NSR Query Results

Output year order : Descending
Format : Normal

NSR database version of April 11, 2024.

Search: Author = H.Hergert

Found 48 matches.

Back to query form

2023DU01      Eur.Phys.J. A 59, 13 (2023)

T.Duguet, J.-P.Ebran, M.Frosini, H.Hergert, V.Soma

Rooting the EDF method into the ab initio framework PGCM-PT formalism based on MR-IMSRG pre-processed Hamiltonians

NUCLEAR STRUCTURE 20Ne; calculated energy levels, J, π using the empirical nuclear energy density functional (EDF) method rooted into the recently formulated ab initio many-body perturbation theory built on top of the projected generator coordinate method (PGCM-PT), whenever the latter employs an effective Hamiltonian resulting from a multi-reference in-medium similarity renormalization group (MR-IMSRG) transformation of the nuclear Hamiltonian at play in chiral effective field theory. Comparison with available data.

doi: 10.1140/epja/s10050-023-00914-y
Citations: PlumX Metrics

2023ZA03      Eur.Phys.J. A 59, 95 (2023)

A.Zare, R.Wirth, C.A.Haselby, H.Hergert, M.Iwen

Modewise Johnson-Lindenstrauss embeddings for nuclear many-body theory

doi: 10.1140/epja/s10050-023-00999-5
Citations: PlumX Metrics

2023ZH07      Phys.Rev. C 107, 024304 (2023)

X.Zhang, W.Lin, J.M.Yao, C.F.Jiao, A.M.Romero, T.R.Rodriguez, H.Hergert

Optimization of the generator coordinate method with machine-learning techniques for nuclear spectra and neutrinoless double-β decay: Ridge regression for nuclei with axial deformation

RADIOACTIVITY 76Ge(2β-);calculated 0νββ-decay nuclear matrix elements (NME) for the decay between ground states of 76Ge and 76Se. Statistical machine-learning (ML) algorithms applied with generator coordinate method (GCM), orthogonality condition, polinomial ridge regression and energy-transition orthogonality procedure.

NUCLEAR STRUCTURE 76Ge, 76Se; calculated low-lying levels, J, π. Subspace-reduction algorithm calculations based on generator coordinate method (GCM)+orthogonality condition(OC)+polinomial ridge regression (RR). Comparison to experimental data.

doi: 10.1103/PhysRevC.107.024304
Citations: PlumX Metrics

2022CI08      J.Phys.(London) G49, 120502 (2022)

V.Cirigliano, Z.Davoudi, J.Engel, R.J.Furnstahl, G.Hagen, U.Heinz, H.Hergert, M.Horoi, C.W.Johnson, A.Lovato, E.Mereghetti, W.Nazarewicz, A.Nicholson, T.Papenbrock, S.Pastore, M.Plumlee, D.R.Phillips, P.E.Shanahan, S.R.Stroberg, F.Viens, A.Walker-Loud, K.A.Wendt, S.M.Wild

Towards precise and accurate calculations of neutrinoless double-beta decay

RADIOACTIVITY 48Ca(2β-); calculated neutrinoless nuclear matrix elements using chiral-EFT interactions, EDF, IBM, QRPA, SM-pf, SM-sdpf, SM-MBPT, RSM, QMC+SM, IM-GCM, VS-IMSRG, CCSD, CCSD-T1.

doi: 10.1088/1361-6471/aca03e
Citations: PlumX Metrics

2022FR04      Eur.Phys.J. A 58, 64 (2022)

M.Frosini, T.Duguet, J.-P.Ebran, B.Bally, H.Hergert, T.R.Rodriguez, R.Roth, J.M.Yao, V.Soma

Multi-reference many-body perturbation theory for nuclei, III. Ab initio calculations at second order in PGCM-PT

doi: 10.1140/epja/s10050-022-00694-x
Citations: PlumX Metrics

2022TE06      Few-Body Systems 63, 67 (2022)

I.Tews, Z.Davoudi, A.Ekstrom, J.D.Holt, K.Becker, R.Briceno, D.J.Dean, W.Detmold, C.Drischler, T.Duguet, E.Epelbaum, A.Gasparyan, J.Gegelia, J.R.Green, H.W.Griesshammer, A.D.Hanlon, M.Heinz, H.Hergert, M.Hoferichter, M.Illa, D.Kekejian, A.Kievsky, S.Konig, H.Krebs, K.D.Launey, D.Lee, P.Navratil, A.Nicholson, A.Parreno, D.R.Phillips, M.Ploszajczak, X.-L.Ren, T.R.Richardson, C.Robin, G.H.Sargsyan, M.J.Savage, M.R.Schindler, P.E.Shanahan, R.P.Springer, A.Tichai, U.van Kolck, M.L.Wagman, A.Walker-Loud, C.-J.Yang, X.Zhang

