for Nuclear Structure Calculations

NUCLEAR STRUCTURE 12C; calculated probability distribution of the lowest calculated 0+ state, deformation using symmetry-adapted ab initio shell model. Also 6,7Li, 16O calculated, but results not given.

doi: 10.1088/1742-6596/366/1/012014
Citations: PlumX Metrics

2012DY04      J.Phys.:Conf.Ser. 387, 012016 (2012)

T.Dytrych, K.D.Launey, J.P.Draayer, D.Langr

Ab initio No-core Shell Model Calculations in a SU(3)-based Coupling Scheme

NUCLEAR STRUCTURE 6Li, 8Be, 12C, 16O; calculated low-lying eigen states, J, π using ab initio no-core shell model with JISP16 NN interaction; deduced strong dominance of few intrinsic spin components.No numbers or figures.

doi: 10.1088/1742-6596/387/1/012016
Citations: PlumX Metrics

2012GU16      Phys.Rev. C 86, 024313 (2012)

X.Guan, K.D.Launey, M.-x.Xie, L.Bao, F.Pan, J.P.Draayer

Heine-Stieltjes correspondence and the polynomial approach to the standard pairing problem

NUCLEAR STRUCTURE 42,43,44,45,46,47,48,49Ca, 58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77Ni, 146,147,148,149,150,151,152,153Sm; calculated pairing gaps. 110Sn; calculated relevant polynomials and the corresponding eigen-energies. Solution of the Bethe ansatz (Gaudin-Richardson) equations based on Heine-Stieltjes polynomials. Comparison with BCS (pairing) calculations and experimental data.

doi: 10.1103/PhysRevC.86.024313
Citations: PlumX Metrics

2012LA10      Phys.Rev. C 85, 044003 (2012)

K.D.Launey, T.Dytrych, J.P.Draayer

Similarity renormalization group and many-body effects in multiparticle systems

NUCLEAR STRUCTURE A=1-28; calculated effect of two-body and three-body interaction renormalization on ab initio calculation of energy spectra. Similarity renormalization group (SRG), spectral distribution theory (SDT).

doi: 10.1103/PhysRevC.85.044003
Citations: PlumX Metrics

Back to query form