NSR Query Results

Output year order : Descending
Format : Normal

NSR database version of May 21, 2024.

Search: Author = J.Gegelia

Found 36 matches.

Back to query form

2022RE12      Phys.Rev. C 106, 034001 (2022)

X.-L.Ren, E.Epelbaum, J.Gegelia

Nucleon-nucleon scattering up to next-to-next-to-leading order in manifestly Lorentz-invariant chiral effective field theory: Peripheral phases

NUCLEAR REACTIONS 1H(n, n), E<300 MeV; neutron-proton phase shifts and mixing angles for partial D, F, G, H, I waves. Time-ordered perturbation theory in the framework of manifestly Lorentz-invariant chiral effective field theory up to next-to-next-to-leading.

doi: 10.1103/PhysRevC.106.034001
Citations: PlumX Metrics

2022TE06      Few-Body Systems 63, 67 (2022)

I.Tews, Z.Davoudi, A.Ekstrom, J.D.Holt, K.Becker, R.Briceno, D.J.Dean, W.Detmold, C.Drischler, T.Duguet, E.Epelbaum, A.Gasparyan, J.Gegelia, J.R.Green, H.W.Griesshammer, A.D.Hanlon, M.Heinz, H.Hergert, M.Hoferichter, M.Illa, D.Kekejian, A.Kievsky, S.Konig, H.Krebs, K.D.Launey, D.Lee, P.Navratil, A.Nicholson, A.Parreno, D.R.Phillips, M.Ploszajczak, X.-L.Ren, T.R.Richardson, C.Robin, G.H.Sargsyan, M.J.Savage, M.R.Schindler, P.E.Shanahan, R.P.Springer, A.Tichai, U.van Kolck, M.L.Wagman, A.Walker-Loud, C.-J.Yang, X.Zhang

Nuclear Forces for Precision Nuclear Physics: A Collection of Perspectives

doi: 10.1007/s00601-022-01749-x
Citations: PlumX Metrics

2020EP02      Eur.Phys.J. A 56, 152 (2020)

E.Epelbaum, A.M.Gasparyan, J.Gegelia, Ulf-G.Meissner, X.-L.Ren

How to renormalize integral equations with singular potentials in effective field theory

doi: 10.1140/epja/s10050-020-00162-4
Citations: PlumX Metrics

2020RE05      Phys.Rev. C 101, 034001 (2020)

X.-L.Ren, E.Epelbaum, J.Gegelia

Λ-nucleon scattering in baryon chiral perturbation theory

doi: 10.1103/PhysRevC.101.034001
Citations: PlumX Metrics

2019EP02      Eur.Phys.J. A 55, 56 (2019)

E.Epelbaum, A.M.Gasparyan, J.Gegelia, Ulf-G.Meissner

Reply to the Comment by Manuel Pavon Valderrama on "How (not) to renormalize integral equations with singular potentials in effective field theory"

doi: 10.1140/epja/i2019-12751-1
Citations: PlumX Metrics

2018EP01      Eur.Phys.J. A 54, 186 (2018)

E.Epelbaum, A.M.Gasparyan, J.Gegelia, Ulf-G.Meissner

How (not) to renormalize integral equations with singular potentials in effective field theory

doi: 10.1140/epja/i2018-12632-1
Citations: PlumX Metrics

2017EP01      Eur.Phys.J. A 53, 98 (2017)

E.Epelbaum, J.Gegelia, U.-G.Meissner, D.-L.Yao

Renormalization of the three-boson system with short-range interactions revisited

doi: 10.1140/epja/i2017-12288-3
Citations: PlumX Metrics

2016BE30      Eur.Phys.J. A 52, 296 (2016)

J.Behrendt, E.Epelbaum, J.Gegelia, Ulf-G.Meissner, A.Nogga

Two-nucleon scattering in a modified Weinberg approach with a symmetry-preserving regularization

doi: 10.1140/epja/i2016-16296-5
Citations: PlumX Metrics

2016BI01      Eur.Phys.J. A 52, 26 (2016)

M.C.Birse, E.Epelbaum, J.Gegelia

New fixed points of the renormalisation group for two-body scattering

doi: 10.1140/epja/i2016-16026-1
Citations: PlumX Metrics

2015BA28      Phys.Rev. C 92, 014001 (2015)