Nuclear Forces for Precision Nuclear Physics: A Collection of Perspectives

doi: 10.1007/s00601-022-01749-x
Citations: PlumX Metrics

2022TI02      Eur.Phys.J. A 58, 2 (2022)

A.Tichai, P.Arthuis, H.Hergert, T.Duguet

ADG: automated generation and evaluation of many-body diagrams

doi: 10.1140/epja/s10050-021-00621-6
Citations: PlumX Metrics

2022YA19      Phys.Rev. C 106, 014315 (2022)

J.M.Yao, I.Ginnett, A.Belley, T.Miyagi, R.Wirth, S.Bogner, J.Engel, H.Hergert, J.D.Holt, S.R.Stroberg

Ab initio studies of the double-Gamow-Teller transition and its correlation with neutrinoless double-β decay

RADIOACTIVITY 6,8He, 10Be, 14C, 18,22O, 22Ne, 26,28Mg, 30Si, 34S, 38Ar, 42,44,48,56Ca, 50Cr, 46,52Ti(2β-); A=6-76(2β-); calculated nuclear matrix elements (NMEs) for ground-state-to-ground-state double Gamow-Teller transitions (DGT) and Gamow Teller (GT) 0νββ decay, transition densities of parent nuclei, correlation between the transition densities and NMEs of DGT transitions. Ab initio many body methods by importance-truncated no-core shell model (IT-NCSM) with GXPF1A interaction, valence-space in-medium similarity renormalization group method (VSIMSRG) with EM1.8/2.0 interaction, and in-medium generator coordinate method (IM-GCM). 6He, 10Be, 14C, 18O, 22Ne, 26Mg, 30Si, 34S, 38Ar, 42,44Ca, 46Ti, 50Cr; 2β- decay mode forbidden for these nuclei due to negative Q values, however, on query, authors mentioned that these nuclei were included for NMEs for 0νββ decays as these involved the same decay operators that determine the allowed decay rates, thus helpful to benchmark many-body approaches for the nuclear matrix elements of neutrinoless double beta decay.

doi: 10.1103/PhysRevC.106.014315
Citations: PlumX Metrics

2021LE13      Phys.Rev.Lett. 127, 062501 (2021)

D.Lee, S.Bogner, B.A.Brown, S.Elhatisari, E.Epelbaum, H.Hergert, M.Hjorth-Jensen, H.Krebs, N.Li, B.-N.Lu, U.-G.Meissner

Hidden Spin-Isospin Exchange Symmetry

doi: 10.1103/PhysRevLett.127.062501
Citations: PlumX Metrics

2021WI16      Phys.Rev.Lett. 127, 242502 (2021)

R.Wirth, J.M.Yao, H.Hergert

Ab Initio Calculation of the Contact Operator Contribution in the Standard Mechanism for Neutrinoless Double Beta Decay

RADIOACTIVITY 6,8He, 48Ca(2β-); calculated the contribution of the leading-order contact transition operator to the nuclear matrix element(NME) of neutrinoless double-beta decay assuming a light Majorana neutrino-exchange mechanism.

doi: 10.1103/PhysRevLett.127.242502
Citations: PlumX Metrics

2021YA03      Phys.Rev. C 103, 014315 (2021)

J.M.Yao, A.Belley, R.Wirth, T.Miyagi, C.G.Payne, S.R.Stroberg, H.Hergert, J.D.Holt

Ab initio benchmarks of neutrinoless double-β decay in light nuclei with a chiral Hamiltonian

RADIOACTIVITY 6,8He, 10Be, 14C, 22O(2β-); calculated nuclear matrix elements (NMEs) for isospin-conserving and isospin-changing 0νββ decay modes. Valence-space in-medium similarity renormalization group (VS-IMSRG) and importance-truncated no-core shell model (IT-NCSM) calculations. Comparison with results of calculations using NCSM and coupled-cluster theory with singles and doubles plus leading-order triples excitations (CC-SDT1).

NUCLEAR STRUCTURE 6,8He, 6,8,10Be, 10,14C, 14,22O, 22Ne; calculated energies per nucleon (E/A) using VS-IMSRG, in-medium generator coordinate (IM-GCM), and IT-NCSM calculations, and compared with those from the CC-SDT1 calculations.

doi: 10.1103/PhysRevC.103.014315
Citations: PlumX Metrics

2021ZH55      Phys.Rev. C 104, 044002 (2021)

B.Zhu, R.Wirth, H.Hergert

Singular value decomposition and similarity renormalization group evolution of nuclear interactions

NUCLEAR STRUCTURE 4He, 16O, 40Ca; calculated ground-state energies as function of flow parameter from in-medium similarity renormalization group (IMSRG) approach. 2H; calculated ground-state energy from singular value decompositions (SVD), similarity renormalization group (SRG) with Entem and Machleidt (EM) interaction.

