NSR Query Results

Output year order : Descending
Format : Normal

NSR database version of April 11, 2024.

Search: Author = N.Paar

Found 89 matches.

Back to query form

2024KA02      Phys.Rev. C 109, 014314 (2024)

A.Kaur, E.Yuksel, N.Paar

Electric dipole transitions in the relativistic quasiparticle random-phase approximation at finite temperature

doi: 10.1103/PhysRevC.109.014314
Citations: PlumX Metrics

2024KA04      Phys.Rev. C 109, 024305 (2024)

A.Kaur, E.Yuksel, N.Paar

Finite-temperature effects in magnetic dipole transitions

doi: 10.1103/PhysRevC.109.024305
Citations: PlumX Metrics

2024KU01      Nucl.Phys. A1041, 122779 (2024)

S.Kucuksucu, M.Yigit, N.Paar

Isotopic dependence of (n, α) reaction cross sections for Fe and Sn nuclei

NUCLEAR REACTIONS 46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78Fe, 100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132Sn(n, α), (n, X), E<50 MeV; calculated σ using the statistical Hauser-Feshbach and exciton models in TALYS nuclear reaction code and adjusted global optical model potential. Comparison with JEFF-3.3, ENDF/B-VII.1, BROND-3.1, CENDL-3.2, JENDL-5, ROSFOND-2010 libraries and NON-SMOKER code.

doi: 10.1016/j.nuclphysa.2023.122779
Citations: PlumX Metrics

2024RA05      Phys.Rev. C 109, 014318 (2024)

A.Ravlic, E.Yuksel, T.Niksic, N.Paar

Global properties of nuclei at finite-temperature within the covariant energy density functional theory

doi: 10.1103/PhysRevC.109.014318
Citations: PlumX Metrics

2023KR01      Eur.Phys.J. A 59, 50 (2023)

G.Kruzic, T.Oishi, N.Paar

Magnetic quadrupole transitions in the relativistic energy density functional theory

NUCLEAR STRUCTURE 16O, 48Ca, 208Pb, 18O, 42Ca, 56Fe, 90Zr, 36,38,40,42,44,46,48,50,52,54,56,58,60,62,64Ca; calculated the nuclear ground state with relativistic Hartree-Bogoliubov model, and the M2 excitations using the relativistic quasiparticle random phase approximation with the residual interaction extended with the isovector-pseudovector term.

doi: 10.1140/epja/s10050-023-00958-0
Citations: PlumX Metrics

2023RA22      Phys.Rev. C 108, 054305 (2023)

A.Ravlic, E.Yuksel, T.Niksic, N.Paar

Influence of the symmetry energy on the nuclear binding energies and the neutron drip line position

doi: 10.1103/PhysRevC.108.054305
Citations: PlumX Metrics

2023YU01      Phys.Lett. B 836, 137622 (2023)

E.Yuksel, N.Paar

Implications of parity-violating electron scattering experiments on 48Ca (CREX) and 208Pb (PREX-II) for nuclear energy density functionals

NUCLEAR STRUCTURE 48Ca, 208Pb; analyzed available data; deduced implications of CREX and PREX-II data on nuclear matter symmetry energy and isovector properties of finite nuclei: neutron skin thickness and dipole polarizability.

doi: 10.1016/j.physletb.2022.137622
Citations: PlumX Metrics

2022GI06      Phys.Rev. C 105, 055801 (2022)

S.Giraud, R.G.T.Zegers, B.A.Brown, J.-M.Gabler, J.Lesniak, J.Rebenstock, E.M.Ney, J.Engel, A.Ravlic, N.Paar

Finite-temperature electron-capture rates for neutron-rich nuclei near N=50 and effects on core-collapse supernova simulations

RADIOACTIVITY 86Kr(EC); calculated Gamow-Teller strength distribution, EC-rates for various energies of initial states, average shell occupation. N=44-54(EC); Z=26-36(EC); calculated EC-rates. Finite-temperature proton-neutron relativistic QRPA (FT-PNRQRPA), finite-temperature QRPA (FT-QRPA) and shell-model calculations. Obtained finite-temperature electron-capture rates applied in one-dimensional core-collapse simulations.

doi: 10.1103/PhysRevC.105.055801
Citations: PlumX Metrics

2022KU24      Universe 8, 25 (2022)

S.Kucuksucu, M.Yigit, N.Paar

Statistical Hauser-Feshbach Model Description of (n, α) Reaction Cross Sections for the Weak s-Process

NUCLEAR REACTIONS 17O, 18F, 22Na, 26Al, 33S, 37,39Ar, 40K, 41Ca, 59Ni, 65Zn, 71Ge(n, α), E=0.001-30 MeV; 17O(n, α), E=0.4-2000 keV; 26Al(n, α), E=0.1-1000 keV; 33S(n, α), E=5-1000 keV; 37Ar(n, α), E=0.01-1000 keV; 41Ca(n, α), E=0.4-150 keV; calculated reaction σ(E) using two different statistical Hauser-Feshbach model, with experimental masses, and nuclear level densities from Fermi gas model (TALYS-a), and nuclear masses and level densities calculated with the Skyrme functional (TALYS-b). Comparison with results in NON-SMOKER, TENDL-2019, ENDF-B-VIII, JEFF-3.3 and BROND-3.1 libraries, and with available experimental data. 17O, 18F, 22Na, 26Al, 33S, 37,39Ar, 40K, 41Ca, 59Ni, 65Zn, 71Ge(n, α), kT=0.008-1000 keV; calculated reaction σ(temp) averaged over the Maxwell-Boltzmann distribution. 22Na, 26Al, 33S, 37,39Ar, 40K, 41Ca, 59Ni, 65Zn, 71Ge(n, α), kT=0.007-1000 keV; calculated Maxwellian averaged cross sections (MACS) as function of temperature, and compared with results in NON-SMOKER, ENDF-B-VII.1, JEFF-3.1, JENDL-4.0, ROSFOND-2008 and CENDL-3.1 data libraries. 41Ca, 59Ni, 65Zn, 71Ge(n, α), kT=30-210 keV; calculated reaction σ(temp) averaged over the Maxwell-Boltzmann distribution. 17O, 18F, 22Na, 26Al, 33S, 37,39Ar, 40K, 41Ca, 59Ni, 65Zn, 71Ge(n, α), kT=30-210 keV; calculated σ(temp). Relevance to the s-process nucleosynthesis.

doi: 10.3390/universe8010025
Citations: PlumX Metrics

2022OI01      Phys.Rev. C 105, 064309 (2022)

T.Oishi, A.Ravlic, N.Paar

Symmetry breaking of Gamow-Teller and magnetic-dipole transitions and its restoration in calcium isotopes

NUCLEAR STRUCTURE 42,44,46,48Ca, 42Ti, 208Pb; calculated isovector M1 and GT strength distributions. Relativistic energy-density functional (REDF) with point-coupling interactions, using the relativistic quasiparticle randomphase approximation (RQRPA).

doi: 10.1103/PhysRevC.105.064309
Citations: PlumX Metrics

2022PO04      Phys.Rev. C 105, 064315 (2022)

N.Popara, A.Ravlic, N.Paar

Two-neutrino double-β decay matrix elements based on a relativistic nuclear energy density functional

RADIOACTIVITY 48Ca, 76Ge, 82Se, 96Zr, 100Mo, 116Cd, 136Xe, 128,130Te, 150Nd(2β-); 124Xe(2EC), (2β+); calculated nuclear matrix elements (NMEs) and running sum of the Gamow-Teller NMEs for 2νββ decay modes, dependence of the NMEs for 2νββ decay on the isoscalar pairing strengths. Relativistic Hartree-Bardeen-Cooper-Schrieffer (RH-BCS) theory with density-dependent meson-exchange (DD-ME2) and point-coupling interactions (DD-PC1, DD-PCX), and pairing correlations. Comparison with available experimental data.

doi: 10.1103/PhysRevC.105.064315
Citations: PlumX Metrics

2021KR07      Phys.Rev. C 103, 054306 (2021)

G.Kruzic, T.Oishi, N.Paar

Evolution of magnetic dipole strength in 100-140Sn isotope chain and the quenching of nucleon g factors

