NSR Query Results

Output year order : Descending
Format : Normal

NSR database version of April 11, 2024.

Search: Author = J.M.Yao

Found 91 matches.

Back to query form

2024ZH17      Phys.Rev. C 109, 034305 (2024)

E.F.Zhou, X.Y.Wu, J.M.Yao

Multireference covariant density-functional theory for the low-lying states of odd-mass nuclei

doi: 10.1103/PhysRevC.109.034305
Citations: PlumX Metrics

2023DI09      Phys.Rev. C 108, 054304 (2023)

C.R.Ding, X.Zhang, J.M.Yao, P.Ring, J.Meng

Impact of isovector pairing fluctuations on neutrinoless double-β decay in multireference covariant density functional theory

doi: 10.1103/PhysRevC.108.054304
Citations: PlumX Metrics

2023LV01      Phys.Rev. C 108, L051304 (2023)

W.-L.Lv, Y.-F.Niu, D.-L.Fang, J.-M.Yao, C.-L.Bai, J.Meng

0νββ-decay nuclear matrix elements in self-consistent Skyrme quasiparticle random-phase approximation: Uncertainty from pairing interaction

doi: 10.1103/PhysRevC.108.L051304
Citations: PlumX Metrics

2023RO04      Phys.Lett. B 840, 137896 (2023)

Y.-T.Rong, X.-Y.Wu, B.-N.Lu, J.-M.Yao

Anatomy of octupole correlations in 96Zr with a symmetry-restored multidimensionally-constrained covariant density functional theory

NUCLEAR STRUCTURE 96Zr; calculated potential energy surfaces, deformation parameters and excitation energies, J, π, B(Eλ), single-neutron levels with a unified framework called p-MDCRHB model. Comparison with available data.

doi: 10.1016/j.physletb.2023.137896
Citations: PlumX Metrics

2023ZH07      Phys.Rev. C 107, 024304 (2023)

X.Zhang, W.Lin, J.M.Yao, C.F.Jiao, A.M.Romero, T.R.Rodriguez, H.Hergert

Optimization of the generator coordinate method with machine-learning techniques for nuclear spectra and neutrinoless double-β decay: Ridge regression for nuclei with axial deformation

RADIOACTIVITY 76Ge(2β-);calculated 0νββ-decay nuclear matrix elements (NME) for the decay between ground states of 76Ge and 76Se. Statistical machine-learning (ML) algorithms applied with generator coordinate method (GCM), orthogonality condition, polinomial ridge regression and energy-transition orthogonality procedure.

NUCLEAR STRUCTURE 76Ge, 76Se; calculated low-lying levels, J, π. Subspace-reduction algorithm calculations based on generator coordinate method (GCM)+orthogonality condition(OC)+polinomial ridge regression (RR). Comparison to experimental data.

doi: 10.1103/PhysRevC.107.024304
Citations: PlumX Metrics

2023ZH54      Int.J.Mod.Phys. E32, 2340011 (2023)

E.F.Zhou, J.M.Yao

Generator coordinate method for nuclear octupole excitations: Status and perspectives

NUCLEAR STRUCTURE 208Pb, 144Ba, 224,225Ra, 129Xe, 199Hg; calculated low-lying energy spectra, B(Eλ), deformation parameters, nuclear Schiff moments. Comparison with available data.

doi: 10.1142/S0218301323400116
Citations: PlumX Metrics

2022FR04      Eur.Phys.J. A 58, 64 (2022)

M.Frosini, T.Duguet, J.-P.Ebran, B.Bally, H.Hergert, T.R.Rodriguez, R.Roth, J.M.Yao, V.Soma

Multi-reference many-body perturbation theory for nuclei, III. Ab initio calculations at second order in PGCM-PT

doi: 10.1140/epja/s10050-022-00694-x
Citations: PlumX Metrics

2022YA19      Phys.Rev. C 106, 014315 (2022)

J.M.Yao, I.Ginnett, A.Belley, T.Miyagi, R.Wirth, S.Bogner, J.Engel, H.Hergert, J.D.Holt, S.R.Stroberg

Ab initio studies of the double-Gamow-Teller transition and its correlation with neutrinoless double-β decay

RADIOACTIVITY 6,8He, 10Be, 14C, 18,22O, 22Ne, 26,28Mg, 30Si, 34S, 38Ar, 42,44,48,56Ca, 50Cr, 46,52Ti(2β-); A=6-76(2β-); calculated nuclear matrix elements (NMEs) for ground-state-to-ground-state double Gamow-Teller transitions (DGT) and Gamow Teller (GT) 0νββ decay, transition densities of parent nuclei, correlation between the transition densities and NMEs of DGT transitions. Ab initio many body methods by importance-truncated no-core shell model (IT-NCSM) with GXPF1A interaction, valence-space in-medium similarity renormalization group method (VSIMSRG) with EM1.8/2.0 interaction, and in-medium generator coordinate method (IM-GCM). 6He, 10Be, 14C, 18O, 22Ne, 26Mg, 30Si, 34S, 38Ar, 42,44Ca, 46Ti, 50Cr; 2β- decay mode forbidden for these nuclei due to negative Q values, however, on query, authors mentioned that these nuclei were included for NMEs for 0νββ decays as these involved the same decay operators that determine the allowed decay rates, thus helpful to benchmark many-body approaches for the nuclear matrix elements of neutrinoless double beta decay.

doi: 10.1103/PhysRevC.106.014315
Citations: PlumX Metrics

2022YA24      Prog.Part.Nucl.Phys. 126, 103965 (2022)

J.M.Yao, J.Meng, Y.F.Niu, P.Ring

Beyond-mean-field approaches for nuclear neutrinoless double beta decay in the standard mechanism

RADIOACTIVITY 48Ca, 76Ge, 82Se, 96Zr, 100Mo, 110Pd, 116Cd, 124Sn, 130Te, 136Xe, 148,150Nd, 160Gd, 232Th, 238U(2β-); analyzed available data; calculated nuclear matrix elements using beyond-mean-field approaches. Comparison with available data.

doi: 10.1016/j.ppnp.2022.103965
Citations: PlumX Metrics

2021RO22      Phys.Rev. C 104, 054317 (2021)

A.M.Romero, J.M.Yao, B.Bally, T.R.Rodriguez, J.Engel

Application of an efficient generator-coordinate subspace-selection algorithm to neutrinoless double-β decay

RADIOACTIVITY 76Ge(2β-); calculated valence-space nuclear matrix elements (NMEs) for 0νββ decay mode with shell model, ab initio methods using the GCN2850 interaction, and the energy-transition-orthogonality procedure (ENTROP).