NUCLEAR REACTIONS 1H(p, X), (n, X); calculated singular value spectra in proton-proton and neutron-proton 1S0 partial waves for chiral N3LO two-nucleon, Entem and Machleidt (EM), and AV18 interactions, contours of momentum-space matrix elements of the EM interaction, neutron-proton phase shifts and mixing angles of the EM interaction. Singular value decompositions (SVD) method of nucleon-nucleon interactions in partial wave representation similarity renormalization group (SRG).

doi: 10.1103/PhysRevC.104.044002
Citations: PlumX Metrics

2020BA33      Phys.Rev. C 102, 014302 (2020)

R.A.M.Basili, J.M.Yao, J.Engel, H.Hergert, M.Lockner, P.Maris, J.P.Vary

Benchmark neutrinoless double-β decay matrix elements in a light nucleus

RADIOACTIVITY 6He(2β-); calculated nuclear radius, ground state binding energy, and neutrinoless double β-decay (0νββ) nuclear matrix elements (NMEs) using the no-core shell model (NCSM), and the multireference in-medium similarity renormalization group (MR-IMSRG).

doi: 10.1103/PhysRevC.102.014302
Citations: PlumX Metrics

2020BR12      Phys. Rev. Res. 2, 022035 (2020)

B.A.Brown, K.Minamisono, J.Piekarewicz, H.Hergert, D.Garand, A.Klose, K.Konig, J.D.Lantis, Y.Liu, B.Maass, A.J.Miller, W.Nortershauser, S.V.Pineda, R.C.Powel, D.M.Rossi, F.Sommer, C.Sumithrarachchi, A.Teigelhofer, J.Watkins, R.Wirth

Implications of the 36Ca-36S and 38Ca-38Ar difference in mirror charge radii on the neutron matter equation of state

NUCLEAR STRUCTURE 36Ca, 36S, 38Ca, 38Ar; analyzed available data; deduced differences in charge radii between mirror nuclei, the slope of the symmetry energy L at the nuclear saturation density. Comparison with theoretical calculations of charge radii, differences and symmetry energy.

doi: 10.1103/PhysRevResearch.2.022035
Citations: PlumX Metrics

2020YA16      Phys.Rev.Lett. 124, 232501 (2020)

J.M.Yao, B.Bally, J.Engel, R.Wirth, T.R.Rodriguez, H.Hergert

Ab Initio Treatment of Collective Correlations and the Neutrinoless Double Beta Decay of 48Ca

RADIOACTIVITY 48Ca(2β-); calculated particle-number projected potential energy surfaces. 48Ti; deduced nuclear matrix elements correlations with B(E2).

doi: 10.1103/PhysRevLett.124.232501
Citations: PlumX Metrics

2018LE03      Phys.Rev.Lett. 120, 062503 (2018)

E.Leistenschneider, M.P.Reiter, S.Ayet San Andres, B.Kootte, J.D.Holt, P.Navratil, C.Babcock, C.Barbieri, B.R.Barquest, J.Bergmann, J.Bollig, T.Brunner, E.Dunling, A.Finlay, H.Geissel, L.Graham, F.Greiner, H.Hergert, C.Hornung, C.Jesch, R.Klawitter, Y.Lan, D.Lascar, K.G.Leach, W.Lippert, J.E.McKay, S.F.Paul, A.Schwenk, D.Short, J.Simonis, V.Soma, R.Steinbrugge, S.R.Stroberg, R.Thompson, M.E.Wieser, C.Will, M.Yavor, C.Andreoiu, T.Dickel, I.Dillmann, G.Gwinner, W.R.Plass, C.Scheidenberger, A.A.Kwiatkowski, J.Dilling

Dawning of the N=32 Shell Closure Seen through Precision Mass Measurements of Neutron-Rich Titanium Isotopes

ATOMIC MASSES 51V, 51,52,53,54,55Ti, 52,53,54,55Cr; measured radio frequencies, TOF; deduced mass excesses. Comparison with the AME16 recommended values.

doi: 10.1103/PhysRevLett.120.062503
Citations: PlumX Metrics

2018TI07      Phys.Lett. B 786, 195 (2018)

A.Tichai, P.Arthuis, T.Duguet, H.Hergert, V.Soma, R.Roth

Bogoliubov many-body perturbation theory for open-shell nuclei

NUCLEAR STRUCTURE 14,16,18,20,22,24,26,28O, 34,36,38,40,42,44,46,48,50,52,54,56,58,60Ca, 48,50,52,54,56,58,60,62,64,66,68,70,72,74,76,78Ni; calculated absolute ground-state binding energies and two-neutron separation energies. A Rayleigh–Schrodinger many-body perturbation theory (MBPT) approach.

doi: 10.1016/j.physletb.2018.09.044
Citations: PlumX Metrics

2018YA21      Phys.Rev. C 98, 054311 (2018)

J.M.Yao, J.Engel, L.J.Wang, C.F.Jiao, H.Hergert

Generator-coordinate reference states for spectra and 0νββ decay in the in-medium similarity renormalization group

NUCLEAR STRUCTURE 48Ca, 48Ti; calculated ground-state energies, low-lying levels, J, π, collective wave functions using in-medium similarity renormalization group (IMSRG) method with generator-coordinate method (GCM).

