NSR Query Results


Output year order : Descending
Format : Normal

NSR database version of April 11, 2024.

Search: Author = T.Niksic

Found 107 matches.

    Showing 1 to 100.

   [Next]

Back to query form



2024RA05      Phys.Rev. C 109, 014318 (2024)

A.Ravlic, E.Yuksel, T.Niksic, N.Paar

Global properties of nuclei at finite-temperature within the covariant energy density functional theory

doi: 10.1103/PhysRevC.109.014318
Citations: PlumX Metrics


2024ZH07      Phys.Rev. C 109, 024316 (2024)

D.D.Zhang, B.Li, D.Vretenar, T.Niksic, Z.X.Ren, P.W.Zhao, J.Meng

Ternary quasifission in collisions of actinide nuclei

doi: 10.1103/PhysRevC.109.024316
Citations: PlumX Metrics


2024ZH09      Phys.Rev. C 109, 024614 (2024)

D.D.Zhang, D.Vretenar, T.Niksic, P.W.Zhao, J.Meng

Multinucleon transfer with time-dependent covariant density functional theory

doi: 10.1103/PhysRevC.109.024614
Citations: PlumX Metrics


2023LI04      Phys.Rev. C 107, 014303 (2023)

B.Li, D.Vretenar, Z.X.Ren, T.Niksic, J.Zhao, P.W.Zhao, J.Meng

Fission dynamics, dissipation, and clustering at finite temperature

NUCLEAR STRUCTURE 240Pu, 234U, 244Cm, 250Cf; calculated self-consistent deformation energy surface for the process of induced fission, induced fission trajectories evolution, proton localization functions, density profile immediately prior to the scission event. Microscopic finite-temperature model based on time dependent nuclear density functional theory (TDDFT).

doi: 10.1103/PhysRevC.107.014303
Citations: PlumX Metrics


2023LI35      Phys.Rev. C 108, 014321 (2023)

B.Li, D.Vretenar, T.Niksic, P.W.Zhao, J.Meng

Generalized time-dependent generator coordinate method for small- and large-amplitude collective motion

NUCLEAR STRUCTURE 208Pb; calculated monopole response, isocalar giant monopole resonance strength function, quadrupole response, octupole response, hexadecapole response. 240Pu; calculated fission trajectories, time evolution of the quadrupole and octupole deformations on the way to scission and beyond.Generalized time-dependent generator coordinated method (TD-GCM) and time-dependent density functional theory (TD-DFT) calculations. Comparison with available experimental data.

doi: 10.1103/PhysRevC.108.014321
Citations: PlumX Metrics


2023RA22      Phys.Rev. C 108, 054305 (2023)

A.Ravlic, E.Yuksel, T.Niksic, N.Paar

Influence of the symmetry energy on the nuclear binding energies and the neutron drip line position

doi: 10.1103/PhysRevC.108.054305
Citations: PlumX Metrics


2023ZH13      Phys.Rev. C 107, 034311 (2023)

J.Zhao, J.-P.Ebran, L.Heitz, E.Khan, F.Mercier, T.Niksic, D.Vretenar

Microscopic description of α, 2α, and cluster decays of 216-220Rn and 220-224Ra

RADIOACTIVITY 212Po, 216,218,220Rn, 220,222,224Ra(α), (2α); 222,224Ra(12C); calculated T1/2, branching ratios. Relativistic Hartree-Bogoliubov model with the DD-PC1 functional and a separable pairing force. Comparison to experimental data.

NUCLEAR STRUCTURE 212Po, 216,218,220Rn, 220,222,224Ra; calculated deformation-energy surfaces (quadrupole, octupole and hexadecupole).

doi: 10.1103/PhysRevC.107.034311
Citations: PlumX Metrics


2022RE04      Phys.Rev. C 105, 044313 (2022)

Z.X.Ren, J.Zhao, D.Vretenar, T.Niksic, P.W.Zhao, J.Meng

Microscopic analysis of induced nuclear fission dynamics

NUCLEAR STRUCTURE 240Pu; calculated deformation energy surface in the plane of quadrupole-octupole axially symmetric deformation parameters, induced fission charge yields and fragments distributions, fission trajectories on the the self-consistent deformation energy surface, total kinetic energies of the fragments from induced fission. Framework that combines the time-dependent generator coordinate method (TDGCM) and time-dependent nuclear density functional theory (TDDFT). Comparison to available experimental data.

doi: 10.1103/PhysRevC.105.044313
Citations: PlumX Metrics


2022RE05      Phys.Rev.Lett. 128, 172501 (2022)

Z.X.Ren, D.Vretenar, T.Niksic, P.W.Zhao, J.Zhao, J.Meng

Dynamical Synthesis of 4He in the Scission Phase of Nuclear Fission

RADIOACTIVITY 240Pu(SF); analyzed available data. 4,6He, 3H; deduced light cluster emission. Time-dependent density functional theory, based on a relativistic energy density functional including pairing correlations.

doi: 10.1103/PhysRevLett.128.172501
Citations: PlumX Metrics


2022ZH06      Phys.Rev. C 105, 024322 (2022)

D.D.Zhang, Z.X.Ren, P.W.Zhao, D.Vretenar, T.Niksic, J.Meng

Effects of rotation and valence nucleons in molecular α-chain nuclei

NUCLEAR STRUCTURE 12,16C, 16Ne; calculated Routhians, proton and neutron density distributions, location of the peak and the width of α-like cluster in the nuclei. 16C, 16Ne, 20O, 20Mg; calculated angular momentaand quadrupole deformation as functions of rotational frequency. 3D lattice Cranking covariant density functional theory (CDFT) calculations.

doi: 10.1103/PhysRevC.105.024322
Citations: PlumX Metrics


2022ZH19      Phys.Rev. C 105, 044326 (2022)

Y.Zhang, A.Bjelcic, T.Niksic, E.Litvinova, P.Ring, P.Schuck

Many-body approach to superfluid nuclei in axial geometry

NUCLEAR STRUCTURE 28Si; calculated single-particle energies, Nilsson diagram, strength of the neutron states, low-energy isoscalar strength functions for varying quadrupole deformation, deformation parameters. 250Cf; calculated deformation parameters. 249,251Cf; calculated single-quasiparticle neutron states. Finite amplitude quasiparticle random phase approximation method. Comparison to experimental data.

doi: 10.1103/PhysRevC.105.044326
Citations: PlumX Metrics


2022ZH28      Phys.Rev. C 105, 054604 (2022)

J.Zhao, T.Niksic, D.Vretenar

Time-dependent generator coordinate method study of fission: Dissipation effects

NUCLEAR REACTIONS 228Th(γ, F), E=8-14 MeV; calculated fragments charge yields in induced fission process for different fixed temperatures. Extended temperature-dependent time-dependent generator coordinate method (TDGCM) for induced fission dynamics to allow the dissipation effects. Comparison to experimental data.

doi: 10.1103/PhysRevC.105.054604
Citations: PlumX Metrics


2022ZH66      Phys.Rev. C 106, 054609 (2022)

J.Zhao, T.Niksic, D.Vretenar

Time-dependent generator coordinate method study of fission. II. Total kinetic energy distribution

NUCLEAR STRUCTURE 228Th; calculated scission contours in the (β2, β3) deformation plane for nuclear temperatures from 0 to 1.6 MeV, density profile at the scission, total kinetic energy of the induced fission fragments, binding energies of the fission fragments as a function of temperature. Time-dependent generator coordinate method extended to include dissipation effects in the description of induced fission dynamics. Comparison to available experimental data.

doi: 10.1103/PhysRevC.106.054609
Citations: PlumX Metrics


2021AC04      Phys.Rev. C 103, 044304 (2021)

G.Accorto, T.Naito, H.Liang, T.Niksic, D.Vretenar

Nuclear energy density functionals from empirical ground-state densities

NUCLEAR STRUCTURE 16O, 40Ca, 56Ni, 100Sn; calculated sum of neutron vector and scalar potentials for 16O (N=Z=8 system) as a function of the radial coordinate, vector densities of four symmetric systems: 16O (N=Z=8), 40Ca (N=Z=20), 56Ni (N=Z=28) and 100Sn (N=Z=50) using density functional perturbation theory and the inverse Kohn-Sham method, with the improved relativistic energy density functional (EDF) DD-PC1 determined by empirical exact ground-state densities of finite systems.

doi: 10.1103/PhysRevC.103.044304
Citations: PlumX Metrics


2021ME03      Phys.Rev. C 103, 024303 (2021)

F.Mercier, A.Bjelcic, T.Niksic, J.-P.Ebran, E.Khan, D.Vretenar

Low-energy cluster modes in N=Z nuclei

NUCLEAR STRUCTURE 20Ne; calculated self-consistent equilibrium density contour, monopole strength function, QFAM response to strength functions for the isoscalar monopole (Kπ=0+ and 0-), isoscalar dipole (Kπ=1+ and 1-), isoscalar quadrupole (Kπ=2+ and 2-) and isoscalar octupole (Kπ=3-) operators, centroids of the monopole strength function, density and localization function contours induced by monopole and octupole perturbations, neutron 2-qp contributions to the isoscalar monopole excitation as function of β2. 24Mg, 28Si, 32S; calculated low-energy isoscalar monopole strength distributions, QFAM response, neutron 2-qp contributions to the low-energy monopole modes. Finite amplitude method (FAM) based on the microscopic framework of relativistic nuclear energy density functionals with DD-PC1 parametrization for α-conjugate or α-cluster nuclei.

doi: 10.1103/PhysRevC.103.024303
Citations: PlumX Metrics


2021ME16      Phys.Rev.Lett. 127, 012501 (2021)