V.Baru, E.Epelbaum, A.A.Filin, J.Gegelia

Low-energy theorems for nucleon-nucleon scattering at unphysical pion masses

doi: 10.1103/PhysRevC.92.014001
Citations: PlumX Metrics

2015DJ03      Eur.Phys.J. A 51, 101 (2015)

D.Djukanovic, E.Epelbaum, J.Gegelia, H.Krebs, U.-G.Meissner

Complex-mass renormalization in hadronic EFT: Applicability at two-loop order

doi: 10.1140/epja/i2015-15101-5
Citations: PlumX Metrics

2015EP03      Eur.Phys.J. A 51, 71 (2015)

E.Epelbaum, A.M.Gasparyan, J.Gegelia, H.Krebs

1S0 nucleon-nucleon scattering in the modified Weinberg approach

doi: 10.1140/epja/i2015-15071-6
Citations: PlumX Metrics

2014EP02      Eur.Phys.J. A 50, 51 (2014)

E.Epelbaum, A.M.Gasparyan, J.Gegelia, M.R.Schindler

Deuteron electromagnetic form factors in a renormalizable formulation of chiral effective field theory

NUCLEAR STRUCTURE 2H; calculated Coulomb, magnetic and quadrupole form factors using renormalizable chiral effective field theory.

doi: 10.1140/epja/i2014-14051-8
Citations: PlumX Metrics

2014EP04      Few-Body Systems 55, 967 (2014)

E.Epelbaum, A.M.Gasparyan, J.Gegelia, M.R.Schindler

Renormalizable Chiral EFT for NN Scattering

doi: 10.1007/s00601-013-0763-5
Citations: PlumX Metrics

2014GE08      Eur.Phys.J. A 50, 174 (2014)

J.Gegelia, U.-G.Meissner

Properties of effective massive Yang-Mills theory in the limit of vanishing vector boson mass

doi: 10.1140/epja/i2014-14174-x
Citations: PlumX Metrics

2010GE07      Eur.Phys.J. A 44, 425 (2010)

J.Gegelia, S.Scherer

How to define physical properties of unstable particles

doi: 10.1140/epja/i2010-10955-5
Citations: PlumX Metrics

2009EP04      Eur.Phys.J. A 41, 341 (2009)

E.Epelbaum, J.Gegelia

Regularization, renormalization and "peratization" in effective field theory for two nucleons

doi: 10.1140/epja/i2009-10833-3
Citations: PlumX Metrics

2008CA12      Eur.Phys.J. A 35, 253 (2008)

S.Capstick, A.Svarc, L.Tiator, J.Gegelia, M.M.Giannini, E.Santopinto, C.Hanhart, S.Scherer, T.-S.H.Lee, T.Sato, N.Suzuki

The physical meaning of scattering matrix singularities in coupled-channel formalisms BRAG 2007 Workshop summary

doi: 10.1140/epja/i2007-10576-1
Citations: PlumX Metrics

2008SC04      Nucl.Phys. A803, 68 (2008); Erratum Nucl.Phys. A1010, 122175 (2021)

M.R.Schindler, D.Djukanovic, J.Gegelia, S.Scherer

Infrared renormalization of two-loop integrals and the chiral expansion of the nucleon mass

doi: 10.1016/j.nuclphysa.2008.01.023
Citations: PlumX Metrics

2007DJ03      Few-Body Systems 41, 141 (2007)

D.Djukanovic, J.Gegelia, S.Scherer, M.R.Schindler

NN scattering in higher-derivative formulation of baryon chiral perturbation theory

doi: 10.1007/S00601-007-0194-2
Citations: PlumX Metrics

2007SC04      Phys.Rev. C 75, 025202 (2007)

M.R.Schindler, T.Fuchs, J.Gegelia, S.Scherer

Axial, induced pseudoscalar, and pion-nucleon form factors in manifestly Lorentz-invariant chiral perturbation theory

doi: 10.1103/PhysRevC.75.025202
Citations: PlumX Metrics

2007SC40      Phys.Lett. B 649, 390 (2007)

M.R.Schindler, D.Djukanovic, J.Gegelia, S.Scherer

Chiral expansion of the nucleon mass to order O(q6)

doi: 10.1016/j.physletb.2007.04.034
Citations: PlumX Metrics

2006DJ03      Eur.Phys.J. A 29, 337 (2006)