RADIOACTIVITY 48Ca(2β-); calculated matrix elements for 0νββ decay mode using the IMSRG+GCM calculations. Comparison with other theoretical calculations.

doi: 10.1103/PhysRevC.98.054311
Citations: PlumX Metrics

2017GE02      Phys.Rev.Lett. 118, 152503 (2017)

E.Gebrerufael, K.Vobig, H.Hergert, R.Roth

Ab Initio Description of Open-Shell Nuclei: Merging No-Core Shell Model and In-Medium Similarity Renormalization Group

NUCLEAR STRUCTURE 12C, 20O; calculated ground-state energies, level energies, J, π. Comparison with experimental data.

doi: 10.1103/PhysRevLett.118.152503
Citations: PlumX Metrics

2017PA26      Phys.Rev. C 96, 034324 (2017)

N.M.Parzuchowski, S.R.Stroberg, P.Navratil, H.Hergert, S.K.Bogner

Ab initio electromagnetic observables with the in-medium similarity renormalization group

NUCLEAR STRUCTURE 14C; calculated energies of the ground state and first 2+ state, B(E2) for the first 2+ state. 2H; calculated energy, magnetic dipole moment, electric quadrupole moment and charge radius of the ground state. 6Li; calculated energies of ground-state and first 3+ state, quadrupole moments, B(M1), B(E2). 6He, 14C, 22O, 32S, 48Ca, 56,60Ni; calculated energies and B(E2) of first 2+ states. 14N; calculated energy and B(M1) of the first excited 0+ state. 32S, 32Cl; calculated energies, B(M1) and magnetic-dipole moments of first 1+ states. 16O, 40Ca; calculated energies and B(E3) of first 3- states. 14C, 22O, 32S; calculated E2 and M1 transition matrix elements. Equations-of-motion in-medium similarity renormalization group (EOM-IMSRG), and valence-space VS-IMSRG methods. Comparison with available experimental values, and theoretical calculations from no-core shell-model.

doi: 10.1103/PhysRevC.96.034324
Citations: PlumX Metrics

2017ST03      Phys.Rev.Lett. 118, 032502 (2017)

S.R.Stroberg, A.Calci, H.Hergert, J.D.Holt, S.K.Bogner, R.Roth, A.Schwenk

Nucleus-Dependent Valence-Space Approach to Nuclear Structure

NUCLEAR STRUCTURE 16,18,22O, 10B, 22Na, 46V, C, N, O, Na, Ca, Ni; calculated ground-state energies, J, π, the extension of ab initio nuclear structure calculations.

doi: 10.1103/PhysRevLett.118.032502
Citations: PlumX Metrics

2016LA16      Phys.Rev.Lett. 117, 052501 (2016)

V.Lapoux, V.Soma, C.Barbieri, H.Hergert, J.D.Holt, S.R.Stroberg

Radii and Binding Energies in Oxygen Isotopes: A Challenge for Nuclear Forces

NUCLEAR STRUCTURE 14,15,16,17,18,19,20,21,22,23,24O; analyzed available data; calculated proton and neutron radii, binding energies. ab initio calculations with conventional nuclear interactions derived within chiral effective field theory.

doi: 10.1103/PhysRevLett.117.052501
Citations: PlumX Metrics

2016ST12      Phys.Rev. C 93, 051301 (2016)

S.R.Stroberg, H.Hergert, J.D.Holt, S.K.Bogner, A.Schwenk

Ground and excited states of doubly open-shell nuclei from ab initio valence-space Hamiltonians

NUCLEAR STRUCTURE 19,23,25,26F, 20,22,24,25,26Ne, 24Mg; calculated levels, J, π, yrast states from ab initio in-medium similarity renormalization group (IM-SRG) Hamiltonians based on NN+3N-induced and NN+3N-full Hamiltonians. Comparison with experimental data, and with phenomenological USDB predictions. 17,18,19,20,21,22,23,24,25,26,27,28,29F, 18,19,20,21,22,23,24,25,26,27,28,29,30Ne; calculated ground-state energies from the A-dependent IM-SRG valence-space Hamiltonian. Comparison with AME-2012 values, and the phenomenological USDB interaction.

doi: 10.1103/PhysRevC.93.051301
Citations: PlumX Metrics

2015CA09      Phys.Rev. C 92, 014327 (2015)