NUCLEAR STRUCTURE 100,102,104,106,108,110,112,114,116,118,120,122,124,126,128,130,132,134,136,138,140Sn; calculated occupation probabilities of π1g9/2, ν1g9/2, ν2d5/2, and ν1h11/2 orbits in RHB-GS solutions, M1 transition strength function, partial M1 transition strengths for protons and neutrons, M1 excitation energies, total M1 transition strengths, energy-weighted summation of M1 strengths. RHB+R(Q)RPA formulated in the framework of relativistic nuclear energy density functional (RNEDF) (DD-PC1) with Gogny-D1S force for the pairing correlations. Comparison with experimental data.

doi: 10.1103/PhysRevC.103.054306
Citations: PlumX Metrics

2021MI17      Phys.Rev. C 104, 044321 (2021)

F.Minato, T.Marketin, N.Paar

β-delayed neutron-emission and fission calculations within relativistic quasiparticle random-phase approximation and a statistical model

RADIOACTIVITY Z=8-110, N=11-209, A=19-318(β-), (β-n); calculated T1/2, β--delayed neutron emission (BDNE) branching ratios (P0n, P1n, P2n, P3n, P4n, P5n, P6n, P7n, P8n, P9n, P10n), mean number of delayed neutrons per beta-decay, and average delayed neutron kinetic energy, total beta-delayed fission and α emission branching ratios for four fission barrier height models (ETFSI, FRDM, SBM, HFB-14). Z=93-110, N=184-200, A=224-318; calculated T1/2, β--delayed fission (BDF) branching ratios (P0f, P1f, P2f, P3f, P4f, P5f, P6f, P7f, P8f, P9f, P10f), total beta-delayed fission and beta-delayed neutron emission branching ratios for four fission barrier height models 140,162Sn; calculated β strength functions, β--delayed neutron branching ratios from P0n to P10n by pn-RQRPA+HFM and pn-RQRPA methods. 137,138,139,140,156,157,158,159,160,161,162Sb; calculated isotope production ratios as a function of excitation energy. 123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156Pd, 120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159Ag, 200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244,245,246,247,248,249,250Os, 200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244,245,246,247,248,249,250,251,252,253,254,255Ir; calculated β-delayed one neutron branching ratio P1n by pn-RQRPA+HFM, pn-RQRPA, and FRDM+QRPA+HFM methods, and compared with available experimental data. 89Br, 138I; calculated β-delayed neutron spectrum by pn-RQRPA+HFM method, and compared with experimental spectra. 260,261,262,263,264,265,266,267,268,269,270,271,272,273,274,275,276,277,278,279,280,281,282,283,284,285,286,287,288,289,290,291,292,293,294,295,296,297,298,299,300,301,302,303,304,305,306,307,308,309,310,311,312,313,314,315,316,317,318,319,320,321,322,323,324,325,326,327,328,329,330Fm; calculated fission barrier heights for HFB-14, FRDM, ETFSI and SBM models, mean numbers and mean energies of emitted β-delayed neutrons by pn-RQRPA+HFM and pn-RQRPA methods. 63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99Ni, 120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,161,162,163,164,165,166,167,168,169,170Sn; calculated mean numbers and mean energies of emitted β-delayed neutrons by pn-RQRPA+HFM and pn-RQRPA methods. Z=70-110, N=120-190; calculated β--delayed α branching ratios Pα (%) for FRDM fission barrier data. Fully self-consistent covariant density-functional theory (CDFT), with the ground states of all the nuclei calculated with the relativistic Hartree-Bogoliubov (RHB) model with the D3C* interaction, and relativistic proton-neutron quasiparticle random-phase approximation (pn-RQRPA) for β strength functions, with particle evaporations and fission from highly excited nuclear states estimated by Hauser-Feshbach statistical model (pn-RQRPA+HFM) for four fission barrier height models (ETFSI, FRDM, SBM, HFB-14). Detailed tables of numerical data for β-delayed neutron emission (BDNE), β-delayed fission (BDF) and β-delayed α-particle emission branching ratios are given in the Supplemental Material of the paper.

doi: 10.1103/PhysRevC.104.044321
Citations: PlumX Metrics

2021OI01      Eur.Phys.J. A 57, 180 (2021)

T.Oishi, G.Kruzic, N.Paar

Discerning nuclear pairing properties from magnetic dipole excitation

NUCLEAR STRUCTURE 36,38,40,42,44,46,48,50,52,54Ca; calculated binding energies, magnetic dipole strengths, pairing correation of Cooper pair within the framework of relativistic nuclear energy-density functional (RNEDF).

doi: 10.1140/epja/s10050-021-00488-7
Citations: PlumX Metrics

2021RA26      Phys.Rev. C 104, 054318 (2021)

A.Ravlic, E.Yuksel, Y.F.Niu, N.Paar

Evolution of β-decay half-lives in stellar environments

RADIOACTIVITY 52,54,56,58,60Ti, 62,64,66,68,70Fe, 120,122,124,126,128Cd, 130,132,134,136,138Sn(β-); Z=8-82, N=12-184; calculated β-decay half-lives of even-even nuclei as a function of temperature and density, Gamow-Teller strength as a function of temperature. Relativistic nuclear energy density functional framework with D3C* parametrization, and finite-temperature proton-neutron relativistic quasiparticle random-phase approximation (FT-PNRQRPA). Relevance to initial stages of the r-process or other astrophysical processes such as rp-process, dense thermonuclear explosions, and supernovae simulations.

doi: 10.1103/PhysRevC.104.054318
Citations: PlumX Metrics

2021RA30      Phys.Rev. C 104, 064302 (2021)

A.Ravlic, Y.F.Niu, T.Niksic, N.Paar, P.Ring

Finite-temperature linear response theory based on relativistic Hartree Bogoliubov model with point-coupling interaction

NUCLEAR STRUCTURE 120Cd; calculated strength functions of 1- and 1+ excitations in β- direction; GT- strength B(GT-) of the 1+ state at 13.54 MeV, GT- strength function with respect to the number of oscillator shells, convergence properties of the GT- strength. 112,116,120,124,128Sn; calculated neutron critical temperature and mean pairing gap at zero temperature. 112,114,116,118,120,122Sn; calculated Jπ=0+ strength functions with respect to the excitation energy of the parent nuclei for temperatures T=0, 0.5, 0.9, and 1.5 MeV. 116,120,124,128,132Sn; calculated Gamow-Teller (Jπ=1+) strength functions with respect to the excitation energy of the parent nuclei for temperatures T=0, 0.5, 0.9, and 1.5 MeV. 112Sn; calculated single-particle energy levels in canonical basis for neutrons and protons at T=0 and 0.9 MeV. 112,120,128Sn; calculated spin-dipole excitation strength at temperature T=0, 0.5, 0.9, and 1.5 MeV, spin-dipole centroid energies of 0-, 1-, and 2- multipoles at temperature T=0 and 1.5 MeV. Finite-temperature linear response theory based on finite-temperature relativistic Hartree-Bogoliubov (FT-RHB) model for calculation of IAR, GTR, and spin-dipole resonance (SDR) in tin isotopes at finite-temperatures, with point-coupling relativistic energy-density functionals (EDFs): DD-PC1 and DDPCX for the calculation of mean-field potential in the ground state and the residual ph interaction in finite temperature quasiparticle random-phase approximation (FT-QRPA) approach, based on Bardeen-Cooper-Schrieffer (BCS) basis. Comparison with available experimental data.

doi: 10.1103/PhysRevC.104.064302
Citations: PlumX Metrics

2021VA06      Phys.Rev. C 103, 064307 (2021)

D.Vale, Y.F.Niu, N.Paar

Nuclear charge-exchange excitations based on a relativistic density-dependent point-coupling model

NUCLEAR STRUCTURE 48Ca, 90Zr, 112,116,122,130Sn, 208Pb; calculated isobaric analog resonance (IAR) transition strength distributions, B(GT)-, B(GT)+ strength distributions, sum rule, Gamow-Teller resonances. 104,106,108,110,112,114,116,118,120,122,124,126,128,130,132Sn; calculated isobaric analog resonance excitation energies, excitation energy for GT- direct spin-flip transitions. Proton-neutron relativistic quasiparticle random phase approximation and relativistic Hartree-Bogoliubov model (RHB+PN-RQRPA) based relativistic density-dependent point coupling model with DD-PCX, DD-PC1, and DD-ME2 functionals. Comparison with experimental data. Relevance to future large-scale calculations of charge-exchange excitations and weak interaction processes in stellar environments.