D.Djukanovic, J.Gegelia, S.Scherer

Probing the convergence of perturbative series in baryon chiral perturbation theory

NUCLEAR REACTIONS 1H(π-, π0), (π+, π+), (π-, π-), E(cm)=1.1-1.35 GeV; calculated σ(θ).

doi: 10.1140/epja/i2006-10096-6
Citations: PlumX Metrics

2006HA19      Eur.Phys.J. A 28, 5 (2006)

C.Hacker, N.Wies, J.Gegelia, S.Scherer

Magnetic dipole moment of the Δ(1232) in chiral perturbation theory

doi: 10.1140/epja/i2006-10043-7
Citations: PlumX Metrics

2005HA62      Phys.Rev. C 72, 055203 (2005)

C.Hacker, N.Wies, J.Gegelia, S.Scherer

Including the Δ(1232) resonance in baryon chiral perturbation theory

doi: 10.1103/PhysRevC.72.055203
Citations: PlumX Metrics

2005LE03      J.Phys.(London) G31, 89 (2005)

B.C.Lehnhart, J.Gegelia, S.Scherer

Baryon masses and nucleon sigma terms in manifestly Lorentz-invariant baryon chiral perturbation theory

doi: 10.1088/0954-3899/31/2/002
Citations: PlumX Metrics

2005SC23      Eur.Phys.J. A 26, 1 (2005)

M.R.Schindler, J.Gegelia, S.Scherer

Electromagnetic form factors of the nucleon in chiral perturbation theory including vector mesons

NUCLEAR STRUCTURE 1n, 1H; calculated electromagnetic form factors. Lorentz-invariant chiral perturbation theory with vector mesons.

doi: 10.1140/epja/i2005-10145-8
Citations: PlumX Metrics

2004FU03      Eur.Phys.J. A 19, Supplement 1, 35 (2004)

T.Fuchs, J.Gegelia, S.Scherer

Structure of the nucleon in chiral perturbation theory

NUCLEAR STRUCTURE 1n, 1H; calculated electromagnetic form factors, renormalization. Baryon chiral perturbation theory.

doi: 10.1140/epjad/s2004-03-006-0
Citations: PlumX Metrics

2004FU23      J.Phys.(London) G30, 1407 (2004)

T.Fuchs, J.Gegelia, S.Scherer

Electromagnetic form factors of the nucleon in chiral perturbation theory

NUCLEAR STRUCTURE 1n, 1H; calculated electromagnetic form factors. Chiral perturbation theory.

doi: 10.1088/0954-3899/30/10/008
Citations: PlumX Metrics

2004GE07      Eur.Phys.J. A 19, 355 (2004)


Is the strong-interaction proton-proton scattering length renormalization scale dependent in effective field theory?

doi: 10.1140/epja/i2003-10135-x
Citations: PlumX Metrics

2004SC13      Phys.Lett. B 586, 258 (2004)

M.R.Schindler, J.Gegelia, S.Scherer

Infrared regularization of baryon chiral perturbation theory reformulated

doi: 10.1016/j.physletb.2004.02.056
Citations: PlumX Metrics

2001GE02      Nucl.Phys. A680, 304c (2001)


Three-Body System with Short-Range Interactions

doi: 10.1016/S0375-9474(00)00433-4
Citations: PlumX Metrics

2001GE15      Phys.Lett. 517B, 476 (2001)

J.Gegelia, G.Japaridze

Renormalization of 1S0 NN Scattering Amplitude in Effective Field Theory

doi: 10.1016/S0370-2693(01)00981-9
Citations: PlumX Metrics

1999GE14      J.Phys.(London) G25, 1681 (1999)


Issues of Regularization and Renormalization in Effective Field Theories of Nucleon-Nucleon Scattering

doi: 10.1088/0954-3899/25/8/310
Citations: PlumX Metrics

1999GE17      Phys.Lett. 463B, 133 (1999)


Nucleon-Nucleon Scattering and Effective Field Theory: Including pions non-perturbatively

doi: 10.1016/S0370-2693(99)00994-6
Citations: PlumX Metrics

1998GE04      Phys.Lett. 429B, 227 (1998)


EFT and NN Scattering

doi: 10.1016/S0370-2693(98)00460-2
Citations: PlumX Metrics

Back to query form