L.Caceres, A.Lepailleur, O.Sorlin, M.Stanoiu, D.Sohler, Zs.Dombradi, S.K.Bogner, B.A.Brown, H.Hergert, J.D.Holt, A.Schwenk, F.Azaiez, B.Bastin, C.Borcea, R.Borcea, C.Bourgeois, Z.Elekes, Zs.Fulop, S.Grevy, L.Gaudefroy, G.F.Grinyer, D.Guillemaud-Mueller, F.Ibrahim, A.Kerek, A.Krasznahorkay, M.Lewitowicz, S.M.Lukyanov, J.Mrazek, F.Negoita, F.de Oliveira, Yu.-E.Penionzhkevich, Zs.Podolyak, M.G.Porquet, F.Rotaru, P.Roussel-Chomaz, M.G.Saint-Laurent, H.Savajols, G.Sletten, J.C.Thomas, J.Timar, C.Timis, Zs.Vajta

Nuclear structure studies of 24F

NUCLEAR REACTIONS 9Be(36S, X)24O/26F/27Ne/28Ne/29Na/30Na, E=77.6 MeV/nucleon; measured energy loss, TOF, yields using LISE achromatic spectrometer at GANIL facility. C(27Na, 24F), E=54-65 MeV/nucleon, [secondary cocktail beam of 25,26Ne, 27,28Na, 29,30Mg from C(36S, X), E=77.6 MeV/nucleon primary reaction, and separated using ALPHA and SPEG spectrometers]; measured Eγ, Iγ, (particle)γ-, γγ-coin using Chateau de Cristal array. 24F; deduced levels, J, π, branching ratios, configurations. Comparison with shell-model calculations using USDA and USDB interactions, and ab initio shell-model calculations, using interactions derived from chiral NN+3N forces by means of IM-SRG.

RADIOACTIVITY 24O(β-), (β-n)[from Be(36S, X), E=77.6 MeV/nucleon using LISE spectrometer at GANIL]; measured Eγ, Iγ, Eβ, βγ-, γγ-coin, (24O)β-correlations, half-life of 24O isotope from (24O)γ-correlated decay curve, β-delayed neutron emission probability Pn using four segmented Ge clover detectors of EXOGAM array for γ rays and DSSSDs for particles. 24F; deduced levels, J, π, branching ratios, β feedings, logft. Comparison with shell-model calculations.

doi: 10.1103/PhysRevC.92.014327
Citations: PlumX Metrics

Data from this article have been entered in the XUNDL database. For more information, click here.

2015DU11      Phys.Rev. C 92, 034313 (2015)

T.Duguet, H.Hergert, J.D.Holt, V.Soma

Nonobservable nature of the nuclear shell structure: Meaning, illustrations, and consequences

NUCLEAR STRUCTURE 40,42,44,46,48,50,52,54,56,58,60Ca; calculated effective single-particle energies (ESPEs), energies of first 2+ states using Shell model. 22,24O; calculated Fermi gap in the ESPE spectrum and the first 2+ excitation energy using microscopic shell model based on realistic 2N and 3N interactions. 74Ni; calculated spectral strength distribution for one-neutron addition and removal processes, ESPEs using self-consistent Gorkov Green's function with a realistic 2N chiral interaction. 14,16,18,20,22,24O; calculated binding energies, S(n) with dominant spectroscopic factors versus neutron ESPEs, residual spreads of separation energies and ESPEs, two-nucleon shell gap versus ESPE Fermi gap, spectroscopic factors associated with one neutron addition and removal process on the ground states. State-of-the-art multireference in-medium SRG and self-consistent Gorkov Green's function many-body calculations based on chiral two- and three-nucleon interactions to illustrate nonobservable aspects of the one-nucleon shell structure.

doi: 10.1103/PhysRevC.92.034313
Citations: PlumX Metrics

2015PA40      Phys.Rev. C 92, 034311 (2015)

P.Papakonstantinou, H.Hergert, R.Roth

Isoscalar and neutron modes in the E1 spectra of Ni isotopes and the relevance of shell effects and the continuum

NUCLEAR REACTIONS 48,56,58,68,78Ni(γ, X), E<40 MeV; calculated photoabsorption σ(E), isoscalar strength distributions. 48,50,52,54,56,58,60,62,64,66,68,70,72,74,76,78,80,82,84Ni; calculated isoscalar (IS) and E1 transition strengths as function of excitation energy, proton and neutron transition densities of isoscalar low-energy mode, neutron occupation probabilities, contributions of two-quasiparticle configurations to transition matrix element, electric dipole polarizability. QRPA+D1S Gogny model and CRPA+SLy4 Skyrme model for dipole response. Comparison with available experimental data.

doi: 10.1103/PhysRevC.92.034311
Citations: PlumX Metrics

2014BO25      Phys.Rev.Lett. 113, 142501 (2014)

S.K.Bogner, H.Hergert, J.D.Holt, A.Schwenk, S.Binder, A.Calci, J.Langhammer, R.Roth

Nonperturbative Shell-Model Interactions from the In-Medium Similarity Renormalization Group

NUCLEAR STRUCTURE 21,22,23,24,25,26O; calculated energy levels, J, π. Comparison with experimental data.

doi: 10.1103/PhysRevLett.113.142501
Citations: PlumX Metrics

2014DE04      Phys.Lett. B 730, 288 (2014)

V.Derya, D.Savran, J.Endres, M.N.Harakeh, H.Hergert, J.H.Kelley, P.Papakonstantinou, N.Pietralla, V.Yu.Ponomarev, R.Roth, G.Rusev, A.P.Tonchev, W.Tornow, H.J.Wortche, A.Zilges

Isospin properties of electric dipole excitations in 48Ca

NUCLEAR REACTIONS 48Ca(polarized γ, γ'), E=6.6-9.51 MeV; 40,48Ca, 16O(α, α'γ), E=136 MeV; measured reaction products, Eγ, Iγ; deduced B(E1), J, π. Comparison with RPA calculations, available data.

doi: 10.1016/j.physletb.2014.01.050
Citations: PlumX Metrics

Data from this article have been entered in the EXFOR database. For more information, access X4 datasetO2175. Data from this article have been entered in the XUNDL database. For more information, click here.

2014HE23      Phys.Rev. C 90, 041302 (2014)

H.Hergert, S.K.Bogner, T.D.Morris, S.Binder, A.Calci, J.Langhammer, R.Roth

Ab initio multireference in-medium similarity renormalization group calculations of even calcium and nickel isotopes

NUCLEAR STRUCTURE 34,36,38,40,42,44,46,48,50,52,54,56,58,60,62Ca, 48,50,52,54,56,58,60,62,64,66,68,70,72,74,76,78,80,82,84,86,88,90Ni; calculated ground state energies, and S(2n) using multireference in-medium similarity renormalization group based on NN+3N nucleon interactions from chiral effective field theory. Comparison with other calculations and experimental results.

doi: 10.1103/PhysRevC.90.041302
Citations: PlumX Metrics

2014PA10      Phys.Rev. C 89, 034306 (2014), Erratum Phys.Rev. C 91, 029903 (2015)

P.Papakonstantinou, H.Hergert, V.Yu.Ponomarev, R.Roth

Low-energy electric dipole response of Sn isotopes

NUCLEAR REACTIONS 100,102,104,106,108,110,112,114,116,118,120,122,124,126,128,130,132,134,136,138,140Sn(γ, xn), E<50 MeV; calculated point-proton and neutron root rms radii, fraction of Thomas-Reiche-Kuhn (TRK) sum rule, photoabsorption σ(E), isoscalar low-energy states, resonances and dipole strengths, B(E1), summed E1 strength, longitudinal electroexcitation form factor for 116Sn. Self-consistent quasi-particle random-phase approximation (QRPA) and Gogny D1S force. Phenomenological Realistic two-body interaction supplemented by a three-body contact term. Comparison with experimental data.

doi: 10.1103/PhysRevC.89.034306
Citations: PlumX Metrics

2014WE01      Phys.Rev. C 89, 034002 (2014)

D.Weber, H.Feldmeier, H.Hergert, T.Neff

From nucleon-nucleon interaction matrix elements in momentum space to an operator representation

doi: 10.1103/PhysRevC.89.034002
Citations: PlumX Metrics

2013HE07      Phys.Rev. C 87, 034307 (2013)

H.Hergert, S.K.Bogner, S.Binder, A.Calci, J.Langhammer, R.Roth, A.Schwenk

In-medium similarity renormalization group with chiral two- plus three-nucleon interactions

NUCLEAR STRUCTURE 4He, 16,24O, 40,48Ca, 48,56Ni; calculated ground states energies, and binding energies using the in-medium similarity renormalization group (IM-SRG), based on chiral two- plus three-nucleon interactions. Comparison with coupled cluster calculations, truncated no-core shell model, and with experimental data.

doi: 10.1103/PhysRevC.87.034307
Citations: PlumX Metrics

2013HE15      Phys.Rev.Lett. 110, 242501 (2013)

H.Hergert, S.Binder, A.Calci, J.Langhammer, R.Roth

Ab Initio Calculations of Even Oxygen Isotopes with Chiral Two-Plus-Three-Nucleon Interactions

NUCLEAR STRUCTURE 14,16,18,20,22,24,26O; calculated ground-state energies and their uncertainties. In-medium similarity renormalization group (IM-SRG) for open-shell nuclei using a multireference formalism based on a generalized Wick theorem introduced in quantum chemistry. The resulting multireference IM-SRG(MR-IM-SRG) is used to perform the first ab initio study.

doi: 10.1103/PhysRevLett.110.242501
Citations: PlumX Metrics

2012PA05      Phys.Lett. B 709, 270 (2012)