F.Mercier, J.Zhao, J.-P.Ebran, E.Khan, T.Niksic, D.Vretenar

Microscopic Description of 2α Decay in 212Po and 224Ra Isotopes

RADIOACTIVITY 212Po, 224Ra(2α), (α); calculated axially symmetric deformation energy surfaces as functions of quadrupole, octupole, and hexadecapole collective coordinates. Self-consistent framework based on energy density functionals.

doi: 10.1103/PhysRevLett.127.012501
Citations: PlumX Metrics


2021NO05      Phys.Rev. C 103, 054301 (2021)

K.Nomura, L.Lotina, T.Niksic, D.Vretenar

Microscopic description of octupole collective excitations near N=56 and N=88

NUCLEAR STRUCTURE 86,88,90,92,94,96,98,100Se, 88,90,92,94,96,98,100,102Kr, 90,92,94,96,98,100,102,104Sr; 90Se, 92Kr, 94Sr, 96Zr, 98Mo, 100Ru, 102Pd, 104Cd, 106Sn, 108Te, 110Xe, 112Ba, 114Ce; 106,108,110,112,114,116,118,140,142,144,146,148,150,152Xe, 108,110,112,114,116,118,120,142,144,146,148,150,152,154Ba, 110,112,114,116,118,120,122,144,146,148,150,152,154,156Ce; calculated self-consistent mean-field (SCMF) potential energy surfaces (PES) in (β2, β3) plane, levels, J, π, B(E1), B(E2), B(E3) for the g.s. and octupole bands, probability density distributions for the lowest positive-parity 0+ and 1- states in 112Xe and 144Ba using quadrupole-octupole collective Hamiltonian (QOCH), and compared with experimental data taken from the ENSDF database. Nuclear density functional theory, with axially symmetric quadrupole-octupole constrained self-consistent mean-field (SCMF) with universal energy density functional and/or a pairing interaction.

doi: 10.1103/PhysRevC.103.054301
Citations: PlumX Metrics


2021RA30      Phys.Rev. C 104, 064302 (2021)

A.Ravlic, Y.F.Niu, T.Niksic, N.Paar, P.Ring

Finite-temperature linear response theory based on relativistic Hartree Bogoliubov model with point-coupling interaction

NUCLEAR STRUCTURE 120Cd; calculated strength functions of 1- and 1+ excitations in β- direction; GT- strength B(GT-) of the 1+ state at 13.54 MeV, GT- strength function with respect to the number of oscillator shells, convergence properties of the GT- strength. 112,116,120,124,128Sn; calculated neutron critical temperature and mean pairing gap at zero temperature. 112,114,116,118,120,122Sn; calculated Jπ=0+ strength functions with respect to the excitation energy of the parent nuclei for temperatures T=0, 0.5, 0.9, and 1.5 MeV. 116,120,124,128,132Sn; calculated Gamow-Teller (Jπ=1+) strength functions with respect to the excitation energy of the parent nuclei for temperatures T=0, 0.5, 0.9, and 1.5 MeV. 112Sn; calculated single-particle energy levels in canonical basis for neutrons and protons at T=0 and 0.9 MeV. 112,120,128Sn; calculated spin-dipole excitation strength at temperature T=0, 0.5, 0.9, and 1.5 MeV, spin-dipole centroid energies of 0-, 1-, and 2- multipoles at temperature T=0 and 1.5 MeV. Finite-temperature linear response theory based on finite-temperature relativistic Hartree-Bogoliubov (FT-RHB) model for calculation of IAR, GTR, and spin-dipole resonance (SDR) in tin isotopes at finite-temperatures, with point-coupling relativistic energy-density functionals (EDFs): DD-PC1 and DDPCX for the calculation of mean-field potential in the ground state and the residual ph interaction in finite temperature quasiparticle random-phase approximation (FT-QRPA) approach, based on Bardeen-Cooper-Schrieffer (BCS) basis. Comparison with available experimental data.

doi: 10.1103/PhysRevC.104.064302
Citations: PlumX Metrics


2021ZH60      Phys.Rev. C 104, 044612 (2021)

J.Zhao, T.Niksic, D.Vretenar

Microscopic self-consistent description of induced fission: Dynamical pairing degree of freedom

NUCLEAR STRUCTURE 228Th; calculated three-dimensional potential energy surfaces (PES) in (β2, β3) planes, and scission contour using self-consistent multidimensionally constrained relativistic mean field model.

NUCLEAR REACTIONS 228Th(γ, F), E=8-14 MeV; calculated pairing gaps for neutrons and protons, and perturbative cranking masses along the static fission path as a function of β2, charge yields in induced fission using time-dependent generator coordinate method (TDGCM) with dynamic pairing degree of freedom, using Gaussian overlap approximation (GOA) based on microscopic nuclear energy density functionals DD-PC1. Comparison with available experimental data.

doi: 10.1103/PhysRevC.104.044612
Citations: PlumX Metrics


2020KO03      Phys.Rev. C 101, 014303 (2020)

P.Koseoglou, V.Werner, N.Pietralla, S.Ilieva, T.Niksic, D.Vretenar, P.Alexa, M.Thurauf, C.Bernards, A.Blanc, A.M.Bruce, R.B.Cakirli, N.Cooper, L.M.Fraile, G.de France, M.Jentschel, J.Jolie, U.Koster, W.Korten, T.Kroll, S.Lalkovski, H.Mach, N.Marginean, P.Mutti, Z.Patel, V.Paziy, Zs.Podolyak, P.H.Regan, J.-M.Regis, O.J.Roberts, N.Saed-Samii, G.S.Simpson, T.Soldner, C.A.Ur, W.Urban, D.Wilmsen, E.Wilson

Low-Z boundary of the N=88-0 shape phase transition: 148Ce near the critical point

NUCLEAR REACTIONS 235U(n, Fγ), E=cold neutrons from PF1B, ILL-Grenoble facility; measured Eγ, γγ-coin, half-lives of the first 2+ and 4+ levels in 148Ce by fast-timing technique using the EXILL-FATIMA array of eight EXOGAM clovers and 16 LaBr3(Ce) scintillators. 148Ce; deduced levels, B(E2) for the first 2+ 4+ states. Comparison with predictions of vibrator, rigid rotor, X(5) and X(5)-β8 models, and with previous experimental results. Systematics of E(first 4+)/E(first 2+) and energies of the yrast states for N=90 isotones 146Ba, 148Ce, 150Nd, 152Sm, 154Gd, 156Dy.

NUCLEAR STRUCTURE 144,146,148Ce, 146,148,150Nd, 148,150,152,154Sm; calculated quantum shape phase transition (QSPT) lines in the IBM symmetry triangle using IBM-1 model. 148Ce; calculated self-consistent triaxial quadrupole constrained energy surfaces and probability distributions in in the β-γ plane using Axial Skyrme-Hartree-Fock-Bogoliubov model.

doi: 10.1103/PhysRevC.101.014303
Citations: PlumX Metrics


2020ME08      Phys.Rev. C 102, 011301 (2020)

F.Mercier, J.Zhao, R.D.Lasseri, J.-P.Ebran, E.Khan, T.Niksic, D.Vretenar

Microscopic description of the self-conjugate 108Xe and 104Te α-decay chain

RADIOACTIVITY 108Xe, 104Te(α); calculated deformation energy surfaces in (β20, β30) and (β20, β40) planes, total nucleon density of the fragments around scission for α emission, T1/2 using self-consistent microscopic energy density functional framework with relativistic density functional DD-PC1 Comparison with experimental half-lives.

doi: 10.1103/PhysRevC.102.011301
Citations: PlumX Metrics


2020NO08      Phys.Rev. C 102, 034315 (2020)

K.Nomura, T.Niksic, D.Vretenar

Shape phase transitions in odd-A Zr isotopes

NUCLEAR STRUCTURE 94,96,98,100,102Zr; calculated deformation energy, and bosonic energy surfaces in (β, γ) planes, energies of low-lying positive-parity levels, effective quadrupole deformation parameters for the lowest three 0+ states. 95,97,99,101,103Zr; calculated levels, J, π, band structures, neutron single-particle energies and occupation probabilities, probability amplitudes of single-neutron configurations, B(M1), B(E2), μ, Q, β and γ deformation parameters. Deformation constrained self-consistent mean-field (SCMF) calculations with the relativistic Hartree-Bogoliubov method based on the universal energy density functional DD-PC1 and a separable pairing interaction. Energy spectra of even-even Zr nuclei from mapping the SCMF deformation energy surfaces onto the expectation value of the IBM-2 Hamiltonian in the boson condensate state. Comparison with experimental data.

doi: 10.1103/PhysRevC.102.034315
Citations: PlumX Metrics


2020XI03      Phys.Rev. C 101, 064301 (2020)

J.Xiang, Z.P.Li, T.Niksic, D.Vretenar, W.H.Long

Coupling of shape and pairing vibrations in a collective Hamiltonian based on nuclear energy density functionals

NUCLEAR STRUCTURE 152Nd, 154Sm, 156Gd, 158Dy; calculated low-lying levels, J, π, lowest 0+ states, B(E2) and E0 transition strengths with quadrupole + pairing collective Hamiltonian and axially symmetric quadrupole collective Hamiltonian based on PC-PK1 energy functional; calculated potential energy surface (PES), probability density distributions and deformation energy surfaces in (β2, α) planes using triaxial relativistic mean-field formalism with PC-PK1 parameter sets. Comparison with experimental data.

doi: 10.1103/PhysRevC.101.064301
Citations: PlumX Metrics


2020ZH20      Phys.Rev. C 101, 064605 (2020)

J.Zhao, T.Niksic, D.Vretenar, S.-G.Zhou

Time-dependent generator coordinate method study of fission: Mass parameters

RADIOACTIVITY 228,230Th, 234U, 240Pu(SF); calculated axially symmetric quadrupole-octupole collective potential contours in the (β2, β3) plane, components of the mass tensors as function of quadrupole deformation β2, and charge yields in the low-energy induced fission using self-consistent multidimensionally constrained relativistic mean-field model, and time-dependent generator coordinate method with nonperturbative and perturbative cranking adiabatic time-dependent Hartree-Fock-Bogoliubov (ATDHFB) mass tensors. Comparison with experimental data for thermal neutron induced fission charge yields for 228,230Th, 234U, 240Pu.

doi: 10.1103/PhysRevC.101.064605
Citations: PlumX Metrics


2020ZH41      Phys.Rev. C 102, 054606 (2020)

J.Zhao, T.Niksic, D.Vretenar

Microscopic model for the collective enhancement of nuclear level densities

NUCLEAR STRUCTURE 94,96,98Mo, 106,108Pd, 106,112Cd, 160,162,164Dy, 166Er, 170,172Yb; calculated self-consistent triaxial quadrupole deformation constrained energy surfaces in (β, γ) plane for Mo, Pd and Cd isotopes, self-consistent RHB axially symmetric deformation energy surfaces in (β2, β3) plane for Dy, Er and Yb isotopes, intrinsic and total nuclear level densities between 0-10 MeV using self-consistent multidimensionally constrained relativistic mean field model, and a five-dimensional quadrupole or quadrupole plus octupole collective Hamiltonian. Comparison with experimental values.

doi: 10.1103/PhysRevC.102.054606
Citations: PlumX Metrics


2019MA23      Phys.Rev. C 99, 034317 (2019)

P.Marevic, J.-P.Ebran, E.Khan, T.Niksic, D.Vretenar

Cluster structures in 12C from global energy density functionals

NUCLEAR STRUCTURE 12C; calculated deformation energy surfaces in (β2, β3) plane, energy curves as functions of the axial quadrupole deformation β2, low-energy levels, J, π, intraband B(E2) values, spectroscopic quadrupole moments, amplitudes of the collective wave functions squared, and characteristic intrinsic nucleon densities of first three 2+ and 0+ states; analyzed low-lying excitation spectrum and cluster structures in 12C using beyond mean-field framework based on global energy density functionals. Comparison with experimental values.

NUCLEAR REACTIONS 12C(e, e), (e, e'), θ2=0-14 fm2; calculated electron scattering form factors using the MR-EDF framework, and compared with experimental data, and with predictions of the AMD and THSR models.

doi: 10.1103/PhysRevC.99.034317
Citations: PlumX Metrics


2019SU22      Phys.Rev. C 100, 044319 (2019)

W.Sun, S.Quan, Z.P.Li, J.Zhao, T.Niksic, D.Vretenar

Microscopic core-quasiparticle coupling model for spectroscopy of odd-mass nuclei with octupole correlations

NUCLEAR STRUCTURE 222,224,226,228Ra; calculated levels, J, π, B(E2), B(E3), relativistic Hartree-Bogoliubov (RHB) deformation energy surfaces in (β2, β3) plane. 223,225,227Ra; calculated levels, J, π, bands, B(E1), B(E2), B(E3), octupole correlations, probabilities of the dominant configurations in wave functions using microscopic core-quasiparticle coupling (CQC) model based on covariant density functional theory. Comparison with experimental data.

doi: 10.1103/PhysRevC.100.044319
Citations: PlumX Metrics


2019ZH04      Phys.Rev. C 99, 014618 (2019)

J.Zhao, T.Niksic, D.Vretenar, S.-G.Zhou

Microscopic self-consistent description of induced fission dynamics: Finite-temperature effects

NUCLEAR STRUCTURE 226Th; calculated free energy along the least-energy fission pathway for temperatures T=0.0-1.25 MeV, barrier heights as function of temperature, dependence of the pairing energy in the equilibrium minimum in the fission isomer as function of temperature, component of the mass tensor as function of the quadrupole and octupole deformations, charge yields for induced fission, pre-neutron emission mass yields. Self-consistent multidimensionally constrained relativistic mean field model (MDC-RMF), and charge yields of induced fission using finite-temperature time-dependent generator coordinate method (TDGCM).

doi: 10.1103/PhysRevC.99.014618
Citations: PlumX Metrics


2019ZH26      Phys.Rev. C 99, 054613 (2019)

J.Zhao, J.Xiang, Z.P.Li, T.Niksic, D.Vretenar, S.-G.Zhou

Time-dependent generator-coordinate-method study of mass-asymmetric fission of actinides

NUCLEAR STRUCTURE 228Th; calculated levels, J, π, B(E2), B(E3), free energy along the least-energy fission path as function of the quadrupole deformation. 228Th, 234U, 240Pu, 244Cm, 250Cf; calculated deformation energy curves, axially symmetric quadrupole-octupole energy surface in (β20, β30) plane using microscopic TDGCM+GOA framework based on the relativistic energy density functional DD-PC1 and a separable pairing force of finite range. Comparison with experimental data.

NUCLEAR REACTIONS 228Th(γ, F), E*=0-11 MeV; 234U(γ, F), E*=0-11 MeV; 240Pu(γ, F), E*=0-11 MeV; 244Cm(γ, F), E*=0-23 MeV; 250Cf(γ, F), E*=0-8 MeV; calculated fission barriers and charge yields using a self-consistent multidimensionally constrained relativistic mean field model and the finite-temperature time-dependent generator coordinate model (GCM), respectively.

doi: 10.1103/PhysRevC.99.054613
Citations: PlumX Metrics


2018DE35      Phys.Rev.Lett. 121, 192502 (2018)

C.Delafosse, D.Verney, P.Marevic, A.Gottardo, C.Michelagnoli, A.Lemasson, A.Goasduff, J.Ljungvall, E.Clement, A.Korichi, G.De Angelis, C.Andreoiu, M.Babo, A.Boso, F.Didierjean, J.Dudouet, S.Franchoo, A.Gadea, G.Georgiev, F.Ibrahim, B.Jacquot, T.Konstantinopoulos, S.M.Lenzi, G.Maquart, I.Matea, D.Mengoni, D.R.Napoli, T.Niksic, L.Olivier, R.M.Perez-Vidal, C.Portail, F.Recchia, N.Redon, M.Siciliano, I.Stefan, O.Stezowski, D.Vretenar, M.Zielinska, D.Barrientos, G.Benzoni, B.Birkenbach, A.J.Boston, H.C.Boston, B.Cederwall, L.Charles, M.Ciemala, J.Collado, D.M.Cullen, P.Desesquelles, G.de France, C.Domingo-Pardo, J.Eberth, V.Gonzalez, L.J.Harkness-Brennan, H.Hess, D.S.Judson, A.Jungclaus, W.Korten, A.Lefevre, F.Legruel, R.Menegazzo, B.Million, J.Nyberg, B.Quintana, D.Ralet, P.Reiter, F.Saillant, E.Sanchis, Ch.Theisen, J.J.Valiente Dobon

Pseudospin Symmetry and Microscopic Origin of Shape Coexistence in the 78Ni Region: A Hint from Lifetime Measurements

NUCLEAR REACTIONS 9Be(238U, X)88Kr/86Se/84Ge, E=6.2 MeV/nucleon; measured reaction products, Eγ, Iγ; deduced level lifetimes, B(E2) values. Comparison with available data. Recoil-distance Doppler shift method.

doi: 10.1103/PhysRevLett.121.192502
Citations: PlumX Metrics

Data from this article have been entered in the XUNDL database. For more information, click here.


2018MA13      Phys.Rev. C 97, 024334 (2018)

P.Marevic, J.-P.Ebran, E.Khan, T.Niksic, D.Vretenar

Quadrupole and octupole collectivity and cluster structures in neon isotopes

NUCLEAR STRUCTURE 20,22,24,26,28,30,32,34Ne; calculated mean-field potential energy surfaces (PES) in (β2, β3) plane, angular momentum- and parity-projected PES in (β2, β3) plane, S(2n), collective wave functions, and average deformation parameters for the ground state, level energies of the first 2+ and 4+ states, B(E2) to the ground state, spectroscopic quadrupole moments. 20,22,24,32,34Ne; calculated levels, J, π, collective spectrum, B(E2), B(E3), collective wave functions of excited states, intrinsic nucleon and valence neutrons densities. Self-consistent relativistic mean-field framework with restoration of symmetries and configuration mixing. Discussed role of valence neutrons in the formation of molecular-type bonds between clusters. Description of cluster structures. Comparison with experimental data.

doi: 10.1103/PhysRevC.97.024334
Citations: PlumX Metrics


2018NO03      Phys.Rev. C 97, 024317 (2018)

K.Nomura, T.Niksic, D.Vretenar

Signatures of octupole correlations in neutron-rich odd-mass barium isotopes

NUCLEAR STRUCTURE 142,144,146Ba; calculated deformation energy surfaces in (β2, β3) plane from constrained relativistic Hartree-Bogoliubov self-consistent mean-field (SCMF) method and using DD-PC1 nuclear density functional, low-energy positive- and negative-parity levels, J, π, B(E2), B(E3) of the even-even boson core nuclei. 143,145,147Ba; calculated levels, J, π, B(E2), B(E3), expectation values of the f-boson number operator, amplitudes of spherical single-particle configuration in the IBFM wave functions of bandhead states; discussed octupole correlations. Calculations based on sdf-IBFM framework, with the boson-core Hamiltonian involving quadrupole and octupole boson degrees of freedom. Comparison with experimental data taken from databases at NNDC, BNL.

doi: 10.1103/PhysRevC.97.024317
Citations: PlumX Metrics


2018XI08      Phys.Rev. C 98, 054308 (2018)

J.Xiang, Z.P.Li, W.H.Long, T.Niksic, D.Vretenar

Shape evolution and coexistence in neutron-deficient Nd and Sm nuclei

NUCLEAR STRUCTURE 126,128,130,132,134,136,138,140Nd, 128,130,132,134,136,138,140,142Sm; calculated potential energy surfaces (PES) in (β2, γ) planes, B(E2) for the first 2+ state, E(first 4+)/E(first 2+) and E(2+ of γ band)/E(first 4+) ratios, β deformation parameters, low-lying levels, J, π, E0 strengths, and distribution of the probability densities for the first and second 0+, and first and third 2+ states in 134Nd and 136Sm, neutron and proton single particle levels in 134Nd, and single-neutron levels in 132,136Nd; analyzed shape evolution and shape coexistence in neutron-deficient even-even Nd and Sm nuclei. Relativistic mean field formalism with PC-PK1 parameter sets, and a separable finite-range pairing interaction with a five-dimensional (5DCH) quadrupole collective Hamiltonian. analyzed Comparison with experimental values.

doi: 10.1103/PhysRevC.98.054308
Citations: PlumX Metrics


2017EB02      J.Phys.(London) G44, 103001 (2017)

J.-P.Ebran, E.Khan, T.Niksic, D.Vretenar

Localization and clustering in atomic nuclei

NUCLEAR STRUCTURE 14,16C, 16O, 24Mg, 32S; calculated nucleon localization, and formation of clusters in nucleonic matter, nucleonic density.

doi: 10.1088/1361-6471/aa809b
Citations: PlumX Metrics


2017NI09      Phys.Rev. C 95, 054304 (2017)

T.Niksic, M.Imbrisak, D.Vretenar

"Sloppy" nuclear energy density functionals. II. Finite nuclei

NUCLEAR STRUCTURE 16O, 48Ca, 72Ni, 90Zr, 116,132Sn, 208,214Pb; calculated total binding energies, charge radii, and the differences between the radii of neutron and proton density distributions, equations of state (EoS) of symmetric nuclear matter, and neutron matter using manifold boundary approximation method (MBAM), and energy density functionals (EDFs). Comparison with experimental data.

doi: 10.1103/PhysRevC.95.054304
Citations: PlumX Metrics


2017NO06      Phys.Rev. C 96, 014304 (2017)

K.Nomura, T.Niksic, D.Vretenar

Shape-phase transitions in odd-mass γ-soft nuclei with mass A ≈ 130

NUCLEAR STRUCTURE 129,130,131,132,133,134,135,136,137Ba, 127,128,129,130,131,132,133,134,135Xe, 129,130,131,132,133,134,135,136,137La, 127,128,129,130,131,132,133,134,135Cs; calculated low-lying levels, J, π, B(E2), B(M1), electric quadrupole and magnetic dipole moments, single-particle energies and occupation probabilities of the spherical single particle orbitals in odd-A nuclei, parameters of the boson-fermion Hamiltonian, self-consistent RHB triaxial quadrupole binding energy contours in (β, γ) plane for 130,132,134,136Ba, 128,130,132,134Xe. Comparison with experimental data taken from the NNDC-BNL databases.

doi: 10.1103/PhysRevC.96.014304
Citations: PlumX Metrics


2017QU03      Phys.Rev. C 95, 054321 (2017)

S.Quan, Q.Chen, Z.P.Li, T.Niksic, D.Vretenar

Global analysis of quadrupole shape invariants based on covariant energy density functionals

NUCLEAR STRUCTURE Z=8-108, N=8-160; analyzed structure of 621 even-even nuclides for energies of energies of first three 2+ states, first 4+ and second 0+ states, and B(E2) for the first 2+ states, absolute differences between the calculated βeffcos3γeff and βeff for the two lowest 0+ states in 621 nuclei, calculated ratios E(second 0+)/E(first 2+). five-dimensional collective Hamiltonian model based on the relativistic energy density functional PC-PK1 and a finite range pairing interaction. Comparison with experimental data.

doi: 10.1103/PhysRevC.95.054321
Citations: PlumX Metrics


2017TA22      Phys.Rev. C 96, 024319 (2017)

H.Tao, J.Zhao, Z.P.Li, T.Niksic, D.Vretenar

Microscopic study of induced fission dynamics of 226Th with covariant energy density functionals

NUCLEAR STRUCTURE 226Th; calculated RMF+BCS binding energy, and quadrupole and octupole constrained deformation energy surface and scission contours in β23 plane, total kinetic energy of the nascent fission fragments as a function of fragment mass, preneutron emission charge yields for photoinduced fission, total kinetic energy of nascent fission fragments as function of fragment mass and pairing strength, charge and mass distributions of fission fragments. Self-consistent framework based on relativistic energy density functional PC-PK1, with induced fission dynamics described using the time-dependent generator coordinate method (TDGCM) in the Gaussian overlap approximation (GOA). Comparison with experimental data.

doi: 10.1103/PhysRevC.96.024319
Citations: PlumX Metrics


2017XI15      Phys.Rev. C 96, 054303 (2017)

S.Y.Xia, H.Tao, Y.Lu, Z.P.Li, T.Niksic, D.Vretenar

Spectroscopy of reflection-asymmetric nuclei with relativistic energy density functionals

NUCLEAR STRUCTURE 138,140,142,144,146,148,150,152,154Xe, 140,142,144,146,148,150,152,154,156Ba, 142,144,146,148,150,152,154,156,158Ce, 144,146,148,150,152,154,156,158,160Nd, 146,148,150,152,154,156,158,160,162Sm, 148,150,152,154,156,158,160,162,164Gd, 216,218,220,222,224,226,228,230,232,234,236,238Rn, 218,220,222,224,226,228,230,232,234,236,238,240Ra, 220,222,224,226,228,230,232,234,236,238,240,242Th, 222,224,226,228,230,232,234,236,238,240,242,244U, 224,226,228,230,232,234,236,238,240,242,244,246Pu, 226,228,230,232,234,236,238,240,242,244,246,248Cm, 228,230,232,234,236,238,240,242,244,246,248,250Cf, 230,232,234,236,238,240,242,244,246,248,250,252Fm; calculated levels, J, π, B(E1), B(E2), B(E3), electric dipole moments, deformation energy surface in (β2, β3) plane, other related features for 2+, 1-, 3- states of reflection-asymmetric nuclei using microscopic quadrupole-octupole collective Hamiltonian (QOCH) based on relativistic PC-PK1 energy density functional and δ-interaction pairing. Comparison with experimental data.

doi: 10.1103/PhysRevC.96.054303
Citations: PlumX Metrics


2016LI07      J.Phys.(London) G43, 024005 (2016)

Z.P.Li, T.Niksic, D.Vretenar

Coexistence of nuclear shapes: self-consistent mean-field and beyond

NUCLEAR STRUCTURE 44S, 46Ar, 42Si, 40Mg, 152Sm, 154Gd, 156Dy, 220,222,224,226,228,230Th; calculated potential energy surfaces, J, π, energy levels. Framework of nuclear energy density functionals.

doi: 10.1088/0954-3899/43/2/024005
Citations: PlumX Metrics


2016NI11      Phys.Rev. C 94, 024333 (2016)

T.Niksic, D.Vretenar

"Sloppy" nuclear energy density functionals: Effective model reduction

doi: 10.1103/PhysRevC.94.024333
Citations: PlumX Metrics


2016NO06      Phys.Rev. C 93, 054305 (2016)

K.Nomura, T.Niksic, D.Vretenar

Beyond-mean-field boson-fermion model for odd-mass nuclei

NUCLEAR STRUCTURE 151,153,155Eu; calculated low-energy levels, J, π, B(E2), B(M1), electric quadrupole and magnetic dipole moments in the framework of nuclear energy density functional theory with IBFM Hamiltonian for the particle-core coupling scheme. Comparison with experimental data.

doi: 10.1103/PhysRevC.93.054305
Citations: PlumX Metrics


2016NO13      Phys.Rev. C 94, 064310 (2016)

K.Nomura, T.Niksic, D.Vretenar

Signatures of shape phase transitions in odd-mass nuclei

NUCLEAR STRUCTURE 148,150,152,154Sm; calculated self-consistent RHB triaxial quadrupole binding energy contours in (β, γ) plane, equilibrium deformation parameter for Kπ=0+ bandheads, B(E2) for the two lowest 0+ states. 147,149,151,153,155Sm, 147,149,151,153,155Eu; calculated levels, J, π, excitation energies of low-lying positive- and negative-parity yrast states as functions of neutron number, equilibrium deformation parameter for bandheads for the lowest three positive- and negative-parity bands, B(E2) between the bandheads and the lowest five states, S(p) and S(n). Microscopic framework based on nuclear energy density functional theory and the particle-plus-boson-core coupling scheme. Comparison with experimental data taken from the NNDC-BNL databases.

doi: 10.1103/PhysRevC.94.064310
Citations: PlumX Metrics


2016ZH14      Phys.Rev. C 93, 044315 (2016)

J.Zhao, B.-N.Lu, T.Niksic, D.Vretenar, S.-G.Zhou

Multidimensionally-constrained relativistic mean-field study of spontaneous fission: Coupling between shape and pairing degrees of freedom

RADIOACTIVITY 250,264Fm(SF); calculated effective collective potentials in (β20, β22), (β20, λ2) and (β20, β30) planes, 3D dynamic fission paths, action integrals, SF half-lives, particle-number fluctuation degrees of freedom on symmetric and asymmetric spontaneous fission (SF) dynamics. Multidimensionally-constrained relativistic-mean-field (MDC-RMF) model with pairing correlations in the BCS approximation. Comparison with Hartree-Fock-Bogoliubov (HFB) model calculations.

doi: 10.1103/PhysRevC.93.044315
Citations: PlumX Metrics


2015PR04      Phys.Rev. C 91, 034324 (2015)

V.Prassa, B.-N.Lu, T.Niksic, D.Ackermann, D.Vretenar

High-K isomers in transactinide nuclei close to N=162

NUCLEAR STRUCTURE 264,266,268,270Rf, 266,268,270,272Sg, 268,270,272,274Hs, 270,272,274,276Ds; calculated lowest two-quasiparticle states, and lowest calculated two-quasiparticle K isomers, self-consistent RHB triaxial energy contours in (β, γ) plane for even-even Hs isotopes shape evolutions. Relevance to occurrence of deformed shell gaps in very heavy nuclei. Self-consistent mean-field framework based on relativistic energy density functionals.

doi: 10.1103/PhysRevC.91.034324
Citations: PlumX Metrics


2015ZH45      Phys.Rev. C 92, 064315 (2015)

J.Zhao, B.-N.Lu, Ta.Niksic, D.Vretenar

Multidimensionally constrained relativistic Hartree-Bogoliubov study of spontaneous nuclear fission

RADIOACTIVITY 250,264Fm(SF); calculated triaxial quadrupole constrained energy surfaces, binding energy, deformation parameter β40, perturbative- and non-perturbative cranking inertia tensors, dynamic paths, action integral and SF half-lives in (β20, β22) and (β20, β30) planes. Symmetric and asymmetric fissions. Inclusion of nonaxial quadrupole and octupole shape degrees of freedom in fission dynamics. Multidimensionally-constrained relativistic Hartree-Bogoliubov (MDC-RHB) model, with the energy density functionals PC-PK1 and DD-PC1, and pairing correlations in the Bogoliubov approximation. The least-action principle used to determine dynamic spontaneous fission paths.

doi: 10.1103/PhysRevC.92.064315
Citations: PlumX Metrics


2014EB01      Phys.Rev. C 89, 031303 (2014)

J.-P.Ebran, E.Khan, T.Niksic, D.Vretenar

Cluster-liquid transition in finite, saturated fermionic systems

NUCLEAR STRUCTURE 20Ne; calculated self-consistent deformation energy curve as function of β2, reflection-asymmetric axial intrinsic density. 16O; calculated self-consistent intrinsic nucleon density. Deformation-constrained self-consistent mean-field calculations using RHB model with the DD-ME2 density functional. Cluster formation in finite nuclei and in dilute nuclear matter. Mott-like transition.

doi: 10.1103/PhysRevC.89.031303
Citations: PlumX Metrics


2014EB03      Phys.Rev. C 90, 054329 (2014)

J.-P.Ebran, E.Khan, T.Niksic, D.Vretenar

Density functional theory studies of cluster states in nuclei

NUCLEAR STRUCTURE 36Ar; calculated neutron single-particle levels, binding energy curves as function of deformation parameter β2. 12C, 20Ne; calculated energy gap between occupied neutron levels as a function of β2, total nucleonic density. 8Be, 12C, 16O, 20Ne, 24Mg, 28Si, 32S, 36Ar, 40Ca; calculated positive-parity projected density plots for excited configurations in N=Z nuclei. 8Be, 12C; calculated self-consistent energy surfaces as function of β2 and β3 deformation parameters, contours of neutron density, surface plots of the partial densities. 8,9,10,11,12,13,14Be; calculated total, proton, and neutron self-consistent mean-field (SCMF) equilibrium intrinsic densities. 10,14Be, 10,14,16C; calculated nucleonic densities for excited configuration. Relativistic Hartree-Bogoliubov calculations of cluster states in light N=Z and neutron-rich nuclei in the framework of nuclear energy density functionals functional DD-ME2.

doi: 10.1103/PhysRevC.90.054329
Citations: PlumX Metrics


2014NI08      Phys.Rev. C 89, 044325 (2014)

T.Niksic, P.Marevic, D.Vretenar

Microscopic analysis of shape evolution and triaxiality in germanium isotopes

NUCLEAR STRUCTURE 72,74,76,78,80,82Ge; calculated RHB triaxial energy surface contours in (β, γ) plane, single neutron and proton energies, RHB constrained energy curves, E(first 4+)/E(first 2+) ratio, B(E2) for first 2+, distribution of K components, staggering in γ band, level spectrum and B(E2) for 76Ge. Nuclear density functional formalism using DD-PC1 and relativistic Hartree-Bogoliubov (RHB) model for shape evolution and triaxiality. Comparison with experimental data.

doi: 10.1103/PhysRevC.89.044325
Citations: PlumX Metrics


2014NO01      Phys.Rev. C 89, 024312 (2014)

K.Nomura, D.Vretenar, T.Niksic, B.-N.Lu

Microscopic description of octupole shape-phase transitions in light actinide and rare-earth nuclei

NUCLEAR STRUCTURE 222,224,226,228,230,232Th, 218,220,222,224,226,228Ra, 146,148,150,152,154,156Sm, 140,142,144,146,148,150Ba; calculated energy surface contours in (β2, β3) plane, mean values of octupole deformation, levels, J, π, E(J)/E(first 2+) ratios, B(E1), B(E2), B(E3), quadrupole and octupole intrinsic moments. Octupole shape transitions. Self-consistent relativistic Hartree-Bogoliubov (RHB), and interacting boson model (IBM) calculations. Comparison with experimental data.

doi: 10.1103/PhysRevC.89.024312
Citations: PlumX Metrics


2013EB01      Phys.Rev. C 87, 044307 (2013)

J.-P.Ebran, E.Khan, T.Niksic, D.Vretenar

Localization and clustering in the nuclear Fermi liquid

NUCLEAR STRUCTURE 16O, 20Ne, 24Mg, 28Si, 32S, 40Ca, 90Zr, 208Pb; calculated localization parameter α for cluster structures, ground-state density contours. Nuclear energy density functionals SLy4 and DD-ME2. Formation of liquid drops, clusters, and halo structures in nuclei.

doi: 10.1103/PhysRevC.87.044307
Citations: PlumX Metrics


2013ME08      Phys.Scr. T154, 014010 (2013)

J.Meng, Y.Chen, H.Z.Liang, Y.F.Niu, Z.M.Niu, L.S.Song, W.Zhao, Z.Li, B.Sun, X.D.Xu, Z.P.Li, J.M.Yao, W.H.Long, T.Niksic, D.Vretenar

Mass and lifetime of unstable nuclei in covariant density functional theory

NUCLEAR STRUCTURE A=80-195; calculated masses, binding energies, β-decay T1/2. Finite-range droplet model and Weizsacker-Skyrme models, comparison with available data.

doi: 10.1088/0031-8949/2013/T154/014010
Citations: PlumX Metrics


2013NI12      Phys.Lett. B 723, 172 (2013)

Z.M.Niu, Y.F.Niu, H.Z.Liang, W.H.Long, T.Niksic, D.Vretenar, J.Meng

β-decay half-lives of neutron-rich nuclei and matter flow in the r-process

RADIOACTIVITY Fe, Cd, 124Mo, 126Ru, 128Pd, 130Cd, 134Sn(β-); calculated T1/2, solar r-process abundances. Fully self-consistent proton-neutron quasiparticle random phase approximation (QRPA), based on the spherical relativistic Hartree-Fock-Bogoliubov (RHFB) framework.

doi: 10.1016/j.physletb.2013.04.048
Citations: PlumX Metrics


2013NI17      Phys.Rev. C 88, 044327 (2013)

T.Niksic, N.Kralj, T.Tutis, D.Vretenar, P.Ring

Implementation of the finite amplitude method for the relativistic quasiparticle random-phase approximation

NUCLEAR STRUCTURE 22O, 132,134,136,138,140,142,144,146,148,150,152,154,156,158,160Sm; calculated evolution and splitting of Kπ=0+, isoscalar giant monopole strength (ISGMR) in axially deformed systems as function of quadrupole deformation, mixing of monopole and quadrupole modes, fraction of EWSR for high-energy and low-energy components. FAM-RQRPA equations in the framework of relativistic energy density functionals.

doi: 10.1103/PhysRevC.88.044327
Citations: PlumX Metrics


2013PR08      Phys.Rev. C 88, 044324 (2013)

V.Prassa, T.Niksic, D.Vretenar

Structure of transactinide nuclei with relativistic energy density functionals

NUCLEAR STRUCTURE 254,256,258,260,262,264,266,268,270,272Fm, 256,258,260,262,264,266,268,270,272,274No, 258,260,262,264,266,268,270,272,274,276Rf, 260,262,264,266,268,270,272,274,276,278Sg, 262,264,266,268,270,272,274,276,278,280Hs, 264,266,268,270,272,274,276,278,280,282Ds, 266,268,270,272,274,276,278,280,282,284Cn, 268,270,272,274,276,278,280,282,284,286Fl; calculated S(2n), Q(α), neutron pairing gap for N=162, Z=100-112, proton pairing gap for Z=108, N=158-170, first excited 0+ states, E(first 4+)/E(first 2+) ratios, B(E2), B(E2) ratios, odd-even staggering in γ bands, RHB triaxial energy surface contours in (β, γ) plane. 256Rf; calculated levels, J, π, ground, β and γ bands. Possible X(5) shape-phase transition in sequence of No nuclides. Axially symmetric and triaxial relativistic Hartree-Bogoliubov (RHB) calculations, based on relativistic energy density functionals DD-PC1. Comparison with available experimental data.

doi: 10.1103/PhysRevC.88.044324
Citations: PlumX Metrics


2012FI09      Phys.Rev. C 86, 034327 (2012)

P.Finelli, T.Niksic, D.Vretenar

Nuclear pairing from chiral pion-nucleon dynamics: Applications to finite nuclei

NUCLEAR STRUCTURE Z=28, N=24-50; Z=50, N=50-86; Z=82, N=96-132; N=28, Z=20-34; N=50, Z=26-50; N=82, Z=48-72; calculated average neutron pairing gaps for even-even nuclei using a chiral nucleon-nucleon potential at the N3LO and N2LO orders in the two-body and three-body sectors, respectively. Comparison with experimental data.

doi: 10.1103/PhysRevC.86.034327
Citations: PlumX Metrics


2012HI02      Phys.Rev. C 85, 024323 (2012)

N.Hinohara, Z.P.Li, T.Nakatsukasa, T.Niksic, D.Vretenar

Effect of time-odd mean fields on inertial parameters of the quadrupole collective Hamiltonian

NUCLEAR STRUCTURE 128,130,132Xe, 130,132,134Ba; calculated triaxial quadrupole binding energy maps, and quadrupole energy surfaces in β-γ plane, ratios of moments of inertia, ratios of vibrational mass parameters, cranking mass parameters, low-lying levels, J, π. Hybrid model based on microscopic collective Hamiltonian and CHFB+LQRPA method to estimate the contribution of time-odd mean fields (Thouless-Valatin contribution). Comparison with experimental data.

doi: 10.1103/PhysRevC.85.024323
Citations: PlumX Metrics


2012LI42      Phys.Rev. C 86, 034334 (2012)

Z.P.Li, T.Niksic, P.Ring, D.Vretenar, J.M.Yao, J.Meng

Efficient method for computing the Thouless-Valatin inertia parameters

NUCLEAR STRUCTURE 152,154,156,158,160,162,164Sm; calculated Thouless-Valatin moments of inertia for nuclear system. Adiabatic time-dependent Hartree-Fock approximation (ATDHF). Comparison with calculations using the self-consistent cranking model.

doi: 10.1103/PhysRevC.86.034334
Citations: PlumX Metrics


2012NO02      Phys.Rev.Lett. 108, 132501 (2012)

K.Nomura, N.Shimizu, D.Vretenar, T.Niksic, T.Otsuka

Robust Regularity in γ-Soft Nuclei and Its Microscopic Realization

NUCLEAR STRUCTURE 134Ba, 192,194,196Pt, 190,192Os, 112Ru; calculated energy and B(E2) ratios, energy surfaces, low-lying energy spectra. Framework of energy density functionals.

doi: 10.1103/PhysRevLett.108.132501
Citations: PlumX Metrics


2012PR09      Phys.Rev. C 86, 024317 (2012)

V.Prassa, T.Niksic, G.A.Lalazissis, D.Vretenar

Relativistic energy density functional description of shape transitions in superheavy nuclei

NUCLEAR STRUCTURE 226,228,230,232,234,236Th, 228,230,232,234,236,238,240,242U, 232,234,236,238,240,242,244,246Pu, 238,240,242,244,246,248,250Cm, 242,244,246,248,250,252,254,256Cf, 242,244,246,248,250,252,254,256Fm, 250,252,254,256,258,260,262No; calculated binding energies, ground-state axial quadrupole moments. 236,238U, 240Pu, 242Cm; calculated constrained energy curves as a function of quadrupole deformation parameter. 298,300120, 294,296Og, 290,292Lv, 286,288Fl, 282,284Cn, 278,280Ds; calculated RHB axially symmetric energy curves, triaxial energy contours in β-γ plane. 284Cn, 292Lv, 300120; calculated proton and neutron density distributions. Microscopic, relativistic energy density functional (REDF)-based, quadrupole collective Hamiltonian model.

RADIOACTIVITY 234,236,238,240,242,244Pu, 238,240,242,244,246,248,250,252Cm, 242,244,246,248,250,252,254Cf, 246,248,250,252,254,256Fm, 252,254,256No, 256,258Rf, 260,262Sg, 271,272Bh, 275,276Mt, 278,280Ds, 279,280Rg, 282,284Cn, 283,284Nh, 286,288Fl, 287,288Mc, 290,292Lv, 293,294Ts, 294,296Og, 298,300120(α); calculated Q(α), half-lives. Microscopic, relativistic energy density functional (REDF)-based, quadrupole collective Hamiltonian model. Comparison with experimental data.

doi: 10.1103/PhysRevC.86.024317
Citations: PlumX Metrics


2012VR03      Prog.Theor.Phys.(Kyoto), Suppl. 196, 137 (2012)

D.Vretenar, T.Niksic, P.Ring

Relativistic Nuclear Energy Density Functionals

NUCLEAR STRUCTURE 48Ca, 46Ar, 44S, 42Si, 40Mg, 240Pu; calculated RHB triaxial quadrupole constrained energy surfaces, energy levels, J, π, B(E2).

doi: 10.1143/PTPS.196.137
Citations: PlumX Metrics


2011LI47      Phys.Rev. C 84, 054304 (2011)

Z.P.Li, J.M.Yao, D.Vretenar, T.Niksic, H.Chen, J.Meng

Energy density functional analysis of shape evolution in N=28 isotones

NUCLEAR STRUCTURE 48Ca, 46Ar, 44S, 42Si, 40Mg; calculated triaxial quadrupole constrained energy surfaces in β-γ plane, Single-neutron and single-proton energy levels as function of deformation parameters, N=28 spherical energy gaps. 46Ar, 44S, 42Si; calculated levels, J, π, B(E2). 44S; calculated levels, J, π, B(E2), E0 transition probability, probability distribution plots in in the β-γ plane for the lowest collective states. N=28, Z=12-20; calculated energies and B(E2) of first 2+ states in even-even nuclei. Relativistic energy density functional DD-PC1, relativistic Hartree-Bogoliubov (RHB) model for triaxial nuclei. Comparison with experimental data.

doi: 10.1103/PhysRevC.84.054304
Citations: PlumX Metrics


2011NI07      Int.J.Mod.Phys. E20, 459 (2011)

T.Niksic, D.Vretenar, P.Ring

Beyond the relativistic mean-field approximation: configuration mixing calculations

NUCLEAR STRUCTURE 190,192,194,196,198,200Pt; calculated triaxial quadrupole binding-energy maps, proton canonical single-particle energy levels, low-energy spectra, J, π. Comparison with experimental data.

doi: 10.1142/S0218301311017855
Citations: PlumX Metrics


2011NO09      Phys.Rev. C 84, 014302 (2011)

K.Nomura, T.Niksic, T.Otsuka, N.Shimizu, D.Vretenar

Quadrupole collective dynamics from energy density functionals: Collective Hamiltonian and the interacting boson model

NUCLEAR STRUCTURE 192,194,196Pt; calculated maps of binding energies, and squares of wave functions in the β-γ deformation plane, levels, J, π, g.s. and γ-vibrational bands. Energy density functionals (DD-PC1), and Interacting Boson model applied to quadrupole collective correlations. Comparison with experimental data.

doi: 10.1103/PhysRevC.84.014302
Citations: PlumX Metrics


2011RI05      Int.J.Mod.Phys. E20, 235 (2011)

P.Ring, H.Abusara, A.V.Afanasjev, G.A.Lalazissis, T.Niksic, D.Vretenar

Modern applications of Covariant Density Functional theory

NUCLEAR STRUCTURE 228,230,232,234Th, 232,234,236,238,240U, 236,238,240,242,244,246Pu, 242,244,246,248,250Cm, 250,252Cf, 150Nd; calculated potential and deformation energy surfaces, J, π.

doi: 10.1142/S0218301311017570
Citations: PlumX Metrics


2011VR01      Acta Phys.Pol. B42, 405 (2011)

D.Vretenar, T.Niksic

Relativistic Energy Density Functionals: Beyond the Mean-field Approximation

NUCLEAR STRUCTURE 72,74,76,78Kr; calculated binding energies, J, π, B(E2). Comparison with experimental data.

doi: 10.5506/APhysPolB.42.405
Citations: PlumX Metrics


2010LI09      Phys.Rev. C 81, 034316 (2010)

Z.P.Li, T.Niksic, D.Vretenar, J.Meng

Microscopic description of spherical to γ-soft shape transitions in Ba and Xe nuclei

NUCLEAR STRUCTURE 130,132,134,136Ba, 128,130,132,134Xe; calculated self-consistent RMF+BCS triaxial quadrupole binding energy maps in β-γ plane, E(first 4+)/E(first 2+) ratios, fluctuations of quadrupole deformation parameters, low-lying level schemes and B(E2) transition probabilities using microscopic collective Hamiltonian with the PC-F1 relativistic density functionals. Comparisons with experimental data and predictions of E(5) dynamic symmetry.

doi: 10.1103/PhysRevC.81.034316
Citations: PlumX Metrics


2010LI20      Phys.Rev. C 81, 064321 (2010)

Z.P.Li, T.Niksic, D.Vretenar, P.Ring, J.Meng

Relativistic energy density functionals: Low-energy collective states of 240Pu and 166Er

NUCLEAR STRUCTURE 240Pu; calculated binding energy maps in β-γ plane, low-energy excitation spectra, deformation energy curves, barrier height, g.s., β, γ, superdeformed bands, levels, J, π. 166Er; calculated binding energy maps in β-γ plane, low-energy excitation spectra, E2 transition probabilities, deformation energy curves, g.s., γ and two-phonon γ-vibrational bands, levels, J, π. Relativistic energy density functionals DD-PC1 and PC-F1 starting with constrained self-consistent triaxial relativistic Hartree-Bogoliubov calculations. Comparison with experimental data.

doi: 10.1103/PhysRevC.81.064321
Citations: PlumX Metrics


2010MO13      Phys.Rev. C 81, 065803 (2010)

Ch.C.Moustakidis, T.Niksic, G.A.Lalazissis, D.Vretenar, P.Ring

Constraints on the inner edge of neutron star crusts from relativistic nuclear energy density functionals

NUCLEAR STRUCTURE 100,102,104,106,108,110,112,114,116,118,120,122,124,126,128,130,132,134Sn, 196,198,200,202,204,206,208,210,212,214Pb; calculated rms radii using Hartree-Bogoliubov (RHB) model. Comparison with experimental data.

doi: 10.1103/PhysRevC.81.065803
Citations: PlumX Metrics


2010NI06      Phys.Rev. C 81, 054318 (2010)

T.Niksic, P.Ring, D.Vretenar, Y.Tian, Z.-y.Ma

3D relativistic Hartree-Bogoliubov model with a separable pairing interaction: Triaxial ground-state shapes

NUCLEAR STRUCTURE 134,136,138,140,142,144,146,148,150,152,154,156Sm, 190,192,194,196,198,200Pt; calculated triaxial quadrupole binding-energy contour maps, neutron and proton pairing energy maps in β-γ plane, quadrupole deformations. 192Pt; calculated proton and neutron canonical single-particle energy levels. Relativistic Hartree-Bogoliubov (RHB) model.

doi: 10.1103/PhysRevC.81.054318
Citations: PlumX Metrics


2010VR01      Int.J.Mod.Phys. E19, 548 (2010)

D.Vretenar, T.Niksic, P.Ring

Relativistic nuclear energy density functionals

NUCLEAR STRUCTURE 226,228,230,232,234,236Th, 228,230,232,234,236,238,240,242U, 232,234,236,238,240,242,244,246Pu, 238,240,242,244,246,248,250Cm, 242,244,246,248,250,252,254,256Cf, 242,244,246,248,250,252,254,256Fm, 250,252,254,256,258,260,262No; calculated ground-state axial quadrupole and hexadecapole moments.

doi: 10.1142/S0218301310014960
Citations: PlumX Metrics


2009GR04      Phys.Rev. C 79, 034318 (2009)

M.Grasso, L.Gaudefroy, E.Khan, T.Niksic, J.Piekarewicz, O.Sorlin, N.Van Giai, D.Vretenar

Nuclear "bubble" structure in 34Si

NUCLEAR STRUCTURE 22,24O, 34,36Si; calculated neutron densities, charge densities, binding energies, charge radii, neutron skin thickness. Shell model, non-relativistic mean-field approach and relativistic mean-field approach calculations.

doi: 10.1103/PhysRevC.79.034318
Citations: PlumX Metrics


2009GR16      Int.J.Mod.Phys. E18, 2009 (2009)

M.Grasso, E.Khan, J.Margueron, N.Van Giai, L.Gaudefroy, T.Niksic, D.Vretenar, J.Piekarewicz, O.Sorlin

Bubbles in exotic nuclei

NUCLEAR STRUCTURE 46,68Ar; calculated proton densities with SkI5, SLy4 interactions in the HF approach.

doi: 10.1142/S0218301309014184
Citations: PlumX Metrics


2009LI19      Phys.Rev. C 79, 054301 (2009)

Z.P.Li, T.Niksic, D.Vretenar, J.Meng, G.A.Lalazissis, P.Ring

Microscopic analysis of nuclear quantum phase transitions in the N ≈ 90 region

NUCLEAR STRUCTURE 144,146,148,150,152,154Nd, 150,152,154Sm, 152,154,156Gd; calculated RMF+BCS quadrupole binding energy parametric plots as a function of β- and γ-deformation, excitation energies, B(E2) transition rates and single-particle states using 5-dimensional Hamiltonian for quadrupole vibrational and rotational degrees of freedom. 150Nd, 152Sm; calculated spectra of ground-state, β and γ bands, B(E2) transition rates using PC-F1 relativistic density functional and X(5) symmetry approach. Comparison with experimental data.

doi: 10.1103/PhysRevC.79.054301
Citations: PlumX Metrics


2009LI54      Phys.Rev. C 80, 061301 (2009)

Z.P.Li, T.Niksic, D.Vretenar, J.Meng

Microscopic analysis of order parameters in nuclear quantum phase transitions

NUCLEAR STRUCTURE 150Nd; calculated self-consistent RMF+BCS triaxial quadrupole binding energy map in the β-γ plane. 144,146,148,150,152,154,156Nd; calculated ground-state charge radii, isomer shifts, energies of excited 0+ states, and monopole transition strengths using PC-F1 energy-density functional. Comparison with experimental data.

doi: 10.1103/PhysRevC.80.061301
Citations: PlumX Metrics


2009MA20      Phys.Rev. C 79, 054323 (2009)

T.Marketin, N.Paar, T.Niksic, D.Vretenar

Relativistic quasiparticle random-phase approximation calculation of total muon capture rates

NUCLEAR STRUCTURE Z=6-96, A=12-244; calculated muon transition energies and muon capture rates using relativistic proton-neutron quasiparticle random phase approximation. Relativistic Hartree-Bogoliubov model. Comparison with experimental data.

doi: 10.1103/PhysRevC.79.054323
Citations: PlumX Metrics


2009NI04      Phys.Rev. C 79, 034303 (2009)

T.Niksic, Z.P.Li, D.Vretenar, L.Prochniak, J.Meng, P.Ring

Beyond the relativistic mean-field approximation. III. Collective Hamiltonian in five dimensions

NUCLEAR STRUCTURE 152,154,156,158,160Gd; calculated binding energy as function of deformation, triaxial quadrupole binding energy, ground-state, β and γ bands, K components, B(E2), staggering. 154Gd; calculated neutron and proton pairing energies, inertial parameters, cranking mass parameter, rotational zero-point energy and collective potential in β-γ plane, levels, J, π. RMF+BCS calculations using collective Hamiltonian in five dimensions. Comparisons with experimental data.

doi: 10.1103/PhysRevC.79.034303
Citations: PlumX Metrics


2008NI01      Phys.Rev. C 77, 034302 (2008)

T.Niksic, D.Vretenar, G.A.Lalazissis, P.Ring

Finite- to zero-range relativistic mean-field interactions

NUCLEAR STRUCTURE 16O, 40,48Ca, 72Ni, 90Zr, 124,132Sn, 204,208,214Pb, 210Po; calculated charge radii, binding energies. Compared with experiment. Finite to zero range relativistic mean field approximation.

doi: 10.1103/PhysRevC.77.034302
Citations: PlumX Metrics


2008NI03      Eur.Phys.J. Special Topics 156, 175 (2008)

T.Niksic

Beyond the relativistic mean-field approximation: Configuration mixing of mean-field wave functions projected on angular momentum and particle number

doi: 10.1140\epjst/e2008-00614-2
Citations: PlumX Metrics


2008NI09      Phys.Rev. C 78, 034318 (2008)

T.Niksic, D.Vretenar, P.Ring

Relativistic nuclear energy density functionals: Adjusting parameters to binding energies

NUCLEAR STRUCTURE Nd, Sm, Gd, Dy, Er, Yb; calculated charge radii and ground state quadrupole deformations. Pb, Sn; calculated charge radii, neutron and proton rms radii. 208Pb, Sn; calculated isoscalar monopole and isovector dipole strength distributions. Density functional theory.

doi: 10.1103/PhysRevC.78.034318
Citations: PlumX Metrics


2007RI14      Nucl.Phys. A788, 194c (2007)

P.Ring, E.Litvinova, T.Niksic, N.Paar, D.Pena Arteaga, V.I.Tselyaev, D.Vretenar

Dynamics of Exotic Nuclear Systems: Covariant QRPA and Extensions

NUCLEAR STRUCTURE 20,26Ne, 132Sn, 208Pb; calculated isoscalar monopole, isovector E1, M1 resonance strength functions and neutron single-particle states using covariant density functional theory including particle vibration coupling.

doi: 10.1016/j.nuclphysa.2007.01.082
Citations: PlumX Metrics


2007VR01      Eur.Phys.J. Special Topics 150, 193 (2007)

D.Vretenar, T.Niksic, N.Paar, P.Ring

Exotic nuclear structure: Relativistic mean-field and beyond

NUCLEAR STRUCTURE 32Ar, 132Sn; calculated isovector dipole strength distributions.

doi: 10.1140/epjst/e2007-00302-9
Citations: PlumX Metrics


2006NI03      Phys.Rev. C 73, 034308 (2006)

T.Niksic, D.Vretenar, P.Ring

Beyond the relativistic mean-field approximation: Configuration mixing of angular-momentum-projected wave functions

NUCLEAR STRUCTURE 32Mg, 194Hg; calculated level energies, quadrupole deformation, configurations and configuration mixing. Generator coordinate method.

doi: 10.1103/PhysRevC.73.034308
Citations: PlumX Metrics


2006NI14      Phys.Rev.C 74, 064309 (2006)

T.Niksic, D.Vretenar, P.Ring

Beyond the relativistic mean-field approximation. II. Configuration mixing of mean-field wave functions projected on angular momentum and particle number

NUCLEAR STRUCTURE 24Mg, 32S, 36Ar; calculated levels, J, π, wave functions, configuration mixing. Extended relativistic mean-field theory.

doi: 10.1103/PhysRevC.74.064309
Citations: PlumX Metrics


2006PA31      Phys.Rev. C 74, 037303 (2006)

N.Paar, D.Vretenar, T.Niksic, P.Ring

Relativistic quasiparticle random-phase approximation description of isoscalar compression modes in open-shell nuclei in the A ≈ 60 mass region

NUCLEAR STRUCTURE 56Fe, 58,60Ni; calculated isoscalar monopole and dipole strength distributions. Relativistic quasiparticle RPA.

doi: 10.1103/PhysRevC.74.037303
Citations: PlumX Metrics


2005KA35      Eur.Phys.J. A 25, 257 (2005)

N.Kaiser, T.Niksic, D.Vretenar

Nuclear pairing from chiral pion-nucleon dynamics

doi: 10.1140/epja/i2005-10122-3
Citations: PlumX Metrics


2005LA04      Phys.Rev. C 71, 024312 (2005)

G.A.Lalazissis, T.Niksic, D.Vretenar, P.Ring

New relativistic mean-field interaction with density-dependent meson-nucleon couplings

NUCLEAR STRUCTURE 12,14,16,18,20,22,24O, 40,48Ca, 72Ni, 90Zr, 116,124,132Sn, 190,192,194,196,198,200,202,204,206,208,210,212,214Pb, 210Po, 224,226,228,230Ra, 228,230,232,234Th, 232,234,236,238,240U, 238,240,242,244,246Pu, 244,246,248,250Cm, 250,252,254Cf, 252,254,256Fm, 252,254,256No, 256Rf, 260Sg, 264Hs; calculated binding energies, radii. 116,118,120,124Sn, 208Pb; calculated giant resonance strength distributions. 287,288Mc, 283,284Nh, 279,280Rg, 275,276Mt, 271,272Bh; calculated Qα, deformation parameters. Relativistic mean-field effective interaction with density-dependent meson-nucleon couplings.

doi: 10.1103/PhysRevC.71.024312
Citations: PlumX Metrics


2005NI02      Phys.Rev. C 71, 014308 (2005)

T.Niksic, T.Marketin, D.Vretenar, N.Paar, P.Ring

β-decay rates of r-process nuclei in the relativistic quasiparticle random phase approximation

NUCLEAR STRUCTURE 69,71,73,75,77,79Cu, 78Ni, 132Sn; calculated neutron and proton single-particle energy levels. Relativistic quasiparticle RPA.

RADIOACTIVITY 64,66,68,70,74,76Fe, 70,72,74,76,78Ni, 76,78,80,82Zn, 82Ge, 72Ti, 74Cr, 122,124,126,128,130,132Cd, 134,136,138,140,142Sn, 136,138,140,142,144,146Te(β-); calculated T1/2. Relativistic quasiparticle RPA, comparisons with data.

doi: 10.1103/PhysRevC.71.014308
Citations: PlumX Metrics


2005NI10      Phys.Rev. C 71, 044320 (2005)

T.Niksic, P.Ring, D.Vretenar

Renormalized relativistic Hartree-Bogoliubov equations with a zero-range pairing interaction

NUCLEAR STRUCTURE 114Sn; calculated neutron pairing gaps, pairing energies. 114,124,150Sn; calculated anomalous densities. Sn; calculated average pairing gaps, pairing energies for A=110-160. Renormalized relativistic Hartree-Bogoliubov equations.

doi: 10.1103/PhysRevC.71.044320
Citations: PlumX Metrics


2005NI15      Phys.Rev. C 72, 014312 (2005)

T.Niksic, D.Vretenar, P.Ring

Random-phase approximation based on relativistic point-coupling models

NUCLEAR STRUCTURE 90Zr, 116,118,120,124Sn, 208Pb; calculated giant resonance energies, response functions. Relativistic point-coupling models, RPA.

doi: 10.1103/PhysRevC.72.014312
Citations: PlumX Metrics


2005PA09      Phys.Lett. B 606, 288 (2005)

N.Paar, T.Niksic, D.Vretenar, P.Ring

Isotopic dependence of the pygmy dipole resonance

NUCLEAR STRUCTURE Ni, Sn, Pb; calculated pygmy dipole resonance excitation energies. Relativistic quasiparticle RPA, comparison with data.

doi: 10.1016/j.physletb.2004.12.011
Citations: PlumX Metrics


2005PA20      Int.J.Mod.Phys. E14, 29 (2005)

N.Paar, T.Niksic, D.Vretenar, P.Ring

Relativistic description of exotic collective excitation phenomena in atomic nuclei

NUCLEAR STRUCTURE 22O, 132Sn; calculated isovector dipole strength distribution. 114,116,118,120,122,124,126,128,130,132,134,136,138,140Sn; calculated pygmy dipole resonance energies. 18,20,22,24O; calculated energy levels, B(E2). Relativistic quasiparticle RPA, comparisons with data.

doi: 10.1142/S0218301305002746
Citations: PlumX Metrics


2005PA71      Eur.Phys.J. A 25, Supplement 1, 531 (2005)

N.Paar, T.Niksic, T.Marketin, D.Vretenar, P.Ring

Self-consistent relativistic QRPA studies of soft modes and spin-isospin resonances in unstable nuclei

NUCLEAR STRUCTURE 112,114,116,118,120,122,124Sn, 200,202,204,206,208,210,212,214Pb; calculated resonance energies. 122Zr, 124Mo, 126Ru, 128Pd, 130Cd, 134,136,138,140,142Sn, 136,138,140,142,144,146Te; calculated T1/2. Self-consistent relativistic quasiparticle RPA, relativistic Hartree-Bogoliubov model.

doi: 10.1140/epjad/i2005-06-057-5
Citations: PlumX Metrics


2005VR03      Eur.Phys.J. A 25, Supplement 1, 555 (2005)

D.Vretenar, G.A.Lalazissis, T.Niksic, P.Ring

Relativistic mean-field models with medium-dependent meson-nucleon couplings

NUCLEAR STRUCTURE Dy, Er, Yb; calculated binding energies, radii, deformation parameters. 116,118,120,124Sn; calculated isovector dipole strength distributions. Density-dependent meson-nucleon coupling.

doi: 10.1140/epjad/i2005-06-091-3
Citations: PlumX Metrics


2004NI05      Phys.Rev. C 69, 047301 (2004)

T.Niksic, D.Vretenar, G.A.Lalazissis, P.Ring

Ground-state properties of rare-earth nuclei in the relativistic Hartree-Bogoliubov model with density-dependent meson-nucleon couplings

NUCLEAR STRUCTURE Dy, Er, Yb, Nd, Sm, Gd; calculated binding energies, deformation, isotope shifts. Relativistic Hartree-Bogoliubov model.

doi: 10.1103/PhysRevC.69.047301
Citations: PlumX Metrics


2004PA15      Phys.Rev. C 69, 054303 (2004)

N.Paar, T.Niksic, D.Vretenar, P.Ring

Quasiparticle random phase approximation based on the relativistic Hartree-Bogoliubov model. II. Nuclear spin and isospin excitations

NUCLEAR STRUCTURE 48Ca, 90Zr, 208Pb, 108,110,112,114,116,118,120,122,124,126,128,130,132Sn; calculated IAR and Gamow-Teller strength distributions, related features. Proton-neutron relativistic quasiparticle RPA.

doi: 10.1103/PhysRevC.69.054303
Citations: PlumX Metrics


2004VR01      Nucl.Phys. A731, 281 (2004)

D.Vretenar, T.Niksic, N.Paar, P.Ring

Relativistic QRPA description of low-lying dipole strength in neutron-rich nuclei

NUCLEAR STRUCTURE 22O, 104,108,112,116,120,124,128,132Sn, 208Pb; calculated isovector response functions. Relativistic quasiparticle RPA.

doi: 10.1016/j.nuclphysa.2003.11.039
Citations: PlumX Metrics


2004VR02      Eur.Phys.J. A 20, 75 (2004)

D.Vretenar, T.Niksic, P.Ring, N.Paar, G.A.Lalazissis, P.Finelli

Relativistic Hartree-Bogoliubov and QRPA description of exotic nuclear structure

NUCLEAR STRUCTURE 22O; calculated dipole and quadrupole strength distributions.pairing contributions.

doi: 10.1140/epja/i2002-10325-0
Citations: PlumX Metrics


2003PA08      Phys.Rev. C 67, 034312 (2003)

N.Paar, P.Ring, T.Niksic, D.Vretenar

Quasiparticle random phase approximation based on the relativistic Hartree-Bogoliubov model

NUCLEAR STRUCTURE 22O, 104,108,112,116,120,124,128,132Sn, 134Te, 136Xe, 138Ba, 140Ce, 142Nd, 144Sm, 146Gd; calculated dipole and quadrupole strength distributions, transition densities. Relativistic Hartree-Bogoliubov plus relativistic quasiparticle RPA approach.

doi: 10.1103/PhysRevC.67.034312
Citations: PlumX Metrics


2003RI09      Nucl.Phys. A722, 372c (2003)

P.Ring, N.Paar, T.Niksic, D.Vretenar

Collective excitations far from the valley of stability

NUCLEAR STRUCTURE 22O; calculated dipole, quadrupole strength distributions. Relativistic quasiparticle RPA.

doi: 10.1016/S0375-9474(03)01392-7
Citations: PlumX Metrics


Back to query form    [Next]