doi: 10.1103/PhysRevC.103.064307
Citations: PlumX Metrics

2020BA50      Phys.Lett. B 810, 135804 (2020)

S.Bassauer, P.von Neumann-Cosel, P.-G.Reinhard, A.Tamii, S.Adachi, C.A.Bertulani, P.Y.Chan, G.Colo, A.D'Alessio, H.Fujioka, H.Fujita, Y.Fujita, G.Gey, M.Hilcker, T.H.Hoang, A.Inoue, J.Isaak, C.Iwamoto, T.Klaus, N.Kobayashi, Y.Maeda, M.Matsuda, N.Nakatsuka, S.Noji, H.J.Ong, I.Ou, N.Paar, N.Pietralla, V.Yu.Ponomarev, M.S.Reen, A.Richter, X.Roca-Maza, M.Singer, G.Steinhilber, T.Sudo, Y.Togano, M.Tsumura, Y.Watanabe, V.Werner

Evolution of the dipole polarizability in the stable tin isotope chain

NUCLEAR REACTIONS 112,114,116,118,120,124Sn(p, p'), E=295 MeV; 116Sn(γ, X), E<30 MeV; measured reaction products, Ep, Ip; deduced σ(θ, E), σ, total dipole polarizability. Comparison with available data.

doi: 10.1016/j.physletb.2020.135804
Citations: PlumX Metrics

2020KR13      Phys.Rev. C 102, 044315 (2020)

G.Kruzic, T.Oishi, D.Vale, N.Paar

Magnetic dipole excitations based on the relativistic nuclear energy density functional

NUCLEAR STRUCTURE 18O, 42,48Ca, 50Ti, 208Pb; calculated M1 strength distributions, B(M1), neutron and proton contributions to the M1 transition strengths; compiled experimental M1 excitation energies and B(M1) values. Relativistic Hartree-Bogoliubov (RHB) model, and relativistic nuclear energy density functional formalism using relativistic quasiparticle random phase approximation (RQRPA) with density-dependent point coupling interaction DD-PC1.

doi: 10.1103/PhysRevC.102.044315
Citations: PlumX Metrics

2020OI01      J.Phys.(London) G47, 115106 (2020)

T.Oishi, G.Kruzic, N.Paar

Role of residual interaction in the relativistic description of M1 excitation

NUCLEAR STRUCTURE 36,38,40,42,44,46,48,50,52,54,56,58,60,62,64Ca; analyzed available data; calculated summations of the M1-excitation strength of Ca isotopes, M1-excitation energies.

doi: 10.1088/1361-6471/abaeb1
Citations: PlumX Metrics

2020RA29      Phys.Rev. C 102, 065804 (2020)

A.Ravlic, E.Yuksel, Y.F.Niu, G.Colo, E.Khan, N.Paar

Stellar electron-capture rates based on finite-temperature relativistic quasiparticle random-phase approximation

NUCLEAR REACTIONS 44Ti, 56Fe(e-, ν), E<30 MeV; calculated electron capture cross sections in stellar environment for the 0+, 0-, 1+, 1-, 2+ and 2- multipoles, B(GT+) transition strength distributions; concluded that for the complete description of electron capture, both pairing and temperature effects must be considered. Nuclear ground-state properties calculated using finite-temperature Hartree BCS theory (FT-HBCS), and nuclear excitations in the charge exchange channel using finite-temperature proton-neutron relativistic QRPA (FT-PNRQRPA), with relativistic energy density functional (DD-ME2) in both cases.

doi: 10.1103/PhysRevC.102.065804
Citations: PlumX Metrics

2020YU03      Phys.Rev. C 101, 044305 (2020)

E.Yuksel, N.Paar, G.Colo, E.Khan, Y.F.Niu

Gamow-Teller excitations at finite temperature: Competition between pairing and temperature effects

NUCLEAR STRUCTURE 42Ca, 46Ti, 118Sn; calculated B(GT-), centroid energies of Gamow-Teller (GT) resonances, summed B(GT-), quasiparticle configuration of low-lying GT- states as function of temperature. Relativistic and nonrelativistic finite temperature proton-neutron quasiparticle RPA (FT-PNQRPA) with Skyrme-type functional SkM*, and meson-exchange interaction DD-ME2. Comparison with experimental data. Relevance to universal modeling of the weak-interaction processes in stellar environments, such as electron capture, β decays, and neutrino-nucleus reactions.

doi: 10.1103/PhysRevC.101.044305
Citations: PlumX Metrics

2019OI01      Phys.Rev. C 100, 024308 (2019)

T.Oishi, N.Paar

Magnetic dipole excitation and its sum rule in nuclei with two valence nucleons

NUCLEAR STRUCTURE 18O, 18Ne, 42Ca; calculated energies of ground states and 1+ levels, discrete M1 transition strengths, M1 sum rule. 17O; calculated single-neutron energies. Three-body model for systems with two-valence nucleons, with no pairing, density-dependent contact (DDC) pairing and Minnesota pairing. Comparison with available experimental data.

doi: 10.1103/PhysRevC.100.024308
Citations: PlumX Metrics

2019PE18      J.Phys.(London) G46, 085103 (2019)

J.Petkovic, T.Marketin, G.Martinez-Pinedo, N.Paar

Self-consistent calculation of the reactor antineutrino spectra including forbidden transitions

NUCLEAR REACTIONS 235,238U, 239,241Pu(n, F)ν-bar/E, E thermal; calculated electron and antineutrino spectra.

doi: 10.1088/1361-6471/ab28f5
Citations: PlumX Metrics

2019YU02      Phys.Rev. C 99, 034318 (2019)

E.Yuksel, T.Marketin, N.Paar

Optimizing the relativistic energy density functional with nuclear ground state and collective excitation properties

NUCLEAR STRUCTURE 36,38,40,42,44,46,48,50,52,54,56Ca, 54,56,58,60,62,64,66,68,70,72Ni, 100,102,104,106,108,110,112,114,116,118,120,122,124,126,128,130,132,134Sn, 190,192,194,196,198,200,202,204,206,208,210,212,214Pb, 90Zr; calculated binding energies using DD-PCX, DD-PC1, and DD-ME2 interactions, charge radii. 90Zr, 120Sn, 208Pb; calculated isoscalar GMR energies. 48Ca, 68Ni, 208Pb, 112,116,118,120,122,124Sn; calculated dipole polarizabilities using RHB+(Q)RPA with DD-PCX, DD-PC1, and DD-ME2 interactions. 208Pb; calculated neutron skin thickness. Relativistic energy density functional with DD-PCX interaction, based on the RHB plus (Q)RPA, supplemented with the covariance analysis. Comparison with experimental data.

doi: 10.1103/PhysRevC.99.034318
Citations: PlumX Metrics

2018RO12      Prog.Part.Nucl.Phys. 101, 96 (2018)

X.Roca-Maza, N.Paar

Nuclear equation of state from ground and collective excited state properties of nuclei

doi: 10.1016/j.ppnp.2018.04.001
Citations: PlumX Metrics

2017MA16      Acta Phys.Pol. B48, 641 (2017)

T.Marketin, A.Sieverding, M.-R.Wu, N.Paar, G.Martinez-Pinedo

Microscopic Calculations of β-decay Rates for r-process

COMPILATION Z=8-110; compiled contribution of first-forbidden β-decay of neutron-rich nuclei to their total β-decay rate, T1/2

RADIOACTIVITY Z=8-110(β-), (β+); calculated T1/2, β-delayed neutron multiplicity using relativistic Hartree-Bogoliubov model with spherical symmetry and D3C parameter set; deduced ratio calculated to experimental T1/2 vs experimental T1/2.

doi: 10.5506/APhysPolB.48.641
Citations: PlumX Metrics

2016KR04      Phys.Rev. C 93, 044330 (2016)