NUCLEAR STRUCTURE 76Ge, 76Se; calculated valence-space ground-state energies of 76Ge and 76Se in the natural basis, and the energy-transition-orthogonality procedure (ENTROP), positive-parity low-energy levels using three methods: shell-model code BIGSTICK, a gradient descent procedure, and by ENTROP, potential-energy surfaces in (β, γ) plane by ENTROP.

doi: 10.1103/PhysRevC.104.054317
Citations: PlumX Metrics

2021WI16      Phys.Rev.Lett. 127, 242502 (2021)

R.Wirth, J.M.Yao, H.Hergert

Ab Initio Calculation of the Contact Operator Contribution in the Standard Mechanism for Neutrinoless Double Beta Decay

RADIOACTIVITY 6,8He, 48Ca(2β-); calculated the contribution of the leading-order contact transition operator to the nuclear matrix element(NME) of neutrinoless double-beta decay assuming a light Majorana neutrino-exchange mechanism.

doi: 10.1103/PhysRevLett.127.242502
Citations: PlumX Metrics

2021YA03      Phys.Rev. C 103, 014315 (2021)

J.M.Yao, A.Belley, R.Wirth, T.Miyagi, C.G.Payne, S.R.Stroberg, H.Hergert, J.D.Holt

Ab initio benchmarks of neutrinoless double-β decay in light nuclei with a chiral Hamiltonian

RADIOACTIVITY 6,8He, 10Be, 14C, 22O(2β-); calculated nuclear matrix elements (NMEs) for isospin-conserving and isospin-changing 0νββ decay modes. Valence-space in-medium similarity renormalization group (VS-IMSRG) and importance-truncated no-core shell model (IT-NCSM) calculations. Comparison with results of calculations using NCSM and coupled-cluster theory with singles and doubles plus leading-order triples excitations (CC-SDT1).

NUCLEAR STRUCTURE 6,8He, 6,8,10Be, 10,14C, 14,22O, 22Ne; calculated energies per nucleon (E/A) using VS-IMSRG, in-medium generator coordinate (IM-GCM), and IT-NCSM calculations, and compared with those from the CC-SDT1 calculations.

doi: 10.1103/PhysRevC.103.014315
Citations: PlumX Metrics

2020BA33      Phys.Rev. C 102, 014302 (2020)

R.A.M.Basili, J.M.Yao, J.Engel, H.Hergert, M.Lockner, P.Maris, J.P.Vary

Benchmark neutrinoless double-β decay matrix elements in a light nucleus

RADIOACTIVITY 6He(2β-); calculated nuclear radius, ground state binding energy, and neutrinoless double β-decay (0νββ) nuclear matrix elements (NMEs) using the no-core shell model (NCSM), and the multireference in-medium similarity renormalization group (MR-IMSRG).

doi: 10.1103/PhysRevC.102.014302
Citations: PlumX Metrics

2020YA16      Phys.Rev.Lett. 124, 232501 (2020)

J.M.Yao, B.Bally, J.Engel, R.Wirth, T.R.Rodriguez, H.Hergert

Ab Initio Treatment of Collective Correlations and the Neutrinoless Double Beta Decay of 48Ca

RADIOACTIVITY 48Ca(2β-); calculated particle-number projected potential energy surfaces. 48Ti; deduced nuclear matrix elements correlations with B(E2).

doi: 10.1103/PhysRevLett.124.232501
Citations: PlumX Metrics

2019WU05      Phys.Rev. C 99, 054329 (2019)

X.Y.Wu, J.M.Yao

Quadrupole collectivity and shell closure in neutron-rich nuclei near N=126

NUCLEAR STRUCTURE 190,192,194,196,198,200,202,204,206Er, 192,194,196,198,200,202,204,206,208Yb, 194,196,198,200,202,204,206,208,210Hf, 196,198,200,202,204,206,208,210,212W; calculated energies of mean-field states, particle-number projected states, and those with additional projection onto angular momentum, quadrupole deformation parameter β of ground states, collective wave functions and averaged deformation parameters of the first two 0+ and 2+ states, energies, B(E2), and quadrupole moments of the first 2+ states, E(first 4+)/E(first 2+) ratios, S(2n), correlation energies as a function of neutron number. Z=68, N=74-174; calculated S(2n). Evolution of quadrupole collectivity Multireference covariant density functional theory (MR-CDFT). Comparison with experimental data, and other theoretical calculations.

doi: 10.1103/PhysRevC.99.054329
Citations: PlumX Metrics

2018FU01      Phys.Rev. C 97, 014311 (2018)

Y.Fu, H.Tong, X.F.Wang, H.Wang, D.Q.Wang, X.Y.Wang, J.M.Yao

Microscopic analysis of shape transition in neutron-deficient Yb isotopes

NUCLEAR STRUCTURE 152,154,156,158,160,162,164,166,168,170Yb; calculated low-lying levels, J, π, B(E2), E(4+)/E(2+) ratios, energies of levels in γ bands, electric monopole transition strength from 0+ states, potential energy surface contours in (β, γ) plane. Mean-field calculations using the energy density functional (EDF) based five-dimensional collective Hamiltonian (5DCH), with SLy4 (DDDF) and PC-PK1 (DIDF) parametrizations. Discussed spherical to prolate shape transition. Comparison with experimental data.

doi: 10.1103/PhysRevC.97.014311
Citations: PlumX Metrics

2018FU05      Phys.Rev. C 97, 024338 (2018)

Y.Fu, H.Wang, L.-J.Wang, J.M.Yao

Odd-even parity splittings and octupole correlations in neutron-rich Ba isotopes

NUCLEAR STRUCTURE 140,142,144,146,148,150,152,154Ba; calculated mean-field energy surfaces in (β2, β3) deformation plane, level energies and B(E2) of first 2+ states, B(E3) for first 3- states, collective wave functions for the parity-doublet states in 144,146,148,150Ba. Calculations based on microscopic framework of beyond-mean field multireference covariant energy density functional theory (MR-CDFT), with the quadrupole-octupole shapes taken into account with exact generator coordinate method combined with particle-number, angular-momentum, and parity projections. Comparison with experimental data.

doi: 10.1103/PhysRevC.97.024338
Citations: PlumX Metrics

2018ME04      Phys.Rev. C 97, 064318 (2018)

H.Mei, K.Hagino, J.M.Yao, T.Motoba

Disappearance of nuclear deformation in hypernuclei: A perspective from a beyond-mean-field study

NUCLEAR STRUCTURE 30,31Si; calculated projected energy curves, J, π, potential energy curves, low-lying positive-parity states, and B(E2) for 31S hypernucleus and 30Si core nucleus. Microscopic particle-rotor model. Discussed role of beyond-mean-field effects on deformation of 31Si hypernucleus. Comparison with experimental data for 30Si.

doi: 10.1103/PhysRevC.97.064318
Citations: PlumX Metrics

2018WA25      Phys.Rev. C 98, 031301 (2018)

L.-J.Wang, J.Engel, J.M.Yao

Quenching of nuclear matrix elements for 0νββ decay by chiral two-body currents

RADIOACTIVITY 76Ge(2β-); calculated 0νββ-decay matrix element with and without contributions from two- and three-body operators using chiral effective field theory (ΧEFT). Comparison with previous theoretical results.

doi: 10.1103/PhysRevC.98.031301
Citations: PlumX Metrics

2018YA21      Phys.Rev. C 98, 054311 (2018)

J.M.Yao, J.Engel, L.J.Wang, C.F.Jiao, H.Hergert

Generator-coordinate reference states for spectra and 0νββ decay in the in-medium similarity renormalization group

NUCLEAR STRUCTURE 48Ca, 48Ti; calculated ground-state energies, low-lying levels, J, π, collective wave functions using in-medium similarity renormalization group (IMSRG) method with generator-coordinate method (GCM).