P.Papakonstantinou, H.Hergert, V.Yu.Ponomarev, R.Roth

Low-energy dipole strength and the critical case of 48Ca

NUCLEAR STRUCTURE 36,40,44,48,52Ca; calculated isoscalar dipole, E1 and electric dipole strengths. QRPA calculations.

doi: 10.1016/j.physletb.2012.02.024
Citations: PlumX Metrics

2011BO22      Phys.Rev. C 84, 044306 (2011)

S.K.Bogner, R.J.Furnstahl, H.Hergert, M.Kortelainen, P.Maris, M.Stoitsov, J.P.Vary

Testing the density matrix expansion against ab initio calculations of trapped neutron drops

doi: 10.1103/PhysRevC.84.044306
Citations: PlumX Metrics

2011HE11      Phys.Rev. C 83, 064317 (2011)

H.Hergert, P.Papakonstantinou, R.Roth

Quasiparticle random-phase approximation with interactions from the Similarity Renormalization Group

NUCLEAR STRUCTURE 56Ca; calculated number operator response for nonspurious monopole states, isoscalar and isovector dipole strengths. 4He, 16,24O, 34Si, 40,48Ca, 56,68,78Ni, 88Sr, 90Zr, 100,114,132Sn, 146Gd, 208Pb; calculated ground-state energy per nucleon and charge radii. 16O, 40,48Ca, 100,132Sn; calculated proton and neutron spin-orbit splittings. 36,38,40,42,44,46,48,50,52,54,56,58,60Ca; calculated ground-state energies per nucleon, charge radii, odd-even mass differences, and pairing energies, isoscalar and isovector monopole, dipole and quadrupole responses, isoscalar monopole centroids and energies of the first excited 0+ states, centroids of isovector dipole response, isoscalar quadrupole centroids and energies of the first 2+ states. 40,48Ca; calculated single particle energies. 120Sn; calculated canonical single-neutron energies, isoscalar monopole response, running energy-weighted sums, centroid energies of the isoscalar monopole strength distribution. 50Ca; calculated proton and neutron transition densities for monopole peaks. 36,44Ca; calculated proton and neutron dipole transition densities. 54Ca; calculated proton and neutron quadrupole transition densities for a pygmy and a GQR mode. Quasiparticle random phase approximation built on the HFB ground states. Comparison with experimental data.

doi: 10.1103/PhysRevC.83.064317
Citations: PlumX Metrics

2010GU13      Phys.Rev. C 82, 024319 (2010)

A.Gunther, R.Roth, H.Hergert, S.Reinhardt

Systematics of binding energies and radii based on realistic two-nucleon plus phenomenological three-nucleon interactions

NUCLEAR STRUCTURE 4He, 16,24O, 34Si, 40,48Ca, 48,56,60,78Ni, 88Sr, 90Zr, 100,114,132Sn, 146Gd, 208Pb; calculated ground-state energies and binding energies per nucleon and charge radii of closed-shell nuclei. 40Ca, 90Zr; calculated single-particle spectra. Hartree-Fock calculations using MBPT, S-UCOM(SRG) and S-SRG interactions. Comparison with experimental data.

doi: 10.1103/PhysRevC.82.024319
Citations: PlumX Metrics

2009HE14      Phys.Rev. C 80, 024312 (2009)

H.Hergert, R.Roth

Pairing in the framework of the unitary correlation operator method (UCOM): Hartree-Fock-Bogoliubov calculations

NUCLEAR STRUCTURE 100,102,104,106,108,110,112,114,116,118,120,122,124,126,128,130,132Sn; calculated ground state energies, charge radii, canonical single-particle spectra, canonical and average gaps using self-consistent Hartree-Fock-Bogoliubov framework and effective interactions from the unitary correlation operator method (UCOM). Comparison with experimental data.

doi: 10.1103/PhysRevC.80.024312
Citations: PlumX Metrics

2008RO14      Phys.Rev. C 77, 064003 (2008)

R.Roth, S.Reinhardt, H.Hergert

Unitary correlation operator method and similarity renormalization group: Connections and differences

NUCLEAR STRUCTURE 4He, 16,24O, 40,48Ca, 56,60,78Ni, 88Sr, 90Zr, 114Sn, 132Sn, 146Gd, 208Pb; calculated ground state energies, charge radii. Unitary Correlation Operator method and Similarity renormalization group method.

doi: 10.1103/PhysRevC.77.064003
Citations: PlumX Metrics

2007HE15      Prog.Part.Nucl.Phys. 59, 470 (2007)

H.Hergert, R.Roth, A.Zapp

Hartree-Fock-Bogoliubov calculations with correlated realistic interactions

doi: 10.1016/j.ppnp.2007.01.005
Citations: PlumX Metrics

2007HE16      Phys.Rev. C 75, 051001 (2007)