M.Krzysiek, M.Kmiecik, A.Maj, P.Bednarczyk, A.Bracco, F.C.L.Crespi, E.G.Lanza, E.Litvinova, N.Paar, R.Avigo, D.Bazzacco, G.Benzoni, B.Birkenbach, N.Blasi, S.Bottoni, S.Brambilla, F.Camera, S.Ceruti, M.Ciemala, G.de Angelis, P.Desesquelles, J.Eberth, E.Farnea, A.Gadea, A.Giaz, A.Gorgen, A.Gottardo, J.Grebosz, H.Hess, R.Isocarte, A.Jungclaus, S.Leoni, J.Ljungvall, S.Lunardi, K.Mazurek, R.Menegazzo, D.Mengoni, C.Michelagnoli, B.Milion, A.I.Morales, D.R.Napoli, R.Nicolini, L.Pellegri, A.Pullia, B.Quintana, F.Recchia, P.Reiter, D.Rosso, M.D.Salsac, B.Siebeck, S.Siem, P.-A.Soderstrom, C.Ur, J.J.Valiente-Dobon, O.Wieland, M.Zieblinski

Pygmy dipole resonance in 140Ce via inelastic scattering of 17O

NUCLEAR REACTIONS 140Ce(17O, 17O'), E=340 MeV; measured scattered 17O particle spectra, Eγ, Iγ, (17O)γ-coin, σ as function of excitation energy in 140Ce, γ(θ) using AGATA-demonstrator array for γ rays and E-ΔE detectors for particles at LNL's PIAVE-ALPI accelerator facility. DWBA analysis for the pygmy dipole states using microscopically calculated form factors based on transition densities from RQRPA and optical potentials. 140Ce; deduced levels, J, π, 1- pygmy (PDR) states, isoscalar energy-weighted sum rule (ISEWSR), PDR strengths, isospin character of the dipole states. Comparison with experimental results from (γ, γ') and (α, α') studies.

doi: 10.1103/PhysRevC.93.044330
Citations: PlumX Metrics

Data from this article have been entered in the EXFOR database. For more information, access X4 datasetD0823. Data from this article have been entered in the XUNDL database. For more information, click here.

2016MO20      Phys.Rev. C 93, 064303 (2016)

C.Mondal, B.K.Agrawal, M.Centelles, G.Colo, X.Roca-Maza, N.Paar, X.Vinas, S.K.Singh, S.K.Patra

Model dependence of the neutron-skin thickness on the symmetry energy

NUCLEAR STRUCTURE 132Sn, 208Pb; calculated symmetry-energy coefficient and symmetry-energy slope parameter as a function of neutron-skin thickness using several microscopic mean-field models.

doi: 10.1103/PhysRevC.93.064303
Citations: PlumX Metrics

2015CO05      Acta Phys.Pol. B46, 395 (2015)

G.Colo, X.Roca-Maza, N.Paar

The Nuclear Symmetry Energy and Other Isovector Observables from the Point of View of Nuclear Structure

NUCLEAR STRUCTURE 208Pb; analyzed available data; deduced the values of the Pearson-product correlation coefficient, covariance analysis.

doi: 10.5506/APhysPolB.46.395
Citations: PlumX Metrics

2015PA15      Acta Phys.Pol. B46, 369 (2015)

N.Paar, Ch.C.Moustakidis, G.A.Lalazissis, T.Marketin, D.Vretenar

Nuclear Energy Density Functionals and Neutron Star Properties

NUCLEAR STRUCTURE 68Ni, 130,132Sn, 208Pb; calculated constraints of the symmetry energy, dipole polarizability, liquid-to-solid transition pressure.

doi: 10.5506/APhysPolB.46.369
Citations: PlumX Metrics

2015PA42      Int.J.Mod.Phys. E24, 1541004 (2015)

N.Paar, T.Marketin, D.Vale, D.Vretenar

Modeling nuclear weak-interaction processes with relativistic energy density functionals

NUCLEAR STRUCTURE 56Fe, 18,20,22O, 42Ca; calculated Gamow-Teller transition strength distribution, contributions of the multipole transitions to the inclusive σ. Comparison with available data.

doi: 10.1142/S0218301315410049
Citations: PlumX Metrics

2015RO04      J.Phys.(London) G42, 034033 (2015)

X.Roca-Maza, N.Paar, G.Colo

Covariance analysis for energy density functionals and instabilities

doi: 10.1088/0954-3899/42/3/034033
Citations: PlumX Metrics

2015RO26      Phys.Rev. C 92, 064304 (2015)

X.Roca-Maza, X.Vinas, M.Centelles, B.K.Agrawal, G.Colo, N.Paar, J.Piekarewicz, D.Vretenar

Neutron skin thickness from the measured electric dipole polarizability in 68Ni, 120Sn, and 208Pb

NUCLEAR STRUCTURE 68Ni, 120Sn, 208Pb; calculated dipole polarizability, and dipole polarizability times the symmetry energy as a function of the neutron skin thickness using self-consistent random-phase approximation (QRPA) with a large set of energy density functionals (EDFs), and comparison to experimental data; deduced symmetry energy αD and its density dependence. 48Ca, 90Zr; deduced neutron skin thickness and electric dipole polarizability.

doi: 10.1103/PhysRevC.92.064304
Citations: PlumX Metrics

2014PA32      Phys.Rev. C 90, 011304 (2014)

N.Paar, Ch.C.Moustakidis, T.Marketin, D.Vretenar, G.A.Lalazissis

Neutron star structure and collective excitations of finite nuclei

NUCLEAR STRUCTURE 68Ni, 130,132Sn, 208Pb; calculated excitation energies of the isoscalar giant monopole and quadrupole resonances (ISGMR, ISGQR), isovector giant dipole resonance (IVGDR), and anti-analog giant dipole resonance (AGDR), energy-weighted pygmy dipole (PDR) strength, and dipole polarizability. Covariance analysis of based on relativistic nuclear energy density functional (RNEDF). Neutron star crust properties by using collective excitations in finite nuclei. Thermodynamic method using relativistic nuclear energy density functionals, and quasiparticle random-phase approximation (QRPA).

doi: 10.1103/PhysRevC.90.011304
Citations: PlumX Metrics

2013KH08      Phys.Rev. C 87, 064311 (2013)

E.Khan, N.Paar, D.Vretenar, L.-G.Cao, H.Sagawa, G.Colo

Incompressibility of finite fermionic systems: Stable and exotic atomic nuclei

NUCLEAR STRUCTURE Z=50, A=94-168; Z=82, A=170-262; calculated nuclear incompressibility using microscopic Skyrme-CHFB method, the Skyrme-QRPA, and the relativistic QRPA. 110,114,118,122,126,130,134,138,142,146Sn, 200,204,208,212,216,220,224,228,232,236Pb; calculated isoscalar monopole response, nuclear compressibility using the relativistic QRPA with the DD-ME2 functional and the QRPA with the functional SLy5.

doi: 10.1103/PhysRevC.87.064311
Citations: PlumX Metrics

2013KR01      Acta Phys.Pol. B44, 559 (2013)

A.Krasznahorkay, M.Csatlos, L.Stuhl, A.Algora, J.Gulyas, J.Timar, N.Paar, D.Vretenar, M.N.Harakeh

A New Method for Measuring Neutron-skin Thickness in Rare Isotope Beams

NUCLEAR REACTIONS C, 1H(124Sn, n), E=600 MeV/nucleon; measured reaction products, En, In, Eγ, Iγ. 124Sn; deduced yields, neutron skin thickness, proton and neutron radii. Isobaric analog states, comparison with calculations.

doi: 10.5506/APhysPolB.44.559
Citations: PlumX Metrics

2013KR08      Phys.Scr. T154, 014018 (2013)

A.Krasznahorkay, N.Paar, D.Vretenar, M.N.Harakeh

Neutron-skin thickness of 208Pb from the energy of the anti-analogue giant dipole resonance

NUCLEAR STRUCTURE 208Pb; calculated energy of the charge-exchange anti-analogue giant dipole resonance (AGDR), neutron skin thickness. Fully self-consistent relativistic proton-neutron quasiparticle random-phase approximation based on the relativistic Hartree-Bogoliubov model.

