NSR Query Results


Output year order : Descending
Format : Normal

NSR database version of April 26, 2024.

Search: Author = Z.P.Li

Found 80 matches.

Back to query form



2023FA10      Phys.Rev. C 108, 034607 (2023)

X.-H.Fan, Z.-X.Yang, P.-H.Chen, S.Nishimura, Z.-P.Li

Impact of quadrupole deformation on intermediate-energy heavy-ion collisions

doi: 10.1103/PhysRevC.108.034607
Citations: PlumX Metrics


2023HU03      Eur.Phys.J. A 59, 4 (2023)

Y.Huang, J.T.Zhang, Y.Kuang, J.Geng, X.L.Tu, K.Yue, W.H.Long, Z.P.Li

Matter radius determination of 16O via small-angle differential cross sections

NUCLEAR REACTIONS 16O(p, p), E=200-700 MeV; analyzed available data; deduced σ(α) using the Glauber model, precise matter radii.

doi: 10.1140/epja/s10050-022-00912-6
Citations: PlumX Metrics


2023HU19      Phys.Lett. B 847, 138293 (2023)

Y.Huang, L.Xayavong, X.L.Tu, J.Geng, Z.P.Li, J.T.Zhang, Z.H.Li

Neutron rearrangement of the magic number 90Zr-core determined by the matter density difference between 90Zr and 92Zr

NUCLEAR REACTIONS 90,92Zr(p, p), E=0.8 GeV; analyzed available data; deduced matter density distributions and root-mean-square matter radii through fitting the small-angle σ(θ) of proton elastic scattering with the Glauber model.

doi: 10.1016/j.physletb.2023.138293
Citations: PlumX Metrics

Data from this article have been entered in the XUNDL database. For more information, click here.


2023HU21      Phys.Rev. C 108, 054610 (2023)

Y.Huang, X.Y.Wu, X.L.Tu, Z.P.Li, Y.Kuang, J.T.Zhang, Z.H.Li

Matter density distributions and radii from small-angle differential cross sections of proton-nucleus elastic scattering at 0.8 GeV

doi: 10.1103/PhysRevC.108.054610
Citations: PlumX Metrics


2023KU14      Eur.Phys.J. A 59, 160 (2023)

Y.Kuang, X.L.Tu, J.T.Zhang, K.Y.Zhang, Z.P.Li

Systematic study of elastic proton-nucleus scattering using relativistic impulse approximation based on covariant density functional theory

NUCLEAR STRUCTURE A=12-232; analyzed elastic-scattering σ and analyzing power using relativistic impulse approximation (RIA) with a modern density functional PC-PK1; deduced strong correlation between the root-mean-square (rms) radius of the neutron distribution and the inverse of momentum transfer corresponding to the minimum of the σ.

doi: 10.1140/epja/s10050-023-01072-x
Citations: PlumX Metrics


2023LI26      Phys.Rev. C 107, 064310 (2023)

Z.H.Li, Y.Kuang, Y.Huang, X.L.Tu, Z.P.Li, K.H.Fang, J.T.Zhang, K.Yue

Matter density distributions of 20, 22Ne and 24, 26Mg extracted through proton elastic scattering at 0.8 GeV

NUCLEAR REACTIONS 20,22Ne, 24,26Mg(p, p), E=0.8 GeV; analyzed σ(θ) extracted from EXFOR; deduced rms point-matter radii, matter density distribution, occupation numbers. Point on possible bubble structure in 24Mg. Glauber model analysis. Comparison to experimental data.

doi: 10.1103/PhysRevC.107.064310
Citations: PlumX Metrics

Data from this article have been entered in the XUNDL database. For more information, click here.


2023PE11      Phys.Rev. C 108, 014317 (2023)

C.M.Petrache, J.Uusitalo, A.D.Briscoe, C.M.Sullivan, D.T.Joss, H.Tann, O.Aktas, B.Alayed, M.A.M.Al-Aqeel, A.Astier, H.Badran, B.Cederwall, C.Delafosse, A.Ertoprak, Z.Favier, U.Forsberg, W.Gins, T.Grahn, P.T.Greenlees, X.T.He, J.Heery, J.Hilton, S.Kalantan, R.Li, P.M.Jodidar, R.Julin, S.Juutinen, M.Leino, M.C.Lewis, J.G.Li, Z.P.Li, M.Luoma, B.F.Lv, A.McCarter, S.Nathaniel, J.Ojala, R.D.Page, J.Pakarinen, P.Papadakis, E.Parr, J.Partanen, E.S.Paul, P.Rahkila, P.Ruotsalainen, M.Sandzelius, J.Saren, J.Smallcombe, J.Sorri, S.Szwec, L.J.Wang, Y.Wang, L.Waring, F.R.Xu, J.Zhang, Z.H.Zhang, K.K.Zheng, G.Zimba

High-K three-quasiparticle isomers in the proton-rich nucleus 129Nd

doi: 10.1103/PhysRevC.108.014317
Citations: PlumX Metrics

Data from this article have been entered in the XUNDL database. For more information, click here.


2023YA06      Phys.Rev. C 107, 024308 (2023)

Y.L.Yang, P.W.Zhao, Z.P.Li

Shape and multiple shape coexistence of nuclei within covariant density functional theory

NUCLEAR STRUCTURE 112Cd; calculated levels, J, π, B(E2), bands structure, potential energy surfaces, probability density distributions of the collective 0+ states, quadrupole deformation parameters of the three lowest 0+ states, quadrupole shape invariants of the four lowest 0+ states. Z=10-104; calculated quadrupole shape invariants, low-lying spectra. 18Ne, 160Dy, 208Pb; calculated excitation energy of the third 0+ level. 18Ne, 30,32Mg, 36,44Ar, 60Zn, 98Sr, 182,184Hg, 236Pu; calculated excitation energy of the second 0+ level. 40,50Ca, 98,96Zr, 140Nd, 188Pb, 210Po; calculated B(E2) strengths for transitions between first 2+ and first 0+. 32,34,36,44S, 40,42,44,48Ca, 58,60,62,68Ni, 64,66,68,70Zn, 72,74,76,78,80,82Kr, 90,92,94,96,98,100Zr, 102,104,106,108,110Pd, 112,114,116,118,120Sn, 144,150,152,154Sm, 146,152,154,156Gd, 190,192,194,202,204,206,208Pb; calculated E0 transition strengths. Five-dimensional collective Hamiltonian (5DCH) based on the covariant density functional PC-PK1. Confirmed multiple shape coexistence in 112Cd. Defined mass regions with possible shape or multiple shape coexistence. Comparison to experimental data and results obtained with 5DCH with Gogny-D1S density functional calculations.

doi: 10.1103/PhysRevC.107.024308
Citations: PlumX Metrics


2023YA26      Phys.Rev. C 108, 034315 (2023)

Z.-X.Yang, X.-H.Fan, T.Naito, Z.-M.Niu, Z.-Pa.Li, H.Liang

Calibration of nuclear charge density distribution by back-propagation neural networks

doi: 10.1103/PhysRevC.108.034315
Citations: PlumX Metrics


2023ZH31      Chin.Phys.C 47, 064106 (2023)

M.-H.Zhou, Z.-Y.Li, S.-Y.Chen, Y.-J.Chen, Z.-P.Li

Three-dimensional potential energy surface for fission of 236U within covariant density functional theory

NUCLEAR STRUCTURE 236U; calculated the three-dimensional potential energy surface (PES) for the fission of the compound nucleus 236U using covariant density functional theory with constraints on the axial quadrupole and octupole deformations as well as the nucleon number in the neck; deduced the coexistence of the elongated and compact fission modes. Comparison with available data.

doi: 10.1088/1674-1137/acc4ac
Citations: PlumX Metrics


2023ZH34      Phys.Rev. C 108, 014614 (2023)

J.T.Zhang, P.Ma, Y.Huang, X.L.Tu, P.Sarriguren, Z.P.Li, Y.Kuang, W.Horiuchi, T.Inakura, L.Xayavong, Y.Sun, K.Kaneko, X.Q.Liu, K.Yue, C.J.Shao, Q.Zeng, B.Mei, P.Egelhof, Yu.A.Litvinov, M.Wang, Y.H.Zhang, X.H.Zhou, Z.Y.Sun

Matter radius of 78Kr from proton elastic scattering at 153 MeV

NUCLEAR REACTIONS 1H(78Kr, p), E=152 MeV/nucleon; measured Ep, Ip; deduced σ(θ). 78Kr; deduced point-matter radius, neutron skin thickness. Glauber model analysis. Comparison of the obtained σ to FRESCO calculations with the phenomenological OMP parameters (KD03). Collision in Cooler Storage Ring of the Heavy Ion Research Facility in Lanzhou (HIRFL-CSR) with molecular hydrogen-gas target. MICRON double-sided Si-strip detector (DSSD) used to measure the recoil protons.

doi: 10.1103/PhysRevC.108.014614
Citations: PlumX Metrics

Data from this article have been entered in the XUNDL database. For more information, click here.