H.Hergert, R.Roth

Unitary correlation operator method from a similarity renormalization group perspective

doi: 10.1103/PhysRevC.75.051001
Citations: PlumX Metrics

2007RO22      Nucl.Phys. A788, 12c (2007)

R.Roth, H.Hergert, N.Paar, P.Papakonstantinou

Nuclear Structure in the UCOM Framework: From Realistic Interactions to Collective Excitations

NUCLEAR STRUCTURE 4He, 16,24O, 34Si, 40,48Ca, 48,56,78Ni, 88Sr, 90Zr, 100,114,132Sn, 146Gd, 208Pb; calculated ground-state energies. 40Ca, 90Zr, 208Pb; calculated giant resonance strength distributions. Unitary correlation operator method, no-core shell model, Hartree-Fock, RPA, many-body perturbation theory. Comparison with data.

doi: 10.1016/j.nuclphysa.2007.01.008
Citations: PlumX Metrics

2006PA11      Int.J.Mod.Phys. E15, 346 (2006)

N.Paar, P.Papakonstantinou, R.Roth, H.Hergert

Self-consistent description of collective excitations in the unitary correlation operator method

NUCLEAR STRUCTURE 16O, 40,48Ca, 90Zr, 132Sn, 208Pb; calculated giant resonance strength distributions. Unitary correlation operator method, RPA.

doi: 10.1142/S0218301306004193
Citations: PlumX Metrics

2006PA24      Phys.Rev. C 74, 014318 (2006)

N.Paar, P.Papakonstantinou, H.Hergert, R.Roth

Collective multipole excitations based on correlated realistic nucleon-nucleon interactions

NUCLEAR STRUCTURE 16O, 40Ca; calculated single-particle level energies. 16O, 40,48Ca, 90Zr, 132Sn, 208Pb; calculated transition strength distributions, giant resonance features. Unitary correlation operator method.

doi: 10.1103/PhysRevC.74.014318
Citations: PlumX Metrics

2006PA30      Phys.Atomic Nuclei 69, 1345 (2006)

N.Paar, P.Papakonstantinou, H.Hergert, R.Roth

Collective Excitations in the Unitary Correlation Operator Method and Relativistic QRPA Studies of Exotic Nuclei

NUCLEAR STRUCTURE 40Ca; calculated single-particle level energies. 4He, 16,24O, 34Si, 40,48Ca, 48,56,68,78Ni, 88Sr, 90Zr, 100,114,132Sn, 146Gd, 208Pb; calculated binding energies. 16O, 40,48Ca, 42Ti, 44Cr, 46Fe, 90Zr, 132Sn, 208Pb; calculated transition strength distributions. Self-consistent RPA approach, unitary correlation operator method.

doi: 10.1134/S1063778806080114
Citations: PlumX Metrics

2006RO15      Phys.Rev. C 73, 044312 (2006)

R.Roth, P.Papakonstantinou, N.Paar, H.Hergert, T.Neff, H.Feldmeier

Hartree-Fock and many body perturbation theory with correlated realistic NN interactions

NUCLEAR STRUCTURE 4He, 16,24O, 34Si, 40,48Ca, 48,56,78Ni, 88Sr, 90Zr, 100,114,132Sn, 146Gd, 208Pb; calculated ground-state energies, radii. 16O, 40Ca, 100,132Sn, 208Pb; calculated single-particle energies. O, Ca, Ni, Sn; calculated ground-state energies for even-A isotopes. Correlated realistic nucleon-nucleon interactions.

doi: 10.1103/PhysRevC.73.044312
Citations: PlumX Metrics

2005RO32      Phys.Rev. C 72, 034002 (2005)

R.Roth, H.Hergert, P.Papakonstantinou, T.Neff, H.Feldmeier

Matrix elements and few-body calculations within the unitary correlation operator method

NUCLEAR STRUCTURE 3H, 4He; calculated ground-state energies vs oscillator parameter. Unitary correlation operator method.

doi: 10.1103/PhysRevC.72.034002
Citations: PlumX Metrics

2004RO37      Nucl.Phys. A745, 3 (2004)

R.Roth, T.Neff, H.Hergert, H.Feldmeier

Nuclear structure based on correlated realistic nucleon-nucleon potentials

NUCLEAR STRUCTURE 3,4He, 7Li, 9Be, 10B, 12C, 14N, 16O, 20Ne, 23Na, 24Mg, 27Al, 28Si, 32S, 36Ar, 36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,54Ca, 50Ti, 56Fe, 60Ni; calculated binding energies, radii. 7Li, 9Be, 12C, 16O, 20,22,24,26Ne, 26Mg, 40,48Ca; calculated particle density distributions. 7Li, 9Be, 12C, 20Ne; calculated levels, J, π. Unitary correlation operator method, fermionic molecular dynamics model.

doi: 10.1016/j.nuclphysa.2004.08.024
Citations: PlumX Metrics

Back to query form