doi: 10.1088/0031-8949/2013/T154/014018
Citations: PlumX Metrics

2013NI16      Phys.Rev. C 88, 034308 (2013)

Y.F.Niu, Z.M.Niu, N.Paar, D.Vretenar, G.H.Wang, J.S.Bai, J.Meng

Pairing transitions in finite-temperature relativistic Hartree-Bogoliubov theory

NUCLEAR STRUCTURE 124Sn; calculated binding energy/nucleon, entropy, neutron radius, charge radius, neutron pairing energy, neutron pairing gap, specific heat and contour plot for the neutron pairing gap as function of temperature. 36,38,40,42,44,46,48,50,52,54,56,58,60,62Ca, 54,56,58,60,62,64,66,68,70,72,74,76,78,80,82,84,86,88,90,92Ni, 102,104,106,108,110,112,114,116,118,120,122,124,126,128,130,132,134,136,138,140,142,144,146,148,150,152,154,156,158,160,162,164,166,168,170Sn, 182,184,186,188,190,192,194,196,198,200,202,204,206,208,210,212,214,216,218,220,222,224,226,228,230,232,234,236,238,240,242,244,246,248,250,252,254,256,258,260,262,264Pb; calculated neutron pairing gap as a function of temperature, neutron pairing gaps at zero temperature and critical temperatures for pairing transition. Finite temperature relativistic Hartree-Bogoliubov (FTRHB) theory based on point-coupling functional PC-PK1 with Gogny or separable pairing forces.

doi: 10.1103/PhysRevC.88.034308
Citations: PlumX Metrics

2013PA06      Phys.Rev. C 87, 025801 (2013)

N.Paar, H.Tutman, T.Marketin, T.Fischer

Large-scale calculations of supernova neutrino-induced reactions in Z=8-82 target nuclei

NUCLEAR REACTIONS 12C, 56Fe, Ni, Sn, Pb(ν, e-), E<100 MeV; calculated inclusive neutrino-nucleus cross sections for supernova neutrino-induced reactions on targets of Z=8-82, N=8-182. Self-consistent theory framework based on relativistic nuclear energy density functional. Comparison with experimental data. Relevance to element abundance patterns.

doi: 10.1103/PhysRevC.87.025801
Citations: PlumX Metrics

2013RE12      Phys.Rev. C 88, 034325 (2013)

P.-G.Reinhard, J.Piekarewicz, W.Nazarewicz, B.K.Agrawal, N.Paar, X.Roca-Maza

Information content of the weak-charge form factor

NUCLEAR STRUCTURE 48Ca, 132Sn, 208Pb; calculated neutron rms radius, neutron skin, weak charge form factor, electric dipole polarizability. Statistical covariance analysis. Impact of proposed PREX-II and CREX measurements on constraining the isovector sector of the nuclear EDF. Nuclear density functional theory with nonrelativistic Skyrme-Hartree-Fock (SHF), relativistic mean-field (RMF), and relativistic density dependent meson-nucleon couplings (DDME) models.

doi: 10.1103/PhysRevC.88.034325
Citations: PlumX Metrics

2013RO08      Phys.Rev. C 87, 034301 (2013)

X.Roca-Maza, M.Brenna, B.K.Agrawal, P.F.Bortignon, G.Colo, L.-G.Cao, N.Paar, D.Vretenar

Giant quadrupole resonances in 208Pb, the nuclear symmetry energy, and the neutron skin thickness

NUCLEAR STRUCTURE 208Pb; calculated strength functions, neutron and proton transition densities, excitation energies of isoscalar and isovector giant quadrupole resonance (ISGQR and IVGQR), neutron skin thickness, symmetry energy. Macroscopic approach based on quantal harmonic oscillator model, and microscopic approach based on nonrelativistic and covariant energy density functionals (EDF) within the RPA. Comparison with experimental data.

doi: 10.1103/PhysRevC.87.034301
Citations: PlumX Metrics

2013RO20      Phys.Rev. C 88, 024316 (2013)

X.Roca-Maza, M.Brenna, G.Colo, M.Centelles, X.Vinas, B.K.Agrawal, N.Paar, D.Vretenar, J.Piekarewicz

Electric dipole polarizability in 208Pb: Insights from the droplet model

NUCLEAR STRUCTURE 208Pb; calculated electric dipole polarizability αD as function of neutron skin thickness, correlation between αD and symmetry energy, parity-violating asymmetry as function of αD. Droplet model. Large set of relativistic and nonrelativistic nuclear mean-field models with modern nuclear energy density functionals (EDF). Comparison with experimental data.

doi: 10.1103/PhysRevC.88.024316
Citations: PlumX Metrics

2012DA12      Phys.Rev. C 86, 035804 (2012)

H.Dapo, N.Paar

Neutral-current neutrino-nucleus cross sections based on relativistic nuclear energy density functional

NUCLEAR REACTIONS 12C, 40Ar, 56Fe, 56Ni, 92,94,96,98,100Mo(ν, ν'), E=0-100 MeV; calculated neutral current σ, and averaged σ over distribution of supernova neutrinos based on relativistic nuclear energy density functional and weak neutral-current model. The cross sections calculated by using weak interaction Hamiltonian and nuclear properties of initial and excited states from RHB+RQRPA methods.

doi: 10.1103/PhysRevC.86.035804
Citations: PlumX Metrics

2012FA10      Phys.Rev. C 86, 035805 (2012)

A.F.Fantina, E.Khan, G.Colo, N.Paar, D.Vretenar

Stellar electron-capture rates on nuclei based on a microscopic Skyrme functional

NUCLEAR REACTIONS 54,56Fe, 70,72,74,76,78,80Ge(e, ν), E=0-30 MeV; calculated stellar electron capture cross sections and rates for stellar environment. Skyrme Hartree-Fock model using SLy4, SGII, SkM*, BSk17 interactions, random-phase approximation (RPA). Comparison of FTSHF+RPA results with cross sections obtained by the SMMC and FTRRPA calculations.

doi: 10.1103/PhysRevC.86.035805
Citations: PlumX Metrics

2012MA16      Phys.Rev. C 85, 054313 (2012)

T.Marketin, G.Martinez-Pinedo, N.Paar, D.Vretenar

Role of momentum transfer in the quenching of Gamow-Teller strength

NUCLEAR REACTIONS 90Zr(p, n), (n, p), E=300 MeV; analyzed differential cross section data; deduced pn-RQRPA strengths in β- and β+ channels obtained with the Gamow-Teller (GT) operator, GT+IVSM operator, and full L=0 operator, momentum transfer. Relativistic Hartree-Bogoliubov model. Comparison with Ikeda sum rule.

NUCLEAR STRUCTURE 48Ca, 90Zr, 100,102,104,106,108,110,112,114,116,118,120,122,124,126,128,130,132,134,136,138,140,142,144,146,148,150Sn, 208Pb; analyzed L=0 β- strength functions, GT and IVSM centroids using Relativistic Hartree-Bogoliubov (RHB) plus proton-neutron relativistic quasiparticle random-phase approximation (pn-RQRPA) with GT operator, the GT plus isovector spin monopole (IVSM) mode term, and the operator that contains the full momentum-transfer dependence.

doi: 10.1103/PhysRevC.85.054313
Citations: PlumX Metrics

2012PA27      J.Phys.:Conf.Ser. 337, 012013 (2012)

N.Paar, D.Vretenar, Y.F.Niu, J.Meng

Self-consistent theory of stellar electron capture rates

doi: 10.1088/1742-6596/337/1/012013
Citations: PlumX Metrics

2012PI06      Phys.Rev. C 85, 041302 (2012)

J.Piekarewicz, B.K.Agrawal, G.Colo, W.Nazarewicz, N.Paar, P.-G.Reinhard, X.Roca-Maza, D.Vretenar

Electric dipole polarizability and the neutron skin

NUCLEAR STRUCTURE 208Pb, 132Sn, 48Ca; analyzed correlation between neutron-skin thickness and electric dipole polarizability using ensemble of 48 nuclear energy density functionals. NL3/FSU, DD-ME, and Skyrme-SV models. Comparison with experimental data.

doi: 10.1103/PhysRevC.85.041302
Citations: PlumX Metrics

2012VR01      Phys.Rev. C 85, 044317 (2012)

D.Vretenar, Y.F.Niu, N.Paar, J.Meng

Low-energy isovector and isoscalar dipole response in neutron-rich nuclei

NUCLEAR STRUCTURE 68Ni, 132Sn, 208Pb; calculated isovector and isoscalar E1 strength distributions, electric dipole polarizability, moments of isoscalar and isovector dipole strength distributions, partial neutron and proton contributions to reduced amplitudes of pygmy dipole states (PDS) and to isovector giant-dipole resonance (GDR), EWSR. Fully self-consistent random-phase approximation based on relativistic energy density functionals.

doi: 10.1103/PhysRevC.85.044317
Citations: PlumX Metrics

2011KH10      Phys.Rev. C 84, 051301 (2011)

E.Khan, N.Paar, D.Vretenar

Low-energy monopole strength in exotic nickel isotopes

NUCLEAR STRUCTURE 68Ni; calculated isoscalar monopole strength, neutron and proton transition densities in 10-40 MeV region. 60,62,64,66,68,70,72,74,76,78Ni; calculated monopole response in 10-40 MeV range. Microscopic Skyrme HF+RPA and relativistic RHB+RQRPA models.

doi: 10.1103/PhysRevC.84.051301
Citations: PlumX Metrics

2011NI09      Phys.Rev. C 83, 045807 (2011)

Y.F.Niu, N.Paar, D.Vretenar, J.Meng

Stellar electron-capture rates calculated with the finite-temperature relativistic random-phase approximation

NUCLEAR REACTIONS 54,56Fe, 76,78Ge(e, ν), E=0-30 MeV; calculated B(GT) strength distributions, electron-capture rates and cross sections in stellar environments. Finite-temperature relativistic mean-field model with charge-exchange transitions described by the self-consistent finite-temperature relativistic random-phase approximation. Comparison with predictions of similar and complementary model calculations.

doi: 10.1103/PhysRevC.83.045807
Citations: PlumX Metrics

2011NI21      J.Phys.:Conf.Ser. 312, 042017 (2011)

Y.F.Niu, N.Paar, D.Vretenar, J.Meng

Finite temperature effects on monopole and dipole excitations

NUCLEAR STRUCTURE 60Ni, 132Sn; calculated resonance dipole (Ni), monopole (Sn) transition strength distributions, single particle spectra using FTRRPA (finite temperature relativistic RPA).

doi: 10.1088/1742-6596/312/4/042017
Citations: PlumX Metrics

2011PA29      Phys.Rev. C 84, 047305 (2011)

N.Paar, T.Suzuki, M.Honma, T.Marketin, D.Vretenar

Uncertainties in modeling low-energy neutrino-induced reactions on iron-group nuclei

NUCLEAR REACTIONS 54,56Fe, 58,60Ni(ν, X), E=40, 60, 80 MeV; calculated Gamow-Teller transition strengths B(GT), cross sections. Cross sections averaged over Michel flux and Fermi-Dirac distribution. Relativistic and Skyrme energy-density functionals and the shell model approach. Comparison with experimental data for 56Fe(ν, e)56Co.

doi: 10.1103/PhysRevC.84.047305
Citations: PlumX Metrics

2011SA04      Phys.Rev. C 83, 024303 (2011)

A.R.Samana, F.Krmpotic, N.Paar, C.A.Bertulani

Neutrino and antineutrino charge-exchange reactions on 12C

NUCLEAR STRUCTURE 12B, 12N; calculated ground state energies, GT-B values, weak-interaction properties of ground states. QRPA and Projected quasiparticle random phase approximation (QRPA).

NUCLEAR REACTIONS 12C(ν, e-)12N, E=0-600 MeV; 12C(ν-bar, e+)12B, E=0-600 MeV; calculated exclusive and inclusive cross sections, sum rule, muon capture transition rates. Astrophysical significance to supernova neutrino spectra. QRPA and PQRPA models. Comparison with experimental data.

doi: 10.1103/PhysRevC.83.024303
Citations: PlumX Metrics

2009KL02      Acta Phys.Pol. B40, 589 (2009)

A.Klimkiewicz, N.Paar, P.Adrich, M.Fallot, K.Boretzky, T.Aumann, D.Cortina-Gil, U.Datta Pramanik, Th.W.Elze, H.Emling, H.Geissel, M.Hellstrom, K.L.Jones, J.V.Kratz, R.Kulessa, C.Nociforo, R.Palit, H.Simon, G.Surowka, K.Summerer, D.Vretenar, W.Walus

Collective Dipole Excitations in Neutron-Rich Nuclei from 132Sn Mass Region, the Nuclear Symmetry Energy and Neutron Skins

NUCLEAR REACTIONS Pb(130Sn, 130Sn'), (132Sn, 132Sn'), E not given;measured dipole strength distributions following projectile Coulomb excitation;deduced symmetry energy pressure, neutron skin thickness, pygmy strength. Comparison with calculations.

2009MA20      Phys.Rev. C 79, 054323 (2009)

T.Marketin, N.Paar, T.Niksic, D.Vretenar

Relativistic quasiparticle random-phase approximation calculation of total muon capture rates

NUCLEAR STRUCTURE Z=6-96, A=12-244; calculated muon transition energies and muon capture rates using relativistic proton-neutron quasiparticle random phase approximation. Relativistic Hartree-Bogoliubov model. Comparison with experimental data.

doi: 10.1103/PhysRevC.79.054323
Citations: PlumX Metrics

2009PA26      Phys.Rev.Lett. 103, 032502 (2009)

N.Paar, Y.F.Niu, D.Vretenar, J.Meng

Isoscalar and Isovector Splitting of Pygmy Dipole Structures

NUCLEAR STRUCTURE 140Ce; calculated E1 transition strength; deduced low-energy strength structure based on isospin. QRPA, comparison with experiment.

doi: 10.1103/PhysRevLett.103.032502
Citations: PlumX Metrics

2009PA43      Phys.Rev. C 80, 055801 (2009)

N.Paar, G.Colo, E.Khan, D.Vretenar

Calculation of stellar electron-capture cross sections on nuclei based on microscopic Skyrme functionals

NUCLEAR REACTIONS 56Fe(e, ν), E=4-60 MeV; Ni, 48Ti, 50Cr, 68Ge, 72Ge, 76Ge(e, ν), E=5-30 MeV; calculated stellar electron capture cross sections at different temperatures with finite-temperature Skyrme Hartree-Fock plus RPA approach. Comparison with cross sections calculated from the shell-model Monte Carlo (SMMC) GT-strength distributions.

NUCLEAR STRUCTURE 74Ge; calculated occupation percentages of proton and neutron orbitals, and temperature dependence of GT strength distributions with the finite-temperature proton-neutron RPA model based on the Skyrme SGII interaction.

doi: 10.1103/PhysRevC.80.055801
Citations: PlumX Metrics

2008PA05      Phys.Rev. C 77, 024608 (2008)

N.Paar, D.Vretenar, T.Marketin, P.Ring

Inclusive charged-current neutrino-nucleus reactions calculated with the relativistic quasiparticle random-phase approximation

NUCLEAR REACTIONS 12C, 16O, 56Fe, 208Pb(ν, e-), E=0-100 MeV; calculated neutron-nucleus cross sections.

doi: 10.1103/PhysRevC.77.024608
Citations: PlumX Metrics

2008PA06      J.Phys.(London) G35, 014058 (2008)

N.Paar, D.Vretenar, P.Ring

Neutrino-nucleus reactions with the relativistic quasiparticle RPA

NUCLEAR REACTIONS 12C(ν, e-), (ν, μ-), E not given; 16O(ν, e-), E not given; 208Pb(ν, e-), E < 50 MeV; calculated cross sections; 56Fe(ν, e-), E < 60 MeV; calculated cross sections, contribution of multipole transitions. Comparisons with data.

doi: 10.1088/0954-3899/35/1/014058
Citations: PlumX Metrics

2008PA30      Phys.Rev. C 78, 039801 (2008)


Comment on "Pygmy dipole response of proton-rich argon nuclei in random-phase approximation and no-core shell model"

doi: 10.1103/PhysRevC.78.039801
Citations: PlumX Metrics

2008VR01      J.Phys.(London) G35, 014039 (2008)

D.Vretenar, N.Paar, T.Marketin, P.Ring

Relativistic QRPA description of nuclear excitations

NUCLEAR STRUCTURE 32Ar, Ar, 132Sn; calculated dipole strength distributions using the RRPA formalism. 108,110,112,114,116,118,120,122,124,126,128,130,132Sn; calculated energy spacings between GT resonances and the respective isobaric analog states using the RQRPA formalism. Comparison with data.

RADIOACTIVITY Fe, Ni, Zn(β-); calculated T1/2 using the RQRPA formalism. Comparison with data.

doi: 10.1088/0954-3899/35/1/014039
Citations: PlumX Metrics

2007KL06      Phys.Rev. C 76, 051603 (2007)

A.Klimkiewicz, N.Paar, P.Adrich, M.Fallot, K.Boretzky, T.Aumann, D.Cortina-Gil, U.Datta Pramanik, Th.W.Elze, H.Emling, H.Geissel, M.Hellstrom, K.L.Jones, J.V.Kratz, R.Kulessa, C.Nociforo, R.Palit, H.Simon, G.Surowka, K.Summerer, D.Vretenar, W.Walus, for the LAND Collaboration

Nuclear symmetry energy and neutron skins derived from pygmy dipole resonances

NUCLEAR REACTIONS Be(238U, X)129Sn/130Sn/131Sn/132Sn/133Sb/134Sb, E=500 MeV/nucleon; measured pygmy dipole resonance strength, neutron skin thickness, symmetry parameters; deduced neutron separation energy, B(E1) using RQRPA approach. Compared to 116Sn, 140Ce, 142Nd, 144Sm, 208Pb.

doi: 10.1103/PhysRevC.76.051603
Citations: PlumX Metrics

2007PA08      Phys.Rev. C 75, 014310 (2007)

P.Papakonstantinou, R.Roth, N.Paar

Nuclear collective excitations using correlated realistic interactions: The role of explicit random-phase approximation correlations

NUCLEAR STRUCTURE 16O, 40Ca, 90Zr, 100Sn, 208Pb; calculated giant resonance energies, strength distributions.

doi: 10.1103/PhysRevC.75.014310
Citations: PlumX Metrics

2007PA17      Rep.Prog.Phys. 70, 691 (2007)

N.Paar, D.Vretenar, E.Khan, G.Colo

Exotic modes of excitation in atomic nuclei far from stability

doi: 10.1088/0034-4885/70/5/R02
Citations: PlumX Metrics

2007RI14      Nucl.Phys. A788, 194c (2007)

P.Ring, E.Litvinova, T.Niksic, N.Paar, D.Pena Arteaga, V.I.Tselyaev, D.Vretenar

Dynamics of Exotic Nuclear Systems: Covariant QRPA and Extensions

NUCLEAR STRUCTURE 20,26Ne, 132Sn, 208Pb; calculated isoscalar monopole, isovector E1, M1 resonance strength functions and neutron single-particle states using covariant density functional theory including particle vibration coupling.

doi: 10.1016/j.nuclphysa.2007.01.082
Citations: PlumX Metrics

2007RO22      Nucl.Phys. A788, 12c (2007)

R.Roth, H.Hergert, N.Paar, P.Papakonstantinou

Nuclear Structure in the UCOM Framework: From Realistic Interactions to Collective Excitations

NUCLEAR STRUCTURE 4He, 16,24O, 34Si, 40,48Ca, 48,56,78Ni, 88Sr, 90Zr, 100,114,132Sn, 146Gd, 208Pb; calculated ground-state energies. 40Ca, 90Zr, 208Pb; calculated giant resonance strength distributions. Unitary correlation operator method, no-core shell model, Hartree-Fock, RPA, many-body perturbation theory. Comparison with data.

doi: 10.1016/j.nuclphysa.2007.01.008
Citations: PlumX Metrics

2007VR01      Eur.Phys.J. Special Topics 150, 193 (2007)

D.Vretenar, T.Niksic, N.Paar, P.Ring

Exotic nuclear structure: Relativistic mean-field and beyond

NUCLEAR STRUCTURE 32Ar, 132Sn; calculated isovector dipole strength distributions.

doi: 10.1140/epjst/e2007-00302-9
Citations: PlumX Metrics

2006PA11      Int.J.Mod.Phys. E15, 346 (2006)

N.Paar, P.Papakonstantinou, R.Roth, H.Hergert

Self-consistent description of collective excitations in the unitary correlation operator method

NUCLEAR STRUCTURE 16O, 40,48Ca, 90Zr, 132Sn, 208Pb; calculated giant resonance strength distributions. Unitary correlation operator method, RPA.

doi: 10.1142/S0218301306004193
Citations: PlumX Metrics

2006PA24      Phys.Rev. C 74, 014318 (2006)

N.Paar, P.Papakonstantinou, H.Hergert, R.Roth

Collective multipole excitations based on correlated realistic nucleon-nucleon interactions

NUCLEAR STRUCTURE 16O, 40Ca; calculated single-particle level energies. 16O, 40,48Ca, 90Zr, 132Sn, 208Pb; calculated transition strength distributions, giant resonance features. Unitary correlation operator method.

doi: 10.1103/PhysRevC.74.014318
Citations: PlumX Metrics

2006PA30      Phys.Atomic Nuclei 69, 1345 (2006)

N.Paar, P.Papakonstantinou, H.Hergert, R.Roth

Collective Excitations in the Unitary Correlation Operator Method and Relativistic QRPA Studies of Exotic Nuclei

NUCLEAR STRUCTURE 40Ca; calculated single-particle level energies. 4He, 16,24O, 34Si, 40,48Ca, 48,56,68,78Ni, 88Sr, 90Zr, 100,114,132Sn, 146Gd, 208Pb; calculated binding energies. 16O, 40,48Ca, 42Ti, 44Cr, 46Fe, 90Zr, 132Sn, 208Pb; calculated transition strength distributions. Self-consistent RPA approach, unitary correlation operator method.

doi: 10.1134/S1063778806080114
Citations: PlumX Metrics

2006PA31      Phys.Rev. C 74, 037303 (2006)

N.Paar, D.Vretenar, T.Niksic, P.Ring

Relativistic quasiparticle random-phase approximation description of isoscalar compression modes in open-shell nuclei in the A ≈ 60 mass region

NUCLEAR STRUCTURE 56Fe, 58,60Ni; calculated isoscalar monopole and dipole strength distributions. Relativistic quasiparticle RPA.

doi: 10.1103/PhysRevC.74.037303
Citations: PlumX Metrics

2006RO15      Phys.Rev. C 73, 044312 (2006)

R.Roth, P.Papakonstantinou, N.Paar, H.Hergert, T.Neff, H.Feldmeier

Hartree-Fock and many body perturbation theory with correlated realistic NN interactions

NUCLEAR STRUCTURE 4He, 16,24O, 34Si, 40,48Ca, 48,56,78Ni, 88Sr, 90Zr, 100,114,132Sn, 146Gd, 208Pb; calculated ground-state energies, radii. 16O, 40Ca, 100,132Sn, 208Pb; calculated single-particle energies. O, Ca, Ni, Sn; calculated ground-state energies for even-A isotopes. Correlated realistic nucleon-nucleon interactions.

doi: 10.1103/PhysRevC.73.044312
Citations: PlumX Metrics

2005NI02      Phys.Rev. C 71, 014308 (2005)

T.Niksic, T.Marketin, D.Vretenar, N.Paar, P.Ring

β-decay rates of r-process nuclei in the relativistic quasiparticle random phase approximation

NUCLEAR STRUCTURE 69,71,73,75,77,79Cu, 78Ni, 132Sn; calculated neutron and proton single-particle energy levels. Relativistic quasiparticle RPA.

RADIOACTIVITY 64,66,68,70,74,76Fe, 70,72,74,76,78Ni, 76,78,80,82Zn, 82Ge, 72Ti, 74Cr, 122,124,126,128,130,132Cd, 134,136,138,140,142Sn, 136,138,140,142,144,146Te(β-); calculated T1/2. Relativistic quasiparticle RPA, comparisons with data.

doi: 10.1103/PhysRevC.71.014308
Citations: PlumX Metrics

2005PA09      Phys.Lett. B 606, 288 (2005)

N.Paar, T.Niksic, D.Vretenar, P.Ring

Isotopic dependence of the pygmy dipole resonance

NUCLEAR STRUCTURE Ni, Sn, Pb; calculated pygmy dipole resonance excitation energies. Relativistic quasiparticle RPA, comparison with data.

doi: 10.1016/j.physletb.2004.12.011
Citations: PlumX Metrics

2005PA20      Int.J.Mod.Phys. E14, 29 (2005)

N.Paar, T.Niksic, D.Vretenar, P.Ring

Relativistic description of exotic collective excitation phenomena in atomic nuclei

NUCLEAR STRUCTURE 22O, 132Sn; calculated isovector dipole strength distribution. 114,116,118,120,122,124,126,128,130,132,134,136,138,140Sn; calculated pygmy dipole resonance energies. 18,20,22,24O; calculated energy levels, B(E2). Relativistic quasiparticle RPA, comparisons with data.

doi: 10.1142/S0218301305002746
Citations: PlumX Metrics

2005PA26      Phys.Rev.Lett. 94, 182501 (2005)

N.Paar, D.Vretenar, P.Ring

Proton Electric Pygmy Dipole Resonance

NUCLEAR STRUCTURE 40Ca, 42Ti, 44Cr, 46Fe, 32Ar; calculated electric dipole strength distributions, pygmy resonance features. 28,30,32,34,36Ar; calculated pygmy resonance centroid energies, integrated B(E1). Self-consistent relativistic Hartree-Bogoliubov model, relativistic quasiparticle RPA.

doi: 10.1103/PhysRevLett.94.182501
Citations: PlumX Metrics

2005PA54      Phys.Lett. B 624, 195 (2005)

N.Paar, P.Papakonstantinou, V.Yu.Ponomarev, J.Wambach

Low-energy dipole excitations towards the proton drip-line: Doubly magic 48Ni

NUCLEAR STRUCTURE 48,56Ni; calculated dipole strength distributions, transition densities. Dirac-Hartree with self consistent relativistic RPA model, Skyrme-Hartree-Fock with continuum RPA model.

doi: 10.1016/j.physletb.2005.08.043
Citations: PlumX Metrics

2005PA71      Eur.Phys.J. A 25, Supplement 1, 531 (2005)

N.Paar, T.Niksic, T.Marketin, D.Vretenar, P.Ring

Self-consistent relativistic QRPA studies of soft modes and spin-isospin resonances in unstable nuclei

NUCLEAR STRUCTURE 112,114,116,118,120,122,124Sn, 200,202,204,206,208,210,212,214Pb; calculated resonance energies. 122Zr, 124Mo, 126Ru, 128Pd, 130Cd, 134,136,138,140,142Sn, 136,138,140,142,144,146Te; calculated T1/2. Self-consistent relativistic quasiparticle RPA, relativistic Hartree-Bogoliubov model.

doi: 10.1140/epjad/i2005-06-057-5
Citations: PlumX Metrics

2004PA15      Phys.Rev. C 69, 054303 (2004)

N.Paar, T.Niksic, D.Vretenar, P.Ring

Quasiparticle random phase approximation based on the relativistic Hartree-Bogoliubov model. II. Nuclear spin and isospin excitations

NUCLEAR STRUCTURE 48Ca, 90Zr, 208Pb, 108,110,112,114,116,118,120,122,124,126,128,130,132Sn; calculated IAR and Gamow-Teller strength distributions, related features. Proton-neutron relativistic quasiparticle RPA.

doi: 10.1103/PhysRevC.69.054303
Citations: PlumX Metrics

2004VR01      Nucl.Phys. A731, 281 (2004)

D.Vretenar, T.Niksic, N.Paar, P.Ring

Relativistic QRPA description of low-lying dipole strength in neutron-rich nuclei

NUCLEAR STRUCTURE 22O, 104,108,112,116,120,124,128,132Sn, 208Pb; calculated isovector response functions. Relativistic quasiparticle RPA.

doi: 10.1016/j.nuclphysa.2003.11.039
Citations: PlumX Metrics

2004VR02      Eur.Phys.J. A 20, 75 (2004)

D.Vretenar, T.Niksic, P.Ring, N.Paar, G.A.Lalazissis, P.Finelli

Relativistic Hartree-Bogoliubov and QRPA description of exotic nuclear structure

NUCLEAR STRUCTURE 22O; calculated dipole and quadrupole strength distributions.pairing contributions.

doi: 10.1140/epja/i2002-10325-0
Citations: PlumX Metrics

2003PA08      Phys.Rev. C 67, 034312 (2003)

N.Paar, P.Ring, T.Niksic, D.Vretenar

Quasiparticle random phase approximation based on the relativistic Hartree-Bogoliubov model

NUCLEAR STRUCTURE 22O, 104,108,112,116,120,124,128,132Sn, 134Te, 136Xe, 138Ba, 140Ce, 142Nd, 144Sm, 146Gd; calculated dipole and quadrupole strength distributions, transition densities. Relativistic Hartree-Bogoliubov plus relativistic quasiparticle RPA approach.

doi: 10.1103/PhysRevC.67.034312
Citations: PlumX Metrics

2003RI09      Nucl.Phys. A722, 372c (2003)

P.Ring, N.Paar, T.Niksic, D.Vretenar

Collective excitations far from the valley of stability

NUCLEAR STRUCTURE 22O; calculated dipole, quadrupole strength distributions. Relativistic quasiparticle RPA.

doi: 10.1016/S0375-9474(03)01392-7
Citations: PlumX Metrics

2003VR02      Phys.Rev.Lett. 91, 262502 (2003)

D.Vretenar, N.Paar, T.Niksic, P.Ring

Spin-Isospin Resonances and the Neutron Skin of Nuclei

NUCLEAR STRUCTURE 112,114,116,118,120,122,124Sn; calculated Gamow-Teller resonance and isobaric analog state energies, neutron skin thickness. Relativistic quasiparticle RPA, self-consistent Hartree-Bogoliubov models.

doi: 10.1103/PhysRevLett.91.262502
Citations: PlumX Metrics

2002VR01      Phys.Rev. C65, 021301 (2002)

D.Vretenar, N.Paar, P.Ring, T.Niksic

Toroidal Dipole Resonances in the Relativistic Random Phase Approximation

NUCLEAR STRUCTURE 90Zr, 116Sn, 208Pb; calculated toroidal dipole resonance strength distributions, related features. Relativistic RPA.

doi: 10.1103/PhysRevC.65.021301
Citations: PlumX Metrics

2001VR01      Phys.Rev. C63, 047301 (2001)

D.Vretenar, N.Paar, P.Ring, G.A.Lalazissis

Pygmy Dipole Resonances in the Relativistic Random Phase Approximation

NUCLEAR STRUCTURE 208Pb; calculated isovector dipole strength distribution, pygmy resonance features.

doi: 10.1103/PhysRevC.63.047301
Citations: PlumX Metrics

2001VR02      Nucl.Phys. A692, 496 (2001)

D.Vretenar, N.Paar, P.Ring, G.A.Lalazissis

Collectivity of the Low-Lying Dipole Strength in Relativistic Random Phase Approximation

NUCLEAR STRUCTURE 16,22,24,28O, 40,48,54,60Ca, 48,56,68,78Ni, 100,114,120,132Sn, 122Zr, 208Pb; calculated isovector dipole strength distributions, transition densities. Relativistic RPA.

doi: 10.1016/S0375-9474(01)00653-4
Citations: PlumX Metrics

1999VR02      Nucl.Phys. A649, 29c (1999)

D.Vretenar, P.Ring, G.A.Lalazissis, N.Paar

Relativistic Mean-Field Description of the Dynamics of Giant Resonances

NUCLEAR STRUCTURE 208Pb; calculated isovector, isoscalar monopole resonance spectra. Relativistic mean-field theory.

doi: 10.1016/S0375-9474(99)00035-4
Citations: PlumX Metrics

Back to query form