RADIOACTIVITY 48Ca(2β-); calculated matrix elements for 0νββ decay mode using the IMSRG+GCM calculations. Comparison with other theoretical calculations.

doi: 10.1103/PhysRevC.98.054311
Citations: PlumX Metrics

2017ME02      Int.J.Mod.Phys. E26, 1740020 (2017)

J.Meng, L.S.Song, J.M.Yao

Nuclear matrix elements for neutrinoless double-beta decay in covariant density functional theory

RADIOACTIVITY 48Ca, 76Ge, 82Se, 96Zr, 100Mo, 116Cd, 124Sn, 128,130Te, 136Xe, 150Nd(2β-); calculated neutrinoless nuclear matrix elements, uncertainties, quadrupole and octupole deformation correlations.

doi: 10.1142/S0218301317400201
Citations: PlumX Metrics

2017ME07      Phys.Rev. C 96, 014308 (2017)

H.Mei, K.Hagino, J.M.Yao, T.Motoba

Transition from vibrational to rotational character in low-lying states of hypernuclei

NUCLEAR STRUCTURE 144,146,148,150,152,154Sm; calculated total energy in the mean-field approximation as a function of quadrupole deformation, yrast levels, E(first 4+)/E(first 2+) using multireference covariant density functional theory (MR-CDFT), and compared with experimental data. 145,147,149,151,153,155Sm; calculated levels, J, π, B(E2) of hypernuclei, probability of the dominant components of configurations using microscopic particle-core coupling scheme based on the covariant density functional theory.

doi: 10.1103/PhysRevC.96.014308
Citations: PlumX Metrics

2017SO06      Phys.Rev. C 95, 024305 (2017)

L.S.Song, J.M.Yao, P.Ring, J.Meng

Nuclear matrix element of neutrinoless double-β decay: Relativity and short-range correlations

RADIOACTIVITY 150Nd, 48Ca, 76Ge, 82Se, 96Zr, 100Mo, 116Cd, 124Sn, 130Te, 136Xe(2β-); calculated nuclear matrix elements (NMEs) for neutrinoless double-beta (0νββ) decay; investigated effects of relativity and nucleon-nucleon short-range correlations on the nuclear matrix elements; predicted limits on the effective masses for light and heavy neutrinos. Covariant density functional theory using beyond-mean-field correlations from configuration mixing of angular-momentum and particle-number projected quadrupole deformed mean-field states.

doi: 10.1103/PhysRevC.95.024305
Citations: PlumX Metrics

2017WU06      Phys.Rev. C 95, 034309 (2017)

X.Y.Wu, H.Mei, J.M.Yao, X.-R.Zhou

Beyond-mean-field study of the hyperon impurity effect in hypernuclei with shape coexistence

NUCLEAR STRUCTURE 36,37Ar; calculated total energy, potential energy curves (PECs), correlation between the hyperon Λ separation energy and density overlap, quadrupole deformation parameters (β2, βΛ), rms radii of hypernuclei, neutrons, protons, and the hyperon, proton skin, density distribution contours for normal-deformed and superdeformed (SD) bands in 36Ar and 37Ar hypernucleus. 36Ar, 37Ar; calculated total energies for the mean-field states (MF), particle number projected states (N and Z), and particle number and angular momentum projected states, levels, J, π, collective wave functions of normal and superdeformed band in 36Ar and hypernucleus 37Ar using PC-F1 and PCY-S2 interactions. Relativistic mean field and beyond based on a relativistic point-coupling energy functional. Comparison with available experimental data.

doi: 10.1103/PhysRevC.95.034309
Citations: PlumX Metrics

2017WU11      Eur.Phys.J. A 53, 183 (2017)

F.Wu, C.L.Bai, J.M.Yao, H.Q.Zhang, X.Z.Zhang

Existence problem of proton semi-bubble structure in the 21+ state of 34Si

NUCLEAR STRUCTURE 34Si, 36S; calculated first proton orbitals, proton sp levels, J, B(E2), proton density distribution vs radius using HF (Hartree-Fock) plus RPA (Random Phase Approximation) based on Skyrme-type interaction; deduced possibility of lower proton density ("bubble") in the center of nucleus.

doi: 10.1140/epja/i2017-12375-5
Citations: PlumX Metrics

2016ME01      Phys.Rev. C 93, 011301 (2016)

H.Mei, K.Hagino, J.M.Yao

Generator coordinate method for hypernuclear spectroscopy with a covariant density functional

NUCLEAR STRUCTURE 21Ne; calculated levels, J, π for hypernucleus using generator coordinate method (GCM) based on beyond-mean-field method with the particle number and angular momentum projections. Hypernuclear collective and single-particle excitations. Comparison to experimental levels spectrum for the 20Ne core nucleus.

doi: 10.1103/PhysRevC.93.011301
Citations: PlumX Metrics

2016ME09      Phys.Rev. C 93, 044307 (2016)

H.Mei, K.Hagino, J.M.Yao, T.Motoba

Low-energy hypernuclear spectra within a microscopic particle-rotor model with a relativistic point-coupling hyperon-nucleon interaction

NUCLEAR STRUCTURE 13C; calculated levels, J, π, B(E2), Λ binding energy, energy splittings of hypernucleus with and without the scaled NΛ interaction using microscopic particle-rotor model with relativistic point-coupling hyperon-nucleon interactions PCY-S1, PCY-S2, PCY-S3, PCY-S4 and LO. Contour plots for the difference between the theoretical and the experimental hyperon binding energies as function of coupling strength parameters. Analyzed effect of tensor coupling strength. Comparison of level spectrum with experimental data.

doi: 10.1103/PhysRevC.93.044307
Citations: PlumX Metrics

2016XI07      Phys.Rev. C 93, 054324 (2016)

J.Xiang, J.M.Yao, Y.Fu, Z.H.Wang, Z.P.Li, W.H.Long

Novel triaxial structure in low-lying states of neutron-rich nuclei around A ≈ 100

NUCLEAR STRUCTURE 100,102,104,106,108,110Mo, 96Kr, 98Sr, 100Zr, 104Ru; calculated energy surface contours in (β, γ) plane, low-lying levels, J, π, energies and B(E2) of first 2+ states, reduced diagonal E2 matrix elements, transition quadrupole moments as function of angular momentum, staggering of the γ band using 3DCH prolate and oblate, and 5DCH triaxial configurations. Relativistic mean-field plus BCS wave functions generated with a constraint on triaxial deformations and solving a five-dimensional collective Hamiltonian (5DCH). Comparison with experimental values.

doi: 10.1103/PhysRevC.93.054324
Citations: PlumX Metrics

2016YA07      Phys.Rev. C 94, 011303 (2016)

J.M.Yao, K.Hagino

Anharmonicity of multichar-octupole-phonon excitations in 208Pb: Analysis with multireference covariant density functional theory and subbarrier fusion of 16O + 208Pb

NUCLEAR STRUCTURE 208Pb; calculated total energy, normalized to the ground state energy from generator coordinate method (GCM), as a function of octupole-deformation parameter β3, low-lying levels, J, π by octupole-quadrupole (β3, β2) deformed configurations and by mixing only the octupole deformed configurations, distribution of the collective wave functions. Multidimensional GCM calculations based on a covariant energy density functional theory. Comparison with experimental data taken from databases at NNDC.

NUCLEAR REACTIONS 208Pb(16O, X), E(cm)=65-90 MeV; calculated fusion σ(E) and fusion barrier distribution as function of incident energy. Semimicroscopic coupled-channels calculation with the coupling strengths from multireference (MR) covariant density functional theory (DFT) calculations. Comparison with experimental data.

doi: 10.1103/PhysRevC.94.011303
Citations: PlumX Metrics

2016YA08      Phys.Rev. C 94, 014306 (2016)

J.M.Yao, J.Engel

Octupole correlations in low-lying states of 150Nd and 150Sm and their impact on neutrinoless double-β decay

NUCLEAR STRUCTURE 150Nd, 150Sm; calculated low-lying levels, J, π, parity-doublet states, mean-field energy surface contours in (β2, β3) plane. Generator-coordinate calculation, based on a relativistic energy-density functional. Comparison with experimental data taken from databases at NNDC.