2022LV04      Phys.Rev. C 105, 044319 (2022)

B.F.Lv, C.M.Petrache, K.K.Zheng, Z.H.Zhang, W.Sun, Z.P.Li, X.T.He, J.Zhang, A.Astier, P.Greenlees, T.Grahn, R.Julin, S.Juutinen, M.Luoma, J.Ojala, J.Pakarinen, J.Partanen, P.Rahkila, P.Ruotsalainen, M.Sandzelius, J.Saren, H.Tann, J.Uusitalo, G.Zimba, B.Cederwall, O.Aktas, A.Ertoprak, W.Zhang, S.Guo, M.L.Liu, H.J.Ong, Z.Y.Sun, J.G.Wang, X.H.Zhou, I.Kuti, B.M.Nyako, D.Sohler, J.Timar, C.Andreoiu, M.Doncel, D.T.Joss, R.D.Page

Refined description of the positive-parity bands and the extent of octupole correlations in 120Ba

NUCLEAR REACTIONS 58Ni(64Zn, 2p), E=255 MeV; measured Eγ, Iγ, γγγ-coin, γγ-coin, γ(θ). 120Ba; deduced levels, J, π, DCO ratios, two-point angular correlation (anisotropy) ratios, multipolarity, B(E1), B(E2), B(E3), high-spin states, bands, configurations, alignments, moments of inertia. Comparison with unpaired cranked shell model (CNS), particle number conserving cranked shell-model (PNC-CSM), and Quadrupole and Octupole Collective Hamiltonian based on the Relativistic Hartree-Bogoliubov Model calculations (QOCH-RHB). Systematics of B(E1)/B(E2) of 7- and 9- states in even-even Xe and Ba (A=116-124). JUROGAM3 array and MARA at K130 cyclotron (JYFL).

doi: 10.1103/PhysRevC.105.044319
Citations: PlumX Metrics

Data from this article have been entered in the XUNDL database. For more information, click here.


2022MD01      Phys.Rev. C 106, 044325 (2022)

L.Mdletshe, X.Q.Yang, E.A.Lawrie, M.A.Sithole, S.N.T.Majola, S.S.Ntshangase, J.F.Sharpey-Schafer, J.J.Lawrie, S.H.Mthembu, T.D.Bucher, L.Msebi, R.A.Bark, A.A.Avaa, M.V.Chisapi, P.Jones, S.Jongile, Z.P.Li, L.Makhathini, K.L.Malatji, A.A.Netshiya, Z.Shi, B.Y.Song, L.Wang, J.Xiang, S.Q.Zhang

Collective rotational bands at low excitation energy in 186Os: Vibrational and rotational degrees of freedom

NUCLEAR REACTIONS 186W(α, 4n), E=48 MeV; measured Eγ, Iγ, γγ-coin. 186Os; deduced levels, J, π, linear polarization asymmetries, angular distribution ratios, high-spin states, bands structure, staggering parameter; calculated levels, J, π, bands structure, potential energy surfaces, staggering parameter. Five-dimensional collective Hamiltonian based on the covariant density functional theory (5DCH-CDFT) and triaxial rotor model (TRM) calculations. Systematics of the bands alignments for 182,184,186,188,190,192Os isotopes. AFRODITE γ-ray spectrometer consisting of 11 clover HPGe detectors at iThemba LABS Separated-Sector Cyclotron.

doi: 10.1103/PhysRevC.106.044325
Citations: PlumX Metrics

Data from this article have been entered in the XUNDL database. For more information, click here.


2022SU16      Chin.Phys.C 46, 064103 (2022)

W.Sun, K.-Y.Zhang, C.Pan, X.-H.Fan, S.-Q.Zhang, Z.-P.Li

Beyond-mean-field dynamical correlations for nuclear mass table in deformed relativistic Hartree-Bogoliubov theory in continuum

NUCLEAR STRUCTURE 120,122,124,126,128,130,132,134,136,138,140,142,144,146,148,150,152,154,156,158,160,162,164,166,168,170,172,174,176,178,180,182,184,186,188,190,192,194,196,198,200,202,204,206,208,210,212,214,216,218,220Nd, 62,64,66,68,70,72,74,76,78,80,82,84,86,88,90,92,94,96,98,100,102,104,106,108,110,112,114,116,118,120,122Se, 210,212,214,216,218,220,222,224,226,228,230,232,234,236,238,240,242,244,246,248,250,252,254,256,258,260,262,264,266,268,270,272,274,276,278,280,282,284,286,288,290,292,294,296,298,300,302,304,306,308,310,312,314,316,318,320,322,324,326,328,330,332,334,336,338,340,342,344,346,348,350Th; calculated dynamical correlation and rotational correction energies obtained from the cranking approximation, two-neutron seperation energies using the deformed relativistic Hartree-Bogoliubov theory in continuum (DRHBc) with the dynamical correlation energies (DCEs).

doi: 10.1088/1674-1137/ac53fa
Citations: PlumX Metrics


2022WA13      Phys.Lett. B 830, 137154 (2022)

Y.F.Wang, X.Y.Zhang, Z.M.Niu, Z.P.Li

Study of nuclear low-lying excitation spectra with the Bayesian neural network approach

NUCLEAR STRUCTURE 20,22,24,26,28,30,32,34,36,38,40Mg, 36,38,40,42,44,46,48,50,52,54Ca, 72,74,76,78,80,82,84,86,88,90,92,94,96,98Kr, 130,132,134,136,138,140,142,144,146,148,150,152,154,156,158,160,162Sm, 182,184,186,188,190,192,194,196,198,200,202,204,206,208,210,212,214,216Pb; analyzed available data; deduced energies, J, π of the low-lying spectra in Bayesian neural network (BNN) approach.

doi: 10.1016/j.physletb.2022.137154
Citations: PlumX Metrics


2021NO06      Phys.Rev. C 103, 054322 (2021)

K.Nomura, D.Vretenar, Z.P.Li, J.Xiang

Coupling of pairing and triaxial shape vibrations in collective states of γ-soft nuclei

NUCLEAR STRUCTURE 128,130Xe; calculated levels, J, π, B(E2), E(2+ of γ band)/E(2+ of ground band), B(E2)(3+ to 2+ of γ band)/B(E2)(for 2+ of ground band), potential-energy surfaces (PES) for axial quadrupole and triaxial (β, γ), axial quadrupole and pairing (β, α), and triaxial quadrupole and pairing (γ, α) deformations. Self-consistent mean-field calculations of collective deformation-energy surfaces, and the framework of the interacting boson approximation with explicit coupling to pairing vibrations. Comparison with experimental data.

doi: 10.1103/PhysRevC.103.054322
Citations: PlumX Metrics


2021NO08      Phys.Rev. C 104, 024323 (2021)

K.Nomura, D.Vretenar, Z.P.Li, J.Xiang

Interplay between pairing and triaxial shape degrees of freedom in Os and Pt nuclei

NUCLEAR STRUCTURE 128Xe, 188,190,192Os, 192,194,196Pt; calculated potential energy surfaces (PES) in (β, γ), (α, β) and (γ, α) planes, where α represents pairing deformation, IBM Hamiltonian parameters. 128,130Xe, 188,190,192Os, 192,194,196Pt; calculated positive-parity levels, J, g.s. band, γ band, excited 0+ bands including axial+pairing (αβ), triaxial quadrupole (βγ), and triaxial+pairing (αβγ) deformation degrees of freedom, B(E2), B(E2) ratios, parameters X(E0/E2) and ρ2(E0) for 0+ to 0+ E0 transitions. Constrained self-consistent mean-field (SCMF) calculations using PC-PK1 and DD-PK1 energy density functional (EDFs) and pairing interactions, with number-nonconserving interacting boson model (IBM) Hamiltonian. Comparison with experimental data. Relevance to description of shape phase transitions and shape coexistence in γ-soft and triaxial nuclei, with simultaneous treatment of pairing vibrations and triaxial deformations through EDF-based IBM calculations.

doi: 10.1103/PhysRevC.104.024323
Citations: PlumX Metrics


2021PA29      Phys.Rev. C 104, 024331 (2021)

C.Pan, K.Y.Zhang, P.S.Chong, C.Heo, M.C.Ho, J.Lee, Z.P.Li, W.Sun, C.K.Tam, S.H.Wong, R.W.-Y.Yeung, T.C.Yiu, S.Q.Zhang

Possible bound nuclei beyond the two-neutron drip line in the 50 ≤ Z ≤ 70 region

NUCLEAR STRUCTURE 180,182,184,186,188,190,192,194,196,198,200Ba, 220,222,224,226,228,230,232,234,236Sm, 230,232,234,236,238,240,242,244Gd, 242,244,246,248,250,252,254Dy; calculated total energies, neutron Fermi energies, quadrupole deformation parameters β2. 182,184,186,188,190,192,194,196,198Ba, 224,226,228,230,232,234Sm; calculated single-neutron levels around the neutron Fermi energy, pairing energies as function of neutron number. 188Ba; estimated multi-neutron emission and the corresponding half-lives for 4n and 6n emissions as functions of the decay energy. Deformed relativistic Hartree-Bogoliubov in continuum (DRHBc) calculations with density functional PC-PK1. 192,194,196Ba, 192,194,196,198,200,202,204,206,208Ce, 232Sm, 238,240Gd, 250Dy; predicted as bound nuclei beyond the neutron drip line, forming peninsulas of stability in the nuclear landscape.

doi: 10.1103/PhysRevC.104.024331
Citations: PlumX Metrics


2021YA15      Phys.Rev. C 103, 054321 (2021)

X.Q.Yang, L.J.Wang, J.Xiang, X.Y.Wu, Z.P.Li

Microscopic analysis of prolate-oblate shape phase transition and shape coexistence in the Er-Pt region

NUCLEAR STRUCTURE 170,172,174,176,178,180,182,184,186,188,190,192Er, 172,174,176,178,180,182,184,186,188,190,192,194Yb, 174,176,178,180,182,184,186,188,190,192,194,196Hf, 176,178,180,182,184,186,188,190,192,194,196,198W, 178,180,182,184,186,188,190,192,194,196,198,200Os, 180,182,184,186,188,190,192,194,196,198,200,202Pt; calculated potential-energy surfaces (PES) in (β, γ) plane, E(first 4+)/E(first 2+), E(2+ in γ band)/E(first 2+), excitation energies of the first excited 0+ states, B(E2) for the first 2+ states, spectroscopic quadrupole moments of the first 2+ states, B(E2)(for the 2+ in γ band)/B(E2)(for the first 2+), staggering parameters. 184,186,188,190,192,194,196,198Os; calculated levels, J, π of the ground-state bands, γ bands, and excited 0+ bands, probability density distribution surfaces in (β, γ) plane for the g.s., first excited 0+ state, and 2+ in γ band. 184Er, 186Yb; calculated levels, J, π of the ground-state bands, γ bands, and two excited 0+ bands. Self-consistent mean-field (SCMF) calculation with five-dimensional collective Hamiltonian (5DCH) based on covariant density-functional theory (CDFT) with PC-PK1 functional. Comparison with experimental data.

doi: 10.1103/PhysRevC.103.054321
Citations: PlumX Metrics


2021YA31      Phys.Rev. C 104, 054312 (2021)

Y.L.Yang, Y.K.Wang, P.W.Zhao, Z.P.Li

Nuclear landscape in a mapped collective Hamiltonian from covariant density functional theory

NUCLEAR STRUCTURE Z=8-104 (even Z), N=6-258 (even N); calculated binding energies with and without dynamical correlation energies, Dynamical correlation energies, quadrupole deformations β, triaxial deformation γ, S(2n), S(2p), neutron and proton Fermi surfaces, charge radii, neutron, proton and matter root-mean-square radii for even-even nuclei. Relativistic Hartree-Bogoliubov theory with the PCPK1 energy density functional, and the beyond-mean-field dynamical correlation energies from microscopically mapped five-dimensional collective Hamiltonian (5DCH). 112Ru; calculated pairing energies and the zero-point energies in two calculations. The detailed results for a large number of nuclides are given in the Supplemental Material. Comparison of S(2n) and S(2p) with AME2016 values.

doi: 10.1103/PhysRevC.104.054312
Citations: PlumX Metrics


2020NO11      Phys.Rev. C 102, 054313 (2020)

K.Nomura, D.Vretenar, Z.P.Li, J.Xiang

Pairing vibrations in the interacting boson model based on density functional theory

NUCLEAR STRUCTURE 122Xe, 152Nd, 154Sm, 156Gd, 158Dy; calculated potential energy surfaces (PES) in (β, α) plane using constrained RMF+BCS with PC-PK1 energy density functional and separable pairing interaction; calculated levels, J, π, B(E2), matrix elements of the monopole pair transfer operator. Interacting boson model (IBM), based on the nuclear density functional theory, with a boson-number nonconserving IBM Hamiltonian for pairing vibrations for coupling between shape and pairing collective degrees of freedom. Comparison with experimental data taken from the ENSDF database, and other references.

doi: 10.1103/PhysRevC.102.054313
Citations: PlumX Metrics


2020SU04      Phys.Rev. C 101, 014321 (2020)

T.-T.Sun, L.Qian, C.Chen, P.Ring, Z.P.Li

Green's function method for the single-particle resonances in a deformed Dirac equation

NUCLEAR STRUCTURE 37Mg; calculated Nilsson levels for bound and resonant orbitals in the halo candidate nucleus, density of states, energies of the single-neutron resonant states, single-neutron levels using Green's function (GF) method to solve the coupled-channel Dirac equation with quadrupole-deformed Woods-Saxon potentials. Comparison with other theoretical approaches.

doi: 10.1103/PhysRevC.101.014321
Citations: PlumX Metrics


2020XI03      Phys.Rev. C 101, 064301 (2020)

J.Xiang, Z.P.Li, T.Niksic, D.Vretenar, W.H.Long

Coupling of shape and pairing vibrations in a collective Hamiltonian based on nuclear energy density functionals

NUCLEAR STRUCTURE 152Nd, 154Sm, 156Gd, 158Dy; calculated low-lying levels, J, π, lowest 0+ states, B(E2) and E0 transition strengths with quadrupole + pairing collective Hamiltonian and axially symmetric quadrupole collective Hamiltonian based on PC-PK1 energy functional; calculated potential energy surface (PES), probability density distributions and deformation energy surfaces in (β2, α) planes using triaxial relativistic mean-field formalism with PC-PK1 parameter sets. Comparison with experimental data.

doi: 10.1103/PhysRevC.101.064301
Citations: PlumX Metrics


2019MA70      Phys.Rev. C 100, 044324 (2019)

S.N.T.Majola, Z.Shi, B.Y.Song, Z.P.Li, S.Q.Zhang, R.A.Bark, J.F.Sharpey-Schafer, D.G.Aschman, S.P.Bvumbi, T.D.Bucher, D.M.Cullen, T.S.Dinoko, J.E.Easton, N.Erasmus, P.T.Greenlees, D.J.Hartley, J.Hirvonen, A.Korichi, U.Jakobsson, P.Jones, S.Jongile, R.Julin, S.Juutinen, S.Ketelhut, B.V.Kheswa, N.A.Khumalo, E.A.Lawrie, J.J.Lawrie, R.Lindsay, T.E.Madiba, L.Makhathini, S.M.Maliage, B.Maqabuka, K.L.Malatji, P.L.Masiteng, P.I.Mashita, L.Mdletshe, A.Minkova, L.Msebi, S.M.Mullins, J.Ndayishimye, D.Negi, A.Netshiya, R.Newman, S.S.Ntshangase, R.Ntshodu, B.M.Nyako, P.Papka, P.Peura, P.Rahkila, L.L.Riedinger, M.A.Riley, D.G.Roux, P.Ruotsalainen, J.J.Saren, C.Scholey, O.Shirinda, M.A.Sithole, J.Sorri, M.Stankiewicz, S.Stolze, J.Timar, J.Uusitalo, P.A.Vymers, M.Wiedeking, G.L.Zimba

β and γ bands in N=88, 90, and 92 isotones investigated with a five-dimensional collective Hamiltonian based on covariant density functional theory: Vibrations, shape coexistence, and superdeformation

NUCLEAR REACTIONS 136Xe(18O, 4n)150Sm, E=75 MeV; 148Nd(α, 2n)150Sm, E=25 MeV; 152Sm(α, 4n)152Gd, E=45 MeV; 152Sm(α, 2n)154Gd, E=25 MeV; 155Gd(3He, 4n)154Dy, E=37.5 MeV; 147Sm(12C, 3n)156Er, E=65 MeV; 155Gd(α, 3n)156Dy, E=25 MeV; 144Sm(18O, 4n)158Yb, E=78 MeV; 150Sm(12C, 4n)158Er, E=65 MeV; 156Gd(α, 2n)158Dy, E=27 MeV; 147Sm(16O, 3n)160Yb, E=73 MeV; 152Sm(12C, 4n)160Er, E=64 MeV; measured Eγ, Iγ, γγ-coin, γγ(θ)(DCO), γγ(linear polarization) using the AFRODITE array at the cyclotron facility of the iThemba Labs for 11 reactions, and JUROGAM II array at Jyvaskyla for 148Nd(α, 2n)150Sm and 155Gd(α, 3n)156Dy reactions. 150Sm, 152,154Gd, 154,156,158Dy, 156,160Er, 158,160Yb; deduced levels, J, π, multipolarities, β, γ and 0+ bands, B(E2) ratios. 150,152,154Sm, 152,154,156Gd, 154,156,158Dy, 156,158,160Er, 158,160,162Yb; calculated potential energy surfaces (PES) and probability density distribution contours in (β, γ) plane; deduced staggering parameters, in-band B(E2) values, absolute transition strengths of E0 transitions, X(E0/E2) values from present and previous experimental data. Comparison with 5DCH-CDFT calculations with PC-PK1 density functional.

doi: 10.1103/PhysRevC.100.044324
Citations: PlumX Metrics

Data from this article have been entered in the XUNDL database. For more information, click here.


2019SH23      Phys.Rev. C 99, 064316 (2019)

Z.Shi, A.V.Afanasjev, Z.P.Li, J.Meng

Superheavy nuclei in a microscopic collective Hamiltonian approach: The impact of beyond-mean-field correlations on ground state and fission properties

NUCLEAR STRUCTURE 292,294,296,298,300,302,304,306,308,310120, 282Hs, 284Ds, 286,296Cn, 288,298Fl, 290,300Lv, 292,302Og, 296,306122, 298124; calculated potential energy surfaces, collective energy surfaces, and probability density distributions in (β, γ) plane for 292,298,304,310120, quadrupole deformations, energies of the first 2+ states, B(E2) for first 2+ states, heights of inner fission barriers, dynamical correlations energies at the ground states and the saddles of inner fission barriers, energy differences between the saddle points and the minima of collective energy surfaces. Five-dimensional collective Hamiltonian (5DCH) based on covariant density functional theory, with DD-PC1 and PC-PK1 functionals.

doi: 10.1103/PhysRevC.99.064316
Citations: PlumX Metrics


2019SU22      Phys.Rev. C 100, 044319 (2019)

W.Sun, S.Quan, Z.P.Li, J.Zhao, T.Niksic, D.Vretenar

Microscopic core-quasiparticle coupling model for spectroscopy of odd-mass nuclei with octupole correlations

NUCLEAR STRUCTURE 222,224,226,228Ra; calculated levels, J, π, B(E2), B(E3), relativistic Hartree-Bogoliubov (RHB) deformation energy surfaces in (β2, β3) plane. 223,225,227Ra; calculated levels, J, π, bands, B(E1), B(E2), B(E3), octupole correlations, probabilities of the dominant configurations in wave functions using microscopic core-quasiparticle coupling (CQC) model based on covariant density functional theory. Comparison with experimental data.

doi: 10.1103/PhysRevC.100.044319
Citations: PlumX Metrics


2019ZH26      Phys.Rev. C 99, 054613 (2019)

J.Zhao, J.Xiang, Z.P.Li, T.Niksic, D.Vretenar, S.-G.Zhou

Time-dependent generator-coordinate-method study of mass-asymmetric fission of actinides

NUCLEAR STRUCTURE 228Th; calculated levels, J, π, B(E2), B(E3), free energy along the least-energy fission path as function of the quadrupole deformation. 228Th, 234U, 240Pu, 244Cm, 250Cf; calculated deformation energy curves, axially symmetric quadrupole-octupole energy surface in (β20, β30) plane using microscopic TDGCM+GOA framework based on the relativistic energy density functional DD-PC1 and a separable pairing force of finite range. Comparison with experimental data.

NUCLEAR REACTIONS 228Th(γ, F), E*=0-11 MeV; 234U(γ, F), E*=0-11 MeV; 240Pu(γ, F), E*=0-11 MeV; 244Cm(γ, F), E*=0-23 MeV; 250Cf(γ, F), E*=0-8 MeV; calculated fission barriers and charge yields using a self-consistent multidimensionally constrained relativistic mean field model and the finite-temperature time-dependent generator coordinate model (GCM), respectively.

doi: 10.1103/PhysRevC.99.054613
Citations: PlumX Metrics


2018QU01      Phys.Rev. C 97, 031301 (2018)

S.Quan, Z.P.Li, D.Vretenar, J.Meng

Nuclear quantum shape-phase transitions in odd-mass systems

NUCLEAR STRUCTURE 148,150,152,154Sm, 150,152,154,156Gd; calculated self-consistent RHB triaxial quadrupole energy surfaces in (β, γ) plane. 149,151,153,154Eu, 148,150,152,154Sm; calculated low-energy levels, J, π, S(2n), B(E2), spectroscopic quadrupole moments, dominant configurations and quasiparticle energies for the ground states of Eu isotopes using microscopic core-quasiparticle coupling (CQC), and five-dimensional collective (5DCH) Hamiltonians, based on PC-PK1 energy density functional and a finite-range separable pairing force. Comparison with experimental data.

doi: 10.1103/PhysRevC.97.031301
Citations: PlumX Metrics


2018SH14      Phys.Rev. C 97, 034329 (2018)

Z.Shi, Z.P.Li

Microscopic description of triaxiality in Ru isotopes with covariant energy density functional theory

NUCLEAR STRUCTURE 100,102,104,106,108,110,112,114Ru; calculated low-lying positive-parity levels, J, B(E2), potential energy surfaces (PES) and probability density distributions in (β, γ) planes, S(2n), staggering parameters using five dimensional collective Hamiltonian (5DCH) with parameters from constrained self-consistent mean-field (RMF+BCS) calculations based on relativistic energy density functional PC-PK1. Role of triaxiality and the evolution of quadrupole shapes. Comparison with available experimental data.

doi: 10.1103/PhysRevC.97.034329
Citations: PlumX Metrics


2018XI08      Phys.Rev. C 98, 054308 (2018)

J.Xiang, Z.P.Li, W.H.Long, T.Niksic, D.Vretenar

Shape evolution and coexistence in neutron-deficient Nd and Sm nuclei

NUCLEAR STRUCTURE 126,128,130,132,134,136,138,140Nd, 128,130,132,134,136,138,140,142Sm; calculated potential energy surfaces (PES) in (β2, γ) planes, B(E2) for the first 2+ state, E(first 4+)/E(first 2+) and E(2+ of γ band)/E(first 4+) ratios, β deformation parameters, low-lying levels, J, π, E0 strengths, and distribution of the probability densities for the first and second 0+, and first and third 2+ states in 134Nd and 136Sm, neutron and proton single particle levels in 134Nd, and single-neutron levels in 132,136Nd; analyzed shape evolution and shape coexistence in neutron-deficient even-even Nd and Sm nuclei. Relativistic mean field formalism with PC-PK1 parameter sets, and a separable finite-range pairing interaction with a five-dimensional (5DCH) quadrupole collective Hamiltonian. analyzed Comparison with experimental values.

doi: 10.1103/PhysRevC.98.054308
Citations: PlumX Metrics


2017QU03      Phys.Rev. C 95, 054321 (2017)

S.Quan, Q.Chen, Z.P.Li, T.Niksic, D.Vretenar

Global analysis of quadrupole shape invariants based on covariant energy density functionals

NUCLEAR STRUCTURE Z=8-108, N=8-160; analyzed structure of 621 even-even nuclides for energies of energies of first three 2+ states, first 4+ and second 0+ states, and B(E2) for the first 2+ states, absolute differences between the calculated βeffcos3γeff and βeff for the two lowest 0+ states in 621 nuclei, calculated ratios E(second 0+)/E(first 2+). five-dimensional collective Hamiltonian model based on the relativistic energy density functional PC-PK1 and a finite range pairing interaction. Comparison with experimental data.

doi: 10.1103/PhysRevC.95.054321
Citations: PlumX Metrics


2017QU08      Phys.Rev. C 96, 054309 (2017)

S.Quan, W.P.Liu, Z.P.Li, M.S.Smith

Microscopic core-quasiparticle coupling model for spectroscopy of odd-mass nuclei

NUCLEAR STRUCTURE 224Ra, 144,146,148,150,152,154Ba; calculated free energy surface contours in (β2, β3) plane, global minima deformations β2, β3, β4, excitation energies, pairing gaps, specific heat, neutron and proton single-particle levels as a function of temperature. Finite-temperature deformed RMF+BCS theory based on the relativistic point-coupling density functional.

doi: 10.1103/PhysRevC.96.054309
Citations: PlumX Metrics


2017TA22      Phys.Rev. C 96, 024319 (2017)

H.Tao, J.Zhao, Z.P.Li, T.Niksic, D.Vretenar

Microscopic study of induced fission dynamics of 226Th with covariant energy density functionals

NUCLEAR STRUCTURE 226Th; calculated RMF+BCS binding energy, and quadrupole and octupole constrained deformation energy surface and scission contours in β23 plane, total kinetic energy of the nascent fission fragments as a function of fragment mass, preneutron emission charge yields for photoinduced fission, total kinetic energy of nascent fission fragments as function of fragment mass and pairing strength, charge and mass distributions of fission fragments. Self-consistent framework based on relativistic energy density functional PC-PK1, with induced fission dynamics described using the time-dependent generator coordinate method (TDGCM) in the Gaussian overlap approximation (GOA). Comparison with experimental data.

doi: 10.1103/PhysRevC.96.024319
Citations: PlumX Metrics


2017XI15      Phys.Rev. C 96, 054303 (2017)

S.Y.Xia, H.Tao, Y.Lu, Z.P.Li, T.Niksic, D.Vretenar

Spectroscopy of reflection-asymmetric nuclei with relativistic energy density functionals

NUCLEAR STRUCTURE 138,140,142,144,146,148,150,152,154Xe, 140,142,144,146,148,150,152,154,156Ba, 142,144,146,148,150,152,154,156,158Ce, 144,146,148,150,152,154,156,158,160Nd, 146,148,150,152,154,156,158,160,162Sm, 148,150,152,154,156,158,160,162,164Gd, 216,218,220,222,224,226,228,230,232,234,236,238Rn, 218,220,222,224,226,228,230,232,234,236,238,240Ra, 220,222,224,226,228,230,232,234,236,238,240,242Th, 222,224,226,228,230,232,234,236,238,240,242,244U, 224,226,228,230,232,234,236,238,240,242,244,246Pu, 226,228,230,232,234,236,238,240,242,244,246,248Cm, 228,230,232,234,236,238,240,242,244,246,248,250Cf, 230,232,234,236,238,240,242,244,246,248,250,252Fm; calculated levels, J, π, B(E1), B(E2), B(E3), electric dipole moments, deformation energy surface in (β2, β3) plane, other related features for 2+, 1-, 3- states of reflection-asymmetric nuclei using microscopic quadrupole-octupole collective Hamiltonian (QOCH) based on relativistic PC-PK1 energy density functional and δ-interaction pairing. Comparison with experimental data.

doi: 10.1103/PhysRevC.96.054303
Citations: PlumX Metrics


2016LI07      J.Phys.(London) G43, 024005 (2016)

Z.P.Li, T.Niksic, D.Vretenar

Coexistence of nuclear shapes: self-consistent mean-field and beyond

NUCLEAR STRUCTURE 44S, 46Ar, 42Si, 40Mg, 152Sm, 154Gd, 156Dy, 220,222,224,226,228,230Th; calculated potential energy surfaces, J, π, energy levels. Framework of nuclear energy density functionals.

doi: 10.1088/0954-3899/43/2/024005
Citations: PlumX Metrics


2016XI07      Phys.Rev. C 93, 054324 (2016)

J.Xiang, J.M.Yao, Y.Fu, Z.H.Wang, Z.P.Li, W.H.Long

Novel triaxial structure in low-lying states of neutron-rich nuclei around A ≈ 100

NUCLEAR STRUCTURE 100,102,104,106,108,110Mo, 96Kr, 98Sr, 100Zr, 104Ru; calculated energy surface contours in (β, γ) plane, low-lying levels, J, π, energies and B(E2) of first 2+ states, reduced diagonal E2 matrix elements, transition quadrupole moments as function of angular momentum, staggering of the γ band using 3DCH prolate and oblate, and 5DCH triaxial configurations. Relativistic mean-field plus BCS wave functions generated with a constraint on triaxial deformations and solving a five-dimensional collective Hamiltonian (5DCH). Comparison with experimental values.

doi: 10.1103/PhysRevC.93.054324
Citations: PlumX Metrics


2015LU02      Phys.Rev. C 91, 027304 (2015)

K.Q.Lu, Z.X.Li, Z.P.Li, J.M.Yao, J.Meng

Global study of beyond-mean-field correlation energies in covariant energy density functional theory using a collective Hamiltonian method

NUCLEAR STRUCTURE Z=8-108, N=8-156; calculated contour map of quadrupole dynamical correlation energies by the CEDF-based 5DCH model, with and without PC-PK1 force, discrepancy of the CEDF binding energies by PC-PK1, discrepancy of theoretical S(2n) and S(2p) for 575 even-even nuclei. Covariant energy density functional (CEDF) by solving a five-dimensional collective Hamiltonian (5DCH). Comparison with AME-12 data.

doi: 10.1103/PhysRevC.91.027304
Citations: PlumX Metrics


2015WA11      J.Phys.(London) G42, 045108 (2015)

Z.H.Wang, J.Xiang, W.H.Long, Z.P.Li

Covariant density functional analysis of shape evolution in N = 40 isotones

NUCLEAR STRUCTURE 62Ti, 64Cr, 66Fe, 68Ni, 70Zn, 72Ge, 74Se, 76Kr, 78Sr, 80Zr; calculated potential energy surfaces, two-proton separation energies, B(E2), J, π; deduced shape coexistence. Comparison with experimental data, relativistic mean-field plus BCS method with the PC-PK1 functional in the particle-hole channel and a separable pairing force in the particle-particle channel.

doi: 10.1088/0954-3899/42/4/045108
Citations: PlumX Metrics


2015XU05      Phys.Rev. C 91, 024327 (2015)

W.X.Xue, J.M.Yao, K.Hagino, Z.P.Li, H.Mei, Y.Tanimura

Triaxially deformed relativistic point-coupling model for Λ hypernuclei: A quantitative analysis of the hyperon impurity effect on nuclear collective properties

NUCLEAR STRUCTURE 17O, 31Si, 33S, 41Ca; calculated total energy, kinetic energy, rms radii of neutrons, protons, hyperon, energy of the lowest three single-particle states of hypernuclei. 9Be, 16O, 28Si, 32S, 40Ca, 51V, 89Y, 139La, 208Pb; calculated binding energies in single-Λ hypernuclei. 51V; calculated total energy for hypernucleus as a function of deformation parameter β. 25,27Mg, 31Si; calculated levels, J, π, potential-energy surfaces (PESs) of hypernuclei in (β, γ) plane. 24,26Mg, 30Si; calculated levels, J, π, potential energy surfaces (PES) in (β, γ) plane; deduced impurity effect of Λs and Λp hyperon on the energies and B(E2) for first 2+ states. Microscopic particle rotor model (PRM) with relativistic EDF, and triaxially deformed relativistic mean-field (RMF) approach. Comparison with experimental data.

doi: 10.1103/PhysRevC.91.024327
Citations: PlumX Metrics


2015XU13      Phys.Rev. C 92, 024324 (2015)

X.-D.Xu, S.-S.Zhang, A.J.Signoracci, M.S.Smith, Z.P.Li

Analytical continuation from bound to resonant states in the Dirac equation with quadrupole-deformed potentials

NUCLEAR STRUCTURE 37Mg; calculated energies and widths of the neutron resonant states, energy and width of neutron 3/2[301] and 7/2[413] resonant states as functions of the coupling constant, single-neutron Nilsson levels as function of deformation β. Halo nucleus. Analytical continuation of the coupling constant (ACCC) method on the basis of the Dirac coupled-channel equations with a deformed Woods-Saxon potential. Comparison with scattering phase shift (SPS) method.

doi: 10.1103/PhysRevC.92.024324
Citations: PlumX Metrics


2015YA20      Phys.Rev. C 92, 041304 (2015)

J.M.Yao, E.F.Zhou, Z.P.Li

Beyond relativistic mean-field approach for nuclear octupole excitations

NUCLEAR STRUCTURE 224Ra; calculated low-lying levels, J, π, B(E1), B(E2), B(E3), quadrupole deformation, static and dynamic octupole deformation, energy surface contour in (β2, β3) plane, excitation energy ratio RJ/2 and staggering amplitude. State-of-the-art multireference relativistic energy density functional method combined with exact generator coordinate method. Comparison with experimental data.

doi: 10.1103/PhysRevC.92.041304
Citations: PlumX Metrics


2014BA29      Int.J.Mod.Phys. E23, 1461001 (2014)

R.A.Bark, E.O.Lieder, R.M.Lieder, E.A.Lawrie, J.J.Lawrie, S.P.Bvumbi, N.Y.Kheswa, S.S.Ntshangase, T.E.Madiba, P.L.Masiteng, S.M.Mullins, S.Murray, P.Papka, O.Shirinda, Q.B.Chen, S.Q.Zhang, Z.H.Zhang, P.W.Zhao, C.Xu, J.Meng, D.G.Roux, Z.P.Li, J.Peng, B.Qi, S.Y.Wang, Z.G.Xiao

Studies of chirality in the mass 80, 100 and 190 regions

NUCLEAR REACTIONS 96Zr(14N, 4n)106Ag, E not given; measured reaction products, Eγ, Iγ; deduced levels, J, π, T1/2, chiral bands, B(M1), B(E2). Comparison with particle-rotor calculations.

doi: 10.1142/S0218301314610011
Citations: PlumX Metrics


2014LI19      Phys.Rev.Lett. 112, 202502 (2014)

E.O.Lieder, R.M.Lieder, R.A.Bark, Q.B.Chen, S.Q.Zhang, J.Meng, E.A.Lawrie, J.J.Lawrie, S.P.Bvumbi, N.Y.Kheswa, S.S.Ntshangase, T.E.Madiba, P.L.Masiteng, S.M.Mullins, S.Murray, P.Papka, D.G.Roux, O.Shirinda, Z.H.Zhang, P.W.Zhao, Z.P.Li, J.Peng, B.Qi, S.Y.Wang, Z.G.Xiao, C.Xu

Resolution of Chiral Conundrum in 106Ag: Doppler-Shift Lifetime Investigation

NUCLEAR REACTIONS 96Zr(14N, 4n), E=71 MeV; measured reaction products, Eγ, Iγ, γ-γ-coin.; deduced level scheme, J, π, high spin negative parity bands, B(M1), B(E2). Particle-rotor model calculations.

doi: 10.1103/PhysRevLett.112.202502
Citations: PlumX Metrics

Data from this article have been entered in the XUNDL database. For more information, click here.


2014WU01      Phys.Rev. C 89, 017304 (2014)

X.Y.Wu, J.M.Yao, Z.P.Li

Low-energy structure and anti-bubble effect of dynamical correlations in 46Ar

NUCLEAR STRUCTURE 46Ar; calculated levels, J, π, B(E2), proton and charge density distributions, configuration mixing. Unlikely existence of a proton bubble structure in argon isotopes. Covariant density functional theory. Comparison with RMF calculations, and with experimental data.

doi: 10.1103/PhysRevC.89.017304
Citations: PlumX Metrics


2014YA11      Phys.Rev. C 89, 054306 (2014)

J.M.Yao, K.Hagino, Z.P.Li, J.Meng, P.Ring

Microscopic benchmark study of triaxiality in low-lying states of 76Kr

NUCLEAR STRUCTURE 76Kr; calculated levels, J, π, B(E2), Spectroscopic quadrupole moments, potential-energy surfaces (PES) in (β, γ) plane, PES for quasi-γ band, staggering of γ band. Generator coordinate method (GCM) and covariant density functional theory with 5D collective Hamiltonian. Discussed triaxiality in low-lying states in 76Kr. Comparison with experimental data, and with other theoretical calculations.

doi: 10.1103/PhysRevC.89.054306
Citations: PlumX Metrics


2013FU06      Phys.Rev. C 87, 054305 (2013)

Y.Fu, H.Mei, J.Xiang, Z.P.Li, J.M.Yao, J.Meng

Beyond relativistic mean-field studies of low-lying states in neutron-deficient krypton isotopes

NUCLEAR STRUCTURE 68,70,72,74,76,78,80,82,84,86Kr; calculated levels, J, π, energy surface contours in β-γ plane, B(E2), ρ2(E0), quadrupole deformation, oblate-triaxial-prolate transition, shape coexistence, configuration mixing, angular momentum projection. Beyond relativistic mean-field (RMF) theory PC-PK1 force. Comparison with other calculations, and available experimental data.

doi: 10.1103/PhysRevC.87.054305
Citations: PlumX Metrics


2013HA27      Nucl.Phys. A914, 151c (2013)

K.Hagino, J.M.Yao, F.Minato, Z.P.Li, M.T.Win

Collective excitations of Λ hypernuclei

NUCLEAR STRUCTURE 20,22,24,26,28,30,32,34,36,38Ne, 22,24,26,28,30,32,34,36,38,40,42Si; calculated deformation, deformation of (A+Λ) hypernuclei, binding energy, Q vs deformation using relativistic mean field. 24Mg, 25Mg; calculated 25ΛMg hypernucleus deformation, low-spin levels, J, π, rotational bands, B(E2) using relativistic mean field. 16O, 18O; calculated 18ΛΛO hypernucleus dipole strength distribution vs energy, B(E2), B(E3) using RPA. Compared with data.

doi: 10.1016/j.nuclphysa.2012.12.077
Citations: PlumX Metrics


2013ME08      Phys.Scr. T154, 014010 (2013)

J.Meng, Y.Chen, H.Z.Liang, Y.F.Niu, Z.M.Niu, L.S.Song, W.Zhao, Z.Li, B.Sun, X.D.Xu, Z.P.Li, J.M.Yao, W.H.Long, T.Niksic, D.Vretenar

Mass and lifetime of unstable nuclei in covariant density functional theory

NUCLEAR STRUCTURE A=80-195; calculated masses, binding energies, β-decay T1/2. Finite-range droplet model and Weizsacker-Skyrme models, comparison with available data.

doi: 10.1088/0031-8949/2013/T154/014010
Citations: PlumX Metrics


2013SO14      Phys.Scr. T154, 014012 (2013)

B.Y.Song, Z.P.Li, J.M.Yao, J.Meng

Energy density functional description of low-lying states in neutron-deficient Sn isotopes

NUCLEAR STRUCTURE Z=50, N=50-82; calculated energies and B(E2) values for the first excited states, the average neutron pairing gaps at a spherical point in the Sn isotopic chain. PC-PK1, DD-PC1 and PC-F1 density functionals, comparison with available data.

doi: 10.1088/0031-8949/2013/T154/014012
Citations: PlumX Metrics


2013XI11      Phys.Rev. C 88, 057301 (2013)

J.Xiang, Z.P.Li, J.M.Yao, W.H.Long, P.Ring, J.Meng

Effect of pairing correlations on nuclear low-energy structure: BCS and general Bogoliubov transformation

NUCLEAR STRUCTURE 134,136,138,140,142,144,146,148,150,152,154Sm; calculated binding energies for quadrupole deformation, proton and neutron pairing gaps. 152Sm; calculated potential energy surfaces for quadrupole deformation, proton and neutron pairing gaps, moments of inertia, low-lying levels, J, π, bands, single-particle energy levels and occupation probabilities. Relativistic Hartree-Bogoliubov (RHB) and relativistic mean field plus BCS (RMF+BCS) calculations, and comparison between the two approaches.

doi: 10.1103/PhysRevC.88.057301
Citations: PlumX Metrics


2013ZH51      Phys.Rev. C 88, 054324 (2013)

W.Zhang, Z.P.Li, S.Q.Zhang

Description of α-decay chains for 293, 294117 within covariant density functional theory

RADIOACTIVITY 293,294Ts(α); calculated Q(α) using covariant density functional theory with PK1 and PC-PK1 density functionals including intrinsic triaxial and octupole shapes. Comparison with experimental data.

NUCLEAR STRUCTURE 270Db, 274Bh, 278Mt, 281,282Rg, 285,286Nh, 289,290Mc, 293,294Ts; calculated potential energy surfaces (PES) in β2-γ plane, deformation parameters β2, minimal energies Emin, rotational correction energies, and total energies for normal deformed and prolate superdeformed minima. Constrained RMF+BCS calculations using PC-PK1 and PK1 energy density functionals.

doi: 10.1103/PhysRevC.88.054324
Citations: PlumX Metrics


2012HI02      Phys.Rev. C 85, 024323 (2012)

N.Hinohara, Z.P.Li, T.Nakatsukasa, T.Niksic, D.Vretenar

Effect of time-odd mean fields on inertial parameters of the quadrupole collective Hamiltonian

NUCLEAR STRUCTURE 128,130,132Xe, 130,132,134Ba; calculated triaxial quadrupole binding energy maps, and quadrupole energy surfaces in β-γ plane, ratios of moments of inertia, ratios of vibrational mass parameters, cranking mass parameters, low-lying levels, J, π. Hybrid model based on microscopic collective Hamiltonian and CHFB+LQRPA method to estimate the contribution of time-odd mean fields (Thouless-Valatin contribution). Comparison with experimental data.

doi: 10.1103/PhysRevC.85.024323
Citations: PlumX Metrics


2012LI42      Phys.Rev. C 86, 034334 (2012)

Z.P.Li, T.Niksic, P.Ring, D.Vretenar, J.M.Yao, J.Meng

Efficient method for computing the Thouless-Valatin inertia parameters

NUCLEAR STRUCTURE 152,154,156,158,160,162,164Sm; calculated Thouless-Valatin moments of inertia for nuclear system. Adiabatic time-dependent Hartree-Fock approximation (ATDHF). Comparison with calculations using the self-consistent cranking model.

doi: 10.1103/PhysRevC.86.034334
Citations: PlumX Metrics


2012ME06      Phys.Rev. C 85, 034321 (2012)

H.Mei, J.Xiang, J.M.Yao, Z.P.Li, J.Meng

Rapid structural change in low-lying states of neutron-rich Sr and Zr isotopes

NUCLEAR STRUCTURE 88,90,92,94,96,98,100Sr, 90,92,94,96,98,100,102Zr; calculated level energies and B(E2) for first 2+ states, level energies and B(E0) for first excited 0+ states, E(first 4+)/E(first 2+), moment of inertia, mass parameters, proton radii, isotope shifts, single-particle energies, configuration mixing, total energy surfaces in β-γ plane, wave function distributions. Five-dimensional collective Hamiltonian with parameters from relativistic mean-field and nonrelativistic Skyrme-Hartree-Fock calculations using PC-PK1 and SLy4 interactions, density functional theory. Comparison with experimental data.

doi: 10.1103/PhysRevC.85.034321
Citations: PlumX Metrics


2012ME10      Int.J.Mod.Phys. E21, 1250024 (2012)

H.Mei, Z.P.Li, J.M.Yao, K.Hagino

Impurity effect of Λ hyperon on shape-coexistence nucleus 44S in the energy functional based colletive Hamiltonian

NUCLEAR STRUCTURE 44,45S; calculated excitation energies, J, π, effect of Λ hyperon. Nonrelativistic Skyrme energy density functional, comparison with available data.

doi: 10.1142/S0218301312500243
Citations: PlumX Metrics


2012XI01      Nucl.Phys. A873, 1 (2012)

J.Xiang, Z.P.Li, Z.X.Li, J.M.Yao, J.Meng

Covariant description of shape evolution and shape coexistence in neutron-rich nuclei at N ≈ 60

NUCLEAR STRUCTURE 88,90,92,94,96,98,100,102,104Kr, 88,90,92,94,96,98,100,102,104,106Sr, 90,92,94,96,98,100,102,104,106,108Zr, 92,94,96,98,100,102,104,106,108,110Mo; calculated charge radii, shape coexistence, deformation using covariant density functional. 98Sr, 100Zr; calculated energies vs deformation, B(E0). 98Sr; calculated levels, J, π vs deformation.

doi: 10.1016/j.nuclphysa.2011.10.002
Citations: PlumX Metrics


2011KR05      J.Phys.(London) G38, 065102 (2011)

A.Krugmann, Z.P.Li, J.Meng, N.Pietralla, D.Vretenar

Comparison of the confined β-soft rotor model and a microscopic collective Hamiltonian based on the relativistic mean field model in 150, 152Nd

NUCLEAR STRUCTURE 150,152Nd; calculated analytical wave functions of the confined β-soft rotor and collective Hamiltonian; deduced similarities in low lying energies, J, π, B(E2). Comparison with experimental data.

doi: 10.1088/0954-3899/38/6/065102
Citations: PlumX Metrics


2011LI08      Int.J.Mod.Phys. E20, 494 (2011)

Z.P.Li, J.Xiang, J.M.Yao, H.Chen, J.Meng

Sensitivity of the nuclear collectivity to the pairing strength in 150Nd

NUCLEAR STRUCTURE 150Nd; calculated neutron pairing gaps, ratio of energies, B(E2).

doi: 10.1142/S0218301311017909
Citations: PlumX Metrics


2011LI47      Phys.Rev. C 84, 054304 (2011)

Z.P.Li, J.M.Yao, D.Vretenar, T.Niksic, H.Chen, J.Meng

Energy density functional analysis of shape evolution in N=28 isotones

NUCLEAR STRUCTURE 48Ca, 46Ar, 44S, 42Si, 40Mg; calculated triaxial quadrupole constrained energy surfaces in β-γ plane, Single-neutron and single-proton energy levels as function of deformation parameters, N=28 spherical energy gaps. 46Ar, 44S, 42Si; calculated levels, J, π, B(E2). 44S; calculated levels, J, π, B(E2), E0 transition probability, probability distribution plots in in the β-γ plane for the lowest collective states. N=28, Z=12-20; calculated energies and B(E2) of first 2+ states in even-even nuclei. Relativistic energy density functional DD-PC1, relativistic Hartree-Bogoliubov (RHB) model for triaxial nuclei. Comparison with experimental data.

doi: 10.1103/PhysRevC.84.054304
Citations: PlumX Metrics


2011YA11      Phys.Rev. C 84, 024306 (2011)

J.M.Yao, J.Meng, P.Ring, Z.X.Li, Z.P.Li, K.Hagino

Microscopic description of quantum shape fluctuation in C isotopes

NUCLEAR STRUCTURE 10,12,14,16,18,20,22C; calculated levels, J, π, B(E2), potential energy surfaces. Covariant density functional (CDF) theory, angular momentum projection (3DAMP), generator coordinate method (GCM). Comparison with experimental data.

doi: 10.1103/PhysRevC.84.024306
Citations: PlumX Metrics


2011YA14      Nucl.Phys. A868-869, 12 (2011)

J.M.Yao, Z.P.Li, K.Hagino, M.T.Win, Y.Zhang, J.Meng

Impurity effect of Lambda hyperon on collective excitations of nuclear core in 25ΛMg

doi: 10.1016/j.nuclphysa.2011.08.006
Citations: PlumX Metrics


2011ZH54      J.Phys.:Conf.Ser. 312, 092066 (2011)

W.Zhang, Z.P.Li, S Q.Zhang, J.Meng

Octupole degree of freedom for nuclei near 152Sm in a reflection-asymmetric relativistic mean-field approach

NUCLEAR STRUCTURE 150,152,154Sm; calculated deformation, potential energy surfaces. 148Ba, 152Sm; calculated single-particle levels, J. Constrained reflection-asymmetric relativistic mean-field using two parameter sets.

doi: 10.1088/1742-6596/312/9/092066
Citations: PlumX Metrics


2010LI08      Phys.Rev. C 81, 034311 (2010)

Z.P.Li, J.Meng, Y.Zhang, S.G.Zhou, L.N.Savushkin

Single-particle resonances in a deformed Dirac equation

doi: 10.1103/PhysRevC.81.034311
Citations: PlumX Metrics


2010LI09      Phys.Rev. C 81, 034316 (2010)

Z.P.Li, T.Niksic, D.Vretenar, J.Meng

Microscopic description of spherical to γ-soft shape transitions in Ba and Xe nuclei

NUCLEAR STRUCTURE 130,132,134,136Ba, 128,130,132,134Xe; calculated self-consistent RMF+BCS triaxial quadrupole binding energy maps in β-γ plane, E(first 4+)/E(first 2+) ratios, fluctuations of quadrupole deformation parameters, low-lying level schemes and B(E2) transition probabilities using microscopic collective Hamiltonian with the PC-F1 relativistic density functionals. Comparisons with experimental data and predictions of E(5) dynamic symmetry.

doi: 10.1103/PhysRevC.81.034316
Citations: PlumX Metrics


2010LI20      Phys.Rev. C 81, 064321 (2010)

Z.P.Li, T.Niksic, D.Vretenar, P.Ring, J.Meng

Relativistic energy density functionals: Low-energy collective states of 240Pu and 166Er

NUCLEAR STRUCTURE 240Pu; calculated binding energy maps in β-γ plane, low-energy excitation spectra, deformation energy curves, barrier height, g.s., β, γ, superdeformed bands, levels, J, π. 166Er; calculated binding energy maps in β-γ plane, low-energy excitation spectra, E2 transition probabilities, deformation energy curves, g.s., γ and two-phonon γ-vibrational bands, levels, J, π. Relativistic energy density functionals DD-PC1 and PC-F1 starting with constrained self-consistent triaxial relativistic Hartree-Bogoliubov calculations. Comparison with experimental data.

doi: 10.1103/PhysRevC.81.064321
Citations: PlumX Metrics


2010ME09      Nucl.Phys. A834, 436c (2010)

J.Meng, Z.P.Li, H.Z.Liang, Z.M.Niu, J.Peng, B.Qi, B.Sun, S.Y.Wang, J.M.Yao, S.Q.Zhang

Covariant Density Functional Theory for Nuclear Structure and Application in Astrophysics

NUCLEAR STRUCTURE 144,146,148,150,152,154,156Nd; calculated levels, J, π, B(E2), mass excess using covariant density functional theory. Comparison with data.

doi: 10.1016/j.nuclphysa.2010.01.058
Citations: PlumX Metrics


2010ZH05      Phys.Rev. C 81, 034302 (2010)

W.Zhang, Z.P.Li, S.Q.Zhang, J.Meng

Octupole degree of freedom for the critical-point candidate nucleus 152Sm in a reflection-asymmetric relativistic mean-field approach

NUCLEAR STRUCTURE 146,148,150,152,154,156Sm; calculated potential energy surfaces in β2, β3 plane, binding energies, quadrupole and octupole deformations. 152Sm; calculated neutron and proton single-particle energy levels. Constrained reflection-asymmetric relativistic mean-field approach calculations with PK1 parameter set.

doi: 10.1103/PhysRevC.81.034302
Citations: PlumX Metrics


2010ZH27      Chin.Phys.C 34, 1094 (2010)

W.Zhang, Z.-P.Li, S.-Q.Zhang

Octupole deformation for Ba isotopes in a reflection-asymmetric relativistic mean-field approach

NUCLEAR STRUCTURE 142,144,146,148,150,152,154,156Ba; calculated binding energy, octupole and quadrupole deformation, single-particle levels.

doi: 10.1088/1674-1137/34/8/011
Citations: PlumX Metrics


2010ZH45      Phys.Rev. C 82, 054319 (2010)

P.W.Zhao, Z.P.Li, J.M.Yao, J.Meng

New parametrization for the nuclear covariant energy density functional with a point-coupling interaction

NUCLEAR STRUCTURE 16,18,20,22O, 18Ne, 20Mg, 34Si, 36S, 38Ar, 36,38,40,42,44,46,48,50Ca, 42,50Ti, 56,58,72Ni, 84Se, 86Kr, 88Sr, 90Zr, 92Mo, 94Ru, 98Cd, 100,106,108,112,116,120,122,124,126,128,130,132,134Sn, 134Te, 136Xe, 138Ba, 140Ce, 142Nd, 144Sm, 146Gd, 148Dy, 150Er, 206Hg, 200,202,204,206,208,210,212,214Pb, 210Po, 212Rn, 214Ra, 216Th, 218U; calculated binding energies and charge radii for spherical nuclei by PC-PK1 parametrization of energy density functional. Z=20, N=16-32; Z=28, N=26-44; Z=50, N=52-84; Z=82, N=100-132; Z=12-22, N=20; Z=30-46, N=50; Z=50-66, N=82; Z=80-92, N=126; Z=70, N=88-108; Z=92, N=138-148; deduced deviations of calculated binding energies from those in AME-2003. Z=8, N=6-22; Z=20, N=18-40; Z=28, N=28-50; Z=50, N=52-90; calculated S(2n) values. 16O, 40Ca, 132Sn, 208Pb; calculated single-particle energies. Z=50, N=56-82; Z=82, N=114-132; calculated charge radii and neutron skin thickness. 240Pu; calculated potential energy curve. 150Nd; calculated yrast states and B(E2) values. 144,146,148,150,152,154Nd; calculated E(4+)/E(2+) and B(E2) for first 2+ states. Comparison with experimental data and AME-2003.

doi: 10.1103/PhysRevC.82.054319
Citations: PlumX Metrics


2009LI19      Phys.Rev. C 79, 054301 (2009)

Z.P.Li, T.Niksic, D.Vretenar, J.Meng, G.A.Lalazissis, P.Ring

Microscopic analysis of nuclear quantum phase transitions in the N ≈ 90 region

NUCLEAR STRUCTURE 144,146,148,150,152,154Nd, 150,152,154Sm, 152,154,156Gd; calculated RMF+BCS quadrupole binding energy parametric plots as a function of β- and γ-deformation, excitation energies, B(E2) transition rates and single-particle states using 5-dimensional Hamiltonian for quadrupole vibrational and rotational degrees of freedom. 150Nd, 152Sm; calculated spectra of ground-state, β and γ bands, B(E2) transition rates using PC-F1 relativistic density functional and X(5) symmetry approach. Comparison with experimental data.

doi: 10.1103/PhysRevC.79.054301
Citations: PlumX Metrics


2009LI54      Phys.Rev. C 80, 061301 (2009)

Z.P.Li, T.Niksic, D.Vretenar, J.Meng

Microscopic analysis of order parameters in nuclear quantum phase transitions

NUCLEAR STRUCTURE 150Nd; calculated self-consistent RMF+BCS triaxial quadrupole binding energy map in the β-γ plane. 144,146,148,150,152,154,156Nd; calculated ground-state charge radii, isomer shifts, energies of excited 0+ states, and monopole transition strengths using PC-F1 energy-density functional. Comparison with experimental data.

doi: 10.1103/PhysRevC.80.061301
Citations: PlumX Metrics


2009NI04      Phys.Rev. C 79, 034303 (2009)

T.Niksic, Z.P.Li, D.Vretenar, L.Prochniak, J.Meng, P.Ring

Beyond the relativistic mean-field approximation. III. Collective Hamiltonian in five dimensions

NUCLEAR STRUCTURE 152,154,156,158,160Gd; calculated binding energy as function of deformation, triaxial quadrupole binding energy, ground-state, β and γ bands, K components, B(E2), staggering. 154Gd; calculated neutron and proton pairing energies, inertial parameters, cranking mass parameter, rotational zero-point energy and collective potential in β-γ plane, levels, J, π. RMF+BCS calculations using collective Hamiltonian in five dimensions. Comparisons with experimental data.

doi: 10.1103/PhysRevC.79.034303
Citations: PlumX Metrics


2008LI01      Phys.Rev. C 77, 014001 (2008)

Z.P.Li, G.C.Hillhouse, J.Meng

Energy-dependent Lorentz covariant parameterization of the NN interaction between 50 and 200 MeV

NUCLEAR REACTIONS p(p, X), (n, X), E<200 MeV; calculated amplitudes, scattering observables.

doi: 10.1103/PhysRevC.77.014001
Citations: PlumX Metrics


2008LI31      Phys.Rev. C 78, 014603 (2008)

Z.P.Li, G.C.Hillhouse, J.Meng

Validity of the relativistic impulse approximation for elastic proton-nucleus scattering at energies lower than 200 MeV

NUCLEAR REACTIONS 40Ca(p, p), E=50, 152 MeV; 208Pb(p, p), E=65, 98, 121, 200 MeV; calculated neutron and proton densities, σ(θ), σ, optical parameters. Relativistic impulse approximation. blocking factors.

doi: 10.1103/PhysRevC.78.014603
Citations: PlumX Metrics


2002ZH20      Phys.Rev. C65, 065204 (2002)

Q.Zhao, J.S.Al-Khalili, Z.-P.Li, R.L.Workman

Pion Photoproduction on the Nucleon in the Quark Model

NUCLEAR REACTIONS 1H(γ, π+), (γ, π0), E ≈ 200-700 MeV; 1n(γ, π-), (γ, π0), E ≈ 200-700 MeV; calculated σ, σ(θ), polarization observables. Quark model, comparison with data.

doi: 10.1103/PhysRevC.65.065204
Citations: PlumX Metrics


1998MA35      Nucl.Phys. A635, 497 (1998)

W.X.Ma, D.H.Lu, A.W.Thomas, Z.P.Li

Q2-Dependence of the Gerasimov-Drell-Hearn Sum Rule

doi: 10.1016/S0375-9474(98)00202-4
Citations: PlumX Metrics


1994LI67      Int.J.Mod.Phys. E3, 1119 (1994)

Z.-P.Li, M.W.Guidry, C.-L.Wu, D.H.Feng

New Microscopic View of Nuclear Deformation

NUCLEAR STRUCTURE N=60-150; analyzed B(E2) systematics, calculations; N=82-126; calculated energy surface primary, secondary minima deformation vs particle number in Sm isotopes, superdeformation discussed. Fermi dynamical symmetry model.

doi: 10.1142/S0218301394000334
Citations: PlumX Metrics


1988FE03      Phys.Lett. 205B, 157 (1988)

D.H.Feng, C.-L.Wu, M.W.Guidry, Z.-P.Li

Dynamical Pauli Effects and the Saturation of Nuclear Collectivity

NUCLEAR STRUCTURE Z=52-82; N=52-82; Z=82-126; N=126-184; analyzed B(E2). Fermion dynamical symmetry model.


1987GU06      Phys.Lett. 187B, 210 (1987)

M.W.Guidry, C.-L.Wu, Z.-P.Li, D.H.Feng, J.N.Ginocchio

An Algerbraic Fermion Description of Band Termination and Loss of Collectivity in Heavy Nuclei

NUCLEAR STRUCTURE 162Dy, 160,166,174,176Yb, 168,172W; calculated B(E2) ratio relative to rigid rotor value. Algebraic fermion model.

doi: 10.1016/0370-2693(87)91082-3
Citations: PlumX Metrics


1987WU06      Phys.Lett. 194B, 447 (1987)

C.-L.Wu, X.-L.Han, Z.-P.Li, M.W.Guidry, D.H.Feng

A Microscopic Formula for Actinide Masses

NUCLEAR STRUCTURE Z=82-126; calculated masses. Dynamical symmetry, microscopic approach.

doi: 10.1016/0370-2693(87)90214-0
Citations: PlumX Metrics


Back to query form