RADIOACTIVITY 150Nd(2β-); calculated normalized nuclear matrix elements (NMEs) for 0νββ decay mode.

doi: 10.1103/PhysRevC.94.014306
Citations: PlumX Metrics

2015HA18      Phys.Rev. C 91, 064606 (2015)

K.Hagino, J.M.Yao

Semimicroscopic modeling of heavy-ion fusion reactions with multireference covariant density functional theory

NUCLEAR REACTIONS 58Ni(58Ni, X), (60Ni, X), E(cm)=90-110 MeV; 40Ca(58Ni, X), E(cm)=65-85 MeV; calculated fusion σ(E), fusion barrier distributions using various coupling schemes, and compared with experimental data. Multireference covariant density functional theory (MR-CDFT) combined with coupled-channels calculations and PC-PK1 and PC-F1 interactions.

NUCLEAR STRUCTURE 58,60Ni; calculated levels, J, π, B(E2) using Multireference covariant density functional theory (MR-CDFT) with PC-PK1 force. Comparison with experimental data.

doi: 10.1103/PhysRevC.91.064606
Citations: PlumX Metrics

2015LU02      Phys.Rev. C 91, 027304 (2015)

K.Q.Lu, Z.X.Li, Z.P.Li, J.M.Yao, J.Meng

Global study of beyond-mean-field correlation energies in covariant energy density functional theory using a collective Hamiltonian method

NUCLEAR STRUCTURE Z=8-108, N=8-156; calculated contour map of quadrupole dynamical correlation energies by the CEDF-based 5DCH model, with and without PC-PK1 force, discrepancy of the CEDF binding energies by PC-PK1, discrepancy of theoretical S(2n) and S(2p) for 575 even-even nuclei. Covariant energy density functional (CEDF) by solving a five-dimensional collective Hamiltonian (5DCH). Comparison with AME-12 data.

doi: 10.1103/PhysRevC.91.027304
Citations: PlumX Metrics

2015ME04      Phys.Rev. C 91, 064305 (2015)

H.Mei, K.Hagino, J.M.Yao, T.Motoba

Microscopic study of low-lying spectra of Λ hypernuclei based on a beyond-mean-field approach with a covariant energy density functional

NUCLEAR STRUCTURE 12,13C, 20,21Ne, 154,155Sm; calculated levels, J, π, B(E2), potential energy surfaces as function of deformation parameter β, wave function amplitudes, configuration of 13C, 21Ne, 155Sm hypernuclei, and 12C, 20Ne, 154Sm core nuclei. Spin-orbit splitting. Microscopic particle-rotor model (MPRM) based on a covariant energy density functional theory, and coupled-channel equations. Comparison with experimental data, and with other theoretical calculations.

doi: 10.1103/PhysRevC.91.064305
Citations: PlumX Metrics

2015XU05      Phys.Rev. C 91, 024327 (2015)

W.X.Xue, J.M.Yao, K.Hagino, Z.P.Li, H.Mei, Y.Tanimura

Triaxially deformed relativistic point-coupling model for Λ hypernuclei: A quantitative analysis of the hyperon impurity effect on nuclear collective properties

NUCLEAR STRUCTURE 17O, 31Si, 33S, 41Ca; calculated total energy, kinetic energy, rms radii of neutrons, protons, hyperon, energy of the lowest three single-particle states of hypernuclei. 9Be, 16O, 28Si, 32S, 40Ca, 51V, 89Y, 139La, 208Pb; calculated binding energies in single-Λ hypernuclei. 51V; calculated total energy for hypernucleus as a function of deformation parameter β. 25,27Mg, 31Si; calculated levels, J, π, potential-energy surfaces (PESs) of hypernuclei in (β, γ) plane. 24,26Mg, 30Si; calculated levels, J, π, potential energy surfaces (PES) in (β, γ) plane; deduced impurity effect of Λs and Λp hyperon on the energies and B(E2) for first 2+ states. Microscopic particle rotor model (PRM) with relativistic EDF, and triaxially deformed relativistic mean-field (RMF) approach. Comparison with experimental data.

doi: 10.1103/PhysRevC.91.024327
Citations: PlumX Metrics

2015YA04      Phys.Rev. C 91, 024301 (2015)

J.M.Yao, M.Bender, P.-H.Heenen

Beyond-mean-field study of elastic and inelastic electron scattering off nuclei

NUCLEAR REACTIONS 24Mg(e, e), (e, e'), E=120, 218, 250, 500 MeV; 58,60,62,64,66,68Ni(e, e), (e, e') at qeff=0-2.0 fm-1; calculated elastic and inelastic form factors and compared to available experimental data. 24Mg, 58,60,62,64,66,68Ni; calculated levels, J, π, first 2+ levels, B(E2), spectroscopic quadrupole moments, transition neutron and proton densities from the first 2 state to the ground state, contour plots of calculated 3D proton densities. Particle number and angular-momentum-projected generator coordinate method (GCM) based on axial Hartree-Fock-Bogoliubov (HFB) states and a nonrelativistic Skyrme energy density functional. Comparison with experimental data.

doi: 10.1103/PhysRevC.91.024301
Citations: PlumX Metrics

2015YA06      Phys.Rev. C 91, 024316 (2015)

J.M.Yao, L.S.Song, K.Hagino, P.Ring, J.Meng

Systematic study of nuclear matrix elements in neutrinoless double-β decay with a beyond-mean-field covariant density functional theory

NUCLEAR STRUCTURE 48Ca, 48Ti, 76Ge, 76,82Se, 82Kr, 96Zr, 96,100Mo, 100Ru, 116Cd, 116,124Sn, 124,130Te, 130,136Xe, 136Ba, 150Nd, 150Sm; calculated binding energy, charge radius of correlated ground state, energies and B(E2) of first 2+ states. Generator coordinate method for both the initial and final nuclei in double β decay. Comparison with experimental data.

RADIOACTIVITY 48Ca, 76Ge, 82Se, 96Zr, 100Mo, 116Cd, 124Sn, 130Te, 136Xe, 150Nd(2β-); calculated nuclear matrix elements (NMEs)for 0νββ decay, distribution of collective wave functions as a function of deformation parameter β, decomposition of the total NMEs from the final GCM+PNAMP (PC-PK1) calculation. Comparison with different model calculations; deduced upper limits of the effective neutrino mass.

doi: 10.1103/PhysRevC.91.024316
Citations: PlumX Metrics

2015YA20      Phys.Rev. C 92, 041304 (2015)

J.M.Yao, E.F.Zhou, Z.P.Li

Beyond relativistic mean-field approach for nuclear octupole excitations

NUCLEAR STRUCTURE 224Ra; calculated low-lying levels, J, π, B(E1), B(E2), B(E3), quadrupole deformation, static and dynamic octupole deformation, energy surface contour in (β2, β3) plane, excitation energy ratio RJ/2 and staggering amplitude. State-of-the-art multireference relativistic energy density functional method combined with exact generator coordinate method. Comparison with experimental data.

doi: 10.1103/PhysRevC.92.041304
Citations: PlumX Metrics

2014ME16      Phys.Rev. C 90, 064302 (2014)

H.Mei, K.Hagino, J.M.Yao, T.Motoba

Microscopic particle-rotor model for the low-lying spectrum of Λ hypernuclei

NUCLEAR STRUCTURE 9Be; calculated levels, J, π, B(E2) for the 9Be hypernucleus by coupling the hyperon to low-lying states of the core nucleus 8Be. Particle-rotor model with a meanfield approach and generator coordinate method (GCM). Comparison with experimental results.

doi: 10.1103/PhysRevC.90.064302
Citations: PlumX Metrics

2014SO18      Phys.Rev. C 90, 054309 (2014)

L.S.Song, J.M.Yao, P.Ring, J.Meng

Relativistic description of nuclear matrix elements in neutrinoless double-β decay

NUCLEAR STRUCTURE 150Nd; calculated levels, B(E2), neutron and proton pairing gaps, potential energy curves, configurations using multireference covariant density functional theory (MR-CDFT). Comparison with experimental results.

RADIOACTIVITY 150Nd(2β-); calculated matrix elements, half-lives, effects of particle number projection, static and dynamic deformations, and the full relativistic structure on the matrix elements for 0νββ decay mode using multireference covariant density functional theory (MR-CDFT).

doi: 10.1103/PhysRevC.90.054309
Citations: PlumX Metrics

2014WA42      Prog.Theor.Exp.Phys. 2014, 113D03 (2014)

Y.Wang, J.Li, J.B.Lu, J.M.Yao

A systematic study of even-even nuclei from Ne to Ca in covariant density functional theory with triaxiality

NUCLEAR STRUCTURE 38Si, 46,48S; calculated potential energy surfaces, quadrupole deformation parameters, binding energies, neutron shell gap. Comparison with available data.

doi: 10.1093/ptep/ptu155
Citations: PlumX Metrics

2014WU01      Phys.Rev. C 89, 017304 (2014)

X.Y.Wu, J.M.Yao, Z.P.Li

Low-energy structure and anti-bubble effect of dynamical correlations in 46Ar

NUCLEAR STRUCTURE 46Ar; calculated levels, J, π, B(E2), proton and charge density distributions, configuration mixing. Unlikely existence of a proton bubble structure in argon isotopes. Covariant density functional theory. Comparison with RMF calculations, and with experimental data.

doi: 10.1103/PhysRevC.89.017304
Citations: PlumX Metrics

2014YA11      Phys.Rev. C 89, 054306 (2014)

J.M.Yao, K.Hagino, Z.P.Li, J.Meng, P.Ring

Microscopic benchmark study of triaxiality in low-lying states of 76Kr

NUCLEAR STRUCTURE 76Kr; calculated levels, J, π, B(E2), Spectroscopic quadrupole moments, potential-energy surfaces (PES) in (β, γ) plane, PES for quasi-γ band, staggering of γ band. Generator coordinate method (GCM) and covariant density functional theory with 5D collective Hamiltonian. Discussed triaxiality in low-lying states in 76Kr. Comparison with experimental data, and with other theoretical calculations.

doi: 10.1103/PhysRevC.89.054306
Citations: PlumX Metrics

2014YA29      Phys.Rev. C 90, 054307 (2014)

J.M.Yao, N.Itagaki, J.Meng

Searching for a 4α linear-chain structure in excited states of 16O with covariant density functional theory

NUCLEAR STRUCTURE 16O; calculated low- and high-spin levels, J, π, mean-field energy surface contour in (β-γ) plane, rms charge radius, spectroscopic quadrupole moment, B(E2), density distributions, spin-orbit energies. Covariant density functional theory and relativistic mean-field (RMF) cranking calculations for 4α linear chain structure. Comparison with experimental spectra.

doi: 10.1103/PhysRevC.90.054307
Citations: PlumX Metrics

2013FU06      Phys.Rev. C 87, 054305 (2013)

Y.Fu, H.Mei, J.Xiang, Z.P.Li, J.M.Yao, J.Meng

Beyond relativistic mean-field studies of low-lying states in neutron-deficient krypton isotopes

NUCLEAR STRUCTURE 68,70,72,74,76,78,80,82,84,86Kr; calculated levels, J, π, energy surface contours in β-γ plane, B(E2), ρ2(E0), quadrupole deformation, oblate-triaxial-prolate transition, shape coexistence, configuration mixing, angular momentum projection. Beyond relativistic mean-field (RMF) theory PC-PK1 force. Comparison with other calculations, and available experimental data.

doi: 10.1103/PhysRevC.87.054305
Citations: PlumX Metrics

2013HA27      Nucl.Phys. A914, 151c (2013)

K.Hagino, J.M.Yao, F.Minato, Z.P.Li, M.T.Win

Collective excitations of Λ hypernuclei

NUCLEAR STRUCTURE 20,22,24,26,28,30,32,34,36,38Ne, 22,24,26,28,30,32,34,36,38,40,42Si; calculated deformation, deformation of (A+Λ) hypernuclei, binding energy, Q vs deformation using relativistic mean field. 24Mg, 25Mg; calculated 25ΛMg hypernucleus deformation, low-spin levels, J, π, rotational bands, B(E2) using relativistic mean field. 16O, 18O; calculated 18ΛΛO hypernucleus dipole strength distribution vs energy, B(E2), B(E3) using RPA. Compared with data.

doi: 10.1016/j.nuclphysa.2012.12.077
Citations: PlumX Metrics

2013ME08      Phys.Scr. T154, 014010 (2013)

J.Meng, Y.Chen, H.Z.Liang, Y.F.Niu, Z.M.Niu, L.S.Song, W.Zhao, Z.Li, B.Sun, X.D.Xu, Z.P.Li, J.M.Yao, W.H.Long, T.Niksic, D.Vretenar

Mass and lifetime of unstable nuclei in covariant density functional theory

NUCLEAR STRUCTURE A=80-195; calculated masses, binding energies, β-decay T1/2. Finite-range droplet model and Weizsacker-Skyrme models, comparison with available data.

doi: 10.1088/0031-8949/2013/T154/014010
Citations: PlumX Metrics

2013SA61      Phys.Rev. C 88, 064304 (2013)

H.Y.Sang, X.S.Wang, H.F.Lu, J.M.Yao, H.Sagawa

Magnetic moments of Λ hypernuclei within the time-odd triaxial relativistic mean-field approach

NUCLEAR MOMENTS 16,17,18O, 28Si, 28Al, 32S, 40,41Ca, 51V, 57Ni, 89Y, 133Sn, 139La, 208,209Pb; calculated hypernucler magnetic moments using self-consistent time-odd triaxial RMF approach, including strangeness, spacelike component, tensor coupling with the parameter sets PK1-Y1 and PK1-Y0. 17O; calculated single particle spectrum of hypernucleus.

doi: 10.1103/PhysRevC.88.064304
Citations: PlumX Metrics

2013SO14      Phys.Scr. T154, 014012 (2013)

B.Y.Song, Z.P.Li, J.M.Yao, J.Meng

Energy density functional description of low-lying states in neutron-deficient Sn isotopes

NUCLEAR STRUCTURE Z=50, N=50-82; calculated energies and B(E2) values for the first excited states, the average neutron pairing gaps at a spherical point in the Sn isotopic chain. PC-PK1, DD-PC1 and PC-F1 density functionals, comparison with available data.

doi: 10.1088/0031-8949/2013/T154/014012
Citations: PlumX Metrics

2013WA23      Eur.Phys.J. A 49, 101 (2013)

X.S.Wang, H.Y.Sang, H.F.Lu, J.M.Yao, H.Sagawa

Systematic study of hypernuclear magnetic moments under a perturb treatment

NUCLEAR STRUCTURE 13C, 16,17O, 28Al, 28,29Si, 32S, 40,41Ca, 51V, 89Y, 139La, 208,209Pb; calculated Λ hypernuclei magnetic moments using ωΛΛ tensor-coupling interaction; deduced μ contribution of the valence nucleon and of core.

doi: 10.1140/epja/i2013-13101-1
Citations: PlumX Metrics

2013XI11      Phys.Rev. C 88, 057301 (2013)

J.Xiang, Z.P.Li, J.M.Yao, W.H.Long, P.Ring, J.Meng

Effect of pairing correlations on nuclear low-energy structure: BCS and general Bogoliubov transformation

NUCLEAR STRUCTURE 134,136,138,140,142,144,146,148,150,152,154Sm; calculated binding energies for quadrupole deformation, proton and neutron pairing gaps. 152Sm; calculated potential energy surfaces for quadrupole deformation, proton and neutron pairing gaps, moments of inertia, low-lying levels, J, π, bands, single-particle energy levels and occupation probabilities. Relativistic Hartree-Bogoliubov (RHB) and relativistic mean field plus BCS (RMF+BCS) calculations, and comparison between the two approaches.

doi: 10.1103/PhysRevC.88.057301
Citations: PlumX Metrics

2013YA05      Phys.Rev. C 87, 034322 (2013)

J.M.Yao, M.Bender, P.-H.Heenen

Systematics of low-lying states of even-even nuclei in the neutron-deficient lead region from a beyond-mean-field calculation

NUCLEAR STRUCTURE 176,178,180,182,184,186,188,190,192,194Hg, 180,182,184,186,188,190,192,194Pb, 186,188,190,192,194,196,198,200,202,204Po, 194,196,198,200,202,204Rn; calculated energy curves versus deformation, energy surface contours, low-lying 0+ and other levels, J, π, yrast bands, charge radii, E0 and E2 transition strengths, kinematic moments of inertia. Beyond-mean-field calculations using a Skyrme energy density functional. Comparison with experimental data.

doi: 10.1103/PhysRevC.87.034322
Citations: PlumX Metrics

2012LI42      Phys.Rev. C 86, 034334 (2012)

Z.P.Li, T.Niksic, P.Ring, D.Vretenar, J.M.Yao, J.Meng

Efficient method for computing the Thouless-Valatin inertia parameters

NUCLEAR STRUCTURE 152,154,156,158,160,162,164Sm; calculated Thouless-Valatin moments of inertia for nuclear system. Adiabatic time-dependent Hartree-Fock approximation (ATDHF). Comparison with calculations using the self-consistent cranking model.

doi: 10.1103/PhysRevC.86.034334
Citations: PlumX Metrics

2012ME01      J.Phys.(London) G39, 015107 (2012)

H.Mei, Y.Huang, J.M.Yao, H.Chen

Systematic study of the symmetry energy coefficient in finite nuclei

doi: 10.1088/0954-3899/39/1/015107
Citations: PlumX Metrics

2012ME06      Phys.Rev. C 85, 034321 (2012)

H.Mei, J.Xiang, J.M.Yao, Z.P.Li, J.Meng

Rapid structural change in low-lying states of neutron-rich Sr and Zr isotopes

NUCLEAR STRUCTURE 88,90,92,94,96,98,100Sr, 90,92,94,96,98,100,102Zr; calculated level energies and B(E2) for first 2+ states, level energies and B(E0) for first excited 0+ states, E(first 4+)/E(first 2+), moment of inertia, mass parameters, proton radii, isotope shifts, single-particle energies, configuration mixing, total energy surfaces in β-γ plane, wave function distributions. Five-dimensional collective Hamiltonian with parameters from relativistic mean-field and nonrelativistic Skyrme-Hartree-Fock calculations using PC-PK1 and SLy4 interactions, density functional theory. Comparison with experimental data.

doi: 10.1103/PhysRevC.85.034321
Citations: PlumX Metrics

2012ME10      Int.J.Mod.Phys. E21, 1250024 (2012)

H.Mei, Z.P.Li, J.M.Yao, K.Hagino

Impurity effect of Λ hyperon on shape-coexistence nucleus 44S in the energy functional based colletive Hamiltonian

NUCLEAR STRUCTURE 44,45S; calculated excitation energies, J, π, effect of Λ hyperon. Nonrelativistic Skyrme energy density functional, comparison with available data.

doi: 10.1142/S0218301312500243
Citations: PlumX Metrics

2012XI01      Nucl.Phys. A873, 1 (2012)

J.Xiang, Z.P.Li, Z.X.Li, J.M.Yao, J.Meng

Covariant description of shape evolution and shape coexistence in neutron-rich nuclei at N ≈ 60

NUCLEAR STRUCTURE 88,90,92,94,96,98,100,102,104Kr, 88,90,92,94,96,98,100,102,104,106Sr, 90,92,94,96,98,100,102,104,106,108Zr, 92,94,96,98,100,102,104,106,108,110Mo; calculated charge radii, shape coexistence, deformation using covariant density functional. 98Sr, 100Zr; calculated energies vs deformation, B(E0). 98Sr; calculated levels, J, π vs deformation.

doi: 10.1016/j.nuclphysa.2011.10.002
Citations: PlumX Metrics

2012YA09      Phys.Rev. C 86, 014310 (2012)

J.-M.Yao, S.Baroni, M.Bender, P.-H.Heenen

Beyond-mean-field study of the possible "bubble" structure of 34Si

NUCLEAR STRUCTURE 34Si; calculated levels, J, π, single-particle energies, neutron and proton density distribution contours, charge density, B(E2), B(E0). Particle-number and angular-momentum projected generator coordinate method based on Hartree-Fock-Bogoliubov+Lipkin-Nogami calculations with axial quadrupole deformation. Comparison with experimental data.

doi: 10.1103/PhysRevC.86.014310
Citations: PlumX Metrics

2011LI08      Int.J.Mod.Phys. E20, 494 (2011)

Z.P.Li, J.Xiang, J.M.Yao, H.Chen, J.Meng

Sensitivity of the nuclear collectivity to the pairing strength in 150Nd

NUCLEAR STRUCTURE 150Nd; calculated neutron pairing gaps, ratio of energies, B(E2).

doi: 10.1142/S0218301311017909
Citations: PlumX Metrics

2011LI47      Phys.Rev. C 84, 054304 (2011)

Z.P.Li, J.M.Yao, D.Vretenar, T.Niksic, H.Chen, J.Meng

Energy density functional analysis of shape evolution in N=28 isotones

NUCLEAR STRUCTURE 48Ca, 46Ar, 44S, 42Si, 40Mg; calculated triaxial quadrupole constrained energy surfaces in β-γ plane, Single-neutron and single-proton energy levels as function of deformation parameters, N=28 spherical energy gaps. 46Ar, 44S, 42Si; calculated levels, J, π, B(E2). 44S; calculated levels, J, π, B(E2), E0 transition probability, probability distribution plots in in the β-γ plane for the lowest collective states. N=28, Z=12-20; calculated energies and B(E2) of first 2+ states in even-even nuclei. Relativistic energy density functional DD-PC1, relativistic Hartree-Bogoliubov (RHB) model for triaxial nuclei. Comparison with experimental data.

doi: 10.1103/PhysRevC.84.054304
Citations: PlumX Metrics

2011YA01      Phys.Rev. C 83, 014308 (2011)

J.M.Yao, H.Mei, H.Chen, J.Meng, P.Ring, D.Vretenar

Configuration mixing of angular-momentum-projected triaxial relativistic mean-field wave functions. II. Microscopic analysis of low-lying states in magnesium isotopes

NUCLEAR STRUCTURE 20,22,24,26,28,30,32,34,36,38,40Mg; calculated potential energy curves for ground state as a function of β2 deformation parameter, B(E2) values for first 2+ states, excitation energies and spectroscopic quadrupole moments of the first 2+ and 4+ states, binding energy contour maps in β-γ plane, probability distributions of the collective wave functions in β-γ plane. Constrained self-consistent relativistic mean-field calculations for triaxial shapes (3DAMP+GCM). Comparison with previous axial 1DAMP+GCM calculations, and with experimental data.

doi: 10.1103/PhysRevC.83.014308
Citations: PlumX Metrics

2011YA04      Int.J.Mod.Phys. E20, 482 (2011)

J.M.Yao, Z.X.Li, J.Xiang, H.Mei, J.Meng

Low-lying states in 30Mg: A beyond relativistic mean-field investigation

NUCLEAR STRUCTURE 30Mg; calculated quadrupole energy surfaces, probability distributions, energies, B(E2). Gogny force, comparison with experimental data.

doi: 10.1142/S0218301311017880
Citations: PlumX Metrics

2011YA11      Phys.Rev. C 84, 024306 (2011)

J.M.Yao, J.Meng, P.Ring, Z.X.Li, Z.P.Li, K.Hagino

Microscopic description of quantum shape fluctuation in C isotopes

NUCLEAR STRUCTURE 10,12,14,16,18,20,22C; calculated levels, J, π, B(E2), potential energy surfaces. Covariant density functional (CDF) theory, angular momentum projection (3DAMP), generator coordinate method (GCM). Comparison with experimental data.

doi: 10.1103/PhysRevC.84.024306
Citations: PlumX Metrics

2011YA14      Nucl.Phys. A868-869, 12 (2011)

J.M.Yao, Z.P.Li, K.Hagino, M.T.Win, Y.Zhang, J.Meng

Impurity effect of Lambda hyperon on collective excitations of nuclear core in 25ΛMg

doi: 10.1016/j.nuclphysa.2011.08.006
Citations: PlumX Metrics

2010CH56      Phys.Rev. C 82, 067302 (2010)

Q.B.Chen, J.M.Yao, S.Q.Zhang, B.Qi

Chiral geometry of higher excited bands in triaxial nuclei with particle-hole configuration

NUCLEAR STRUCTURE A=130; calculated levels, J, B(E2), B(M1), angular momenta as a function of spin for triaxial nuclei using particle-rotor model. Chiral behavior of low-lying high-spin bands.

doi: 10.1103/PhysRevC.82.067302
Citations: PlumX Metrics

2010HA18      Chin.Phys.Lett. 27, 092101 (2010)

R.Han, J.-X.Li, J.-M.Yao, J.-X.Ji, J.-S.Wang, Q.Hu

Effects of Pairing Correlations on Formation of Proton Halo in 9C

NUCLEAR STRUCTURE 9C; calculated binding energy, density distributions of protons and neutrons; deduced proton halo. RCHB calculations.

doi: 10.1088/0256-307X/27/9/092101
Citations: PlumX Metrics

2010ME09      Nucl.Phys. A834, 436c (2010)

J.Meng, Z.P.Li, H.Z.Liang, Z.M.Niu, J.Peng, B.Qi, B.Sun, S.Y.Wang, J.M.Yao, S.Q.Zhang

Covariant Density Functional Theory for Nuclear Structure and Application in Astrophysics

NUCLEAR STRUCTURE 144,146,148,150,152,154,156Nd; calculated levels, J, π, B(E2), mass excess using covariant density functional theory. Comparison with data.

doi: 10.1016/j.nuclphysa.2010.01.058
Citations: PlumX Metrics

2010PE11      Chin.Phys.Lett. 27, 122101 (2010)

J.Peng, J.-M.Yao, S.-Q.Zhang, J.Meng

Exotic Magnetic Rotation in 22F

NUCLEAR STRUCTURE 22F; calculated total routhians and angular momentum, B(M1), B(E2); deduced the possible existence of magnetic rotation.

doi: 10.1088/0256-307X/27/12/122101
Citations: PlumX Metrics

2010SO18      Int.J.Mod.Phys. E19, 2538 (2010)

C.Y.Song, J.M.Yao, H.F.Lu, J.Meng

Lambda and anti-lambda hypernuclei in relativistic mean-field theory

NUCLEAR STRUCTURE 16,17,18O; calculated magnetic moments of Λ hypernuclei. PK1 effective nucleon-nucleon interaction.

doi: 10.1142/S0218301310017058
Citations: PlumX Metrics

2010WA05      Phys.Rev. C 81, 017301 (2010)

S.Y.Wang, D.P.Sun, B.T.Duan, X.L.Ren, B.Qi, X.X.Zhu, F.Z.Lv, C.Liu, C.J.Xu, J.Meng, H.Hua, F.R.Xu, Z.Y.Li, S.Q.Zhang, Y.Shi, J.M.Yao, L.H.Zhu, X.G.Wu, G.S.Li, Y.Liu, X.Q.Li, Y.Zheng, L.L.Wang, L.Wang

Coexistence of collective and noncollective structures in 118Sn

NUCLEAR REACTIONS 116Cd(7Li, 4np), E=50 MeV; measured Eγ, Iγ, γγ-coin. 118Sn; deduced levels, J, π, bands and configurations. Comparison with Total Routhian surface (TRS) calculations and fixed constrained triaxial relativistic mean-field (RMF) theory.

doi: 10.1103/PhysRevC.81.017301
Citations: PlumX Metrics

Data from this article have been entered in the XUNDL database. For more information, click here.

2010WA41      Phys.Rev. C 82, 057303 (2010)

S.Y.Wang, B.Qi, D.P.Sun, X.L.Ren, B.T.Duan, F.Chen, C.Liu, C.J.Xu, L.Liu, H.Hua, Z.Y.Li, J.M.Yao, L.H.Zhu, X.G.Wu, G.S.Li, Y.Liu, X.Q.Li, Y.Zheng, L.L.Wang, L.Wang

Shape coexistence and strongly coupled bands in 118Sb

NUCLEAR REACTIONS 116Cd(7Li, 5n), E=50 MeV; measured Eγ, Iγ, γγ-coin, γγ(θ)(DCO). 118Sb; deduced levels, J, π, bands, B(M1)/B(E2) ratios and configurations. Comparison with particle-rotor model (PRM) and triaxial relativistic mean-field approach.

doi: 10.1103/PhysRevC.82.057303
Citations: PlumX Metrics

Data from this article have been entered in the XUNDL database. For more information, click here.

2010YA04      Phys.Rev. C 81, 044311 (2010)

J.M.Yao, J.Meng, P.Ring, D.Vretenar

Configuration mixing of angular-momentum-projected triaxial relativistic mean-field wave functions

NUCLEAR STRUCTURE 24Mg; calculated levels, J, π, B(E2), RMF+BCS energy surfaces, probability distribution contour plots for ground state and excited states, neutron and proton pairing gaps using generator coordinate method and configuration mixing of angular-momentum-projected wave functions. Relativistic mean-field calculations for triaxial shapes. Effects of triaxial deformation and K mixing. Comparison with experimental data.

doi: 10.1103/PhysRevC.81.044311
Citations: PlumX Metrics

2010ZH45      Phys.Rev. C 82, 054319 (2010)

P.W.Zhao, Z.P.Li, J.M.Yao, J.Meng

New parametrization for the nuclear covariant energy density functional with a point-coupling interaction

NUCLEAR STRUCTURE 16,18,20,22O, 18Ne, 20Mg, 34Si, 36S, 38Ar, 36,38,40,42,44,46,48,50Ca, 42,50Ti, 56,58,72Ni, 84Se, 86Kr, 88Sr, 90Zr, 92Mo, 94Ru, 98Cd, 100,106,108,112,116,120,122,124,126,128,130,132,134Sn, 134Te, 136Xe, 138Ba, 140Ce, 142Nd, 144Sm, 146Gd, 148Dy, 150Er, 206Hg, 200,202,204,206,208,210,212,214Pb, 210Po, 212Rn, 214Ra, 216Th, 218U; calculated binding energies and charge radii for spherical nuclei by PC-PK1 parametrization of energy density functional. Z=20, N=16-32; Z=28, N=26-44; Z=50, N=52-84; Z=82, N=100-132; Z=12-22, N=20; Z=30-46, N=50; Z=50-66, N=82; Z=80-92, N=126; Z=70, N=88-108; Z=92, N=138-148; deduced deviations of calculated binding energies from those in AME-2003. Z=8, N=6-22; Z=20, N=18-40; Z=28, N=28-50; Z=50, N=52-90; calculated S(2n) values. 16O, 40Ca, 132Sn, 208Pb; calculated single-particle energies. Z=50, N=56-82; Z=82, N=114-132; calculated charge radii and neutron skin thickness. 240Pu; calculated potential energy curve. 150Nd; calculated yrast states and B(E2) values. 144,146,148,150,152,154Nd; calculated E(4+)/E(2+) and B(E2) for first 2+ states. Comparison with experimental data and AME-2003.

doi: 10.1103/PhysRevC.82.054319
Citations: PlumX Metrics

2010ZO03      Phys.Rev. C 82, 024309 (2010)

W.-h.Zou, Y.Tian, J.-z.Gu, S.-f.Shen, J.-m.Yao, B.-b.Peng, Z.-y.Ma

Microscopic description of nuclear structure around 80Zr

NUCLEAR STRUCTURE 80,82,84Zr; calculated ground-state total binding energies and angular momentum projected potential energy surfaces (AMPPES) using projected shell model with a quadrupole constrained relativistic Hartree-Bogoliubov (RHB) theory and NL3 effective interaction and Gogny D1S interaction for the pairing force. Shape coexistence and shape transitions, and decay out of superdeformed rotational bands.

doi: 10.1103/PhysRevC.82.024309
Citations: PlumX Metrics

2009LI64      Chin.Phys.C 33, Supplement 1, 98 (2009)

J.Li, J.-M.Yao, J.Meng

Deformation constrained relativistic mean-field approach with fixed configuration and time-odd component

NUCLEAR MOMENTS 15N, 15,17O, 17F, 39,41Ca, 41Sc; calculated magnetic dipole moments, potential energy surfaces. RMF approach.

doi: 10.1088/1674-1137/33/S1/032
Citations: PlumX Metrics

2009LU23      Chin.Phys.C 33, Supplement 1, 64 (2009)

H.-F.Lu, J.-M.Yao

Towards Lambda-nucleon coupling constants in relativistic mean field theory

NUCLEAR STRUCTURE 12,13,14C, 14,15N, 16O, 28Si, 32S, 40Ca, 51V, 89Y, 139La, 208Pb; calculated hyperon binding energies, spin-orbit splitting; deduced parameters set for hyperon-meson interaction. Nucleon-nucleon PK1 effective interaction.

doi: 10.1088/1674-1137/33/S1/021
Citations: PlumX Metrics

2009ME22      Chin.Phys.C 33, Supplement 1, 101 (2009)

H.Mei, H.Chen, J.-M.Yao

Single-particle resonance states of 122Zr in relativistic mean-field theory combined with real stabilization method

NUCLEAR STRUCTURE 122Zr; calculated averaged density, energies and widths of resonance states. RMDF-RSM approach.

doi: 10.1088/1674-1137/33/S1/033
Citations: PlumX Metrics

2009QI03      Phys.Rev. C 79, 041302 (2009)

B.Qi, S.Q.Zhang, S.Y.Wang, J.M.Yao, J.Meng

Examining B(M1) staggering as a fingerprint for chiral doublet bands

doi: 10.1103/PhysRevC.79.041302
Citations: PlumX Metrics

2009WA26      Chin.Phys.C 33, 838 (2009)

S.-Y.Wang, B.-T.Duan, X.-X.Zhu, X.-L.Ren, X.-L.Yang, J.Xi, F.-Z.Lu, D.-P.Sun, Y.-B.Lu, X.-J.Liu, H.Hua, Z.-Y.Li, S.-Q.Zhang, B.Qi, J.-M.Yao, L.-H.Zhu, X.-G.Wu, G.-S.Li, Y.Liu, X.-Q.Li, Y.Zheng, L.-L.Wang, L.Wang

Structural evolution of the intruder band in 118Sn

NUCLEAR REACTIONS 116Cd(7Li, 4np)118Sn, E=48 MeV; measured Eγ, Iγ, γγ-coin.; deduced energy levels, J, π, intruder band.

doi: 10.1088/1674-1137/33/10/004
Citations: PlumX Metrics

2009YA04      Phys.Rev. C 79, 044312 (2009)

J.M.Yao, J.Meng, P.Ring, D.Pena Arteaga

Three-dimensional angular momentum projection in relativistic mean-field theory

NUCLEAR STRUCTURE 24,30,32Mg; calculated level energies, B(E2), binding energies, pairing gaps, neutron and proton numbers of angular momentum projected states, energy curves as function of mass quadrupole moment, neutron and proton single-particle states, potential energy surfaces using three dimensional projection methods in relativistic mean-field (RMF) calculation for triaxially deformed nuclei. Comparison with experimental data. 16O, 40,48Ca, 56Ni, 112,120,124,132Sn, 208Pb; calculated binding energies, charge radii.

doi: 10.1103/PhysRevC.79.044312
Citations: PlumX Metrics

2009YA09      Phys.Rev. C 79, 067302 (2009)

J.M.Yao, B.Qi, S.Q.Zhang, J.Peng, S.Y.Wang, J.Meng

Candidate multiple chiral doublets nucleus 106Rh in a triaxial relativistic mean-field approach with time-odd fields

NUCLEAR STRUCTURE 106Rh; calculated potential energy surfaces, triaxial deformation parameters, and energy contributions from time-odd fields and center of mass corrections using the configuration-fixed constrained triaxial relativistic mean-field approach. Implications and predictions for chiral doublet bands.

doi: 10.1103/PhysRevC.79.067302
Citations: PlumX Metrics

2009YA24      Chin.Phys.C 33, Supplement 1, 21 (2009)

J.-M.Yao, J.Meng, D.Pena Arteaga, P.Ring

Restoration of rotational symmetry in deformed relativistic mean-field theory

NUCLEAR STRUCTURE 24Mg; calculated three-dimensional angular momentum projection, normal kernel, potential energy curves as a function of the deformation, J, π. RMF-PC, BCS theory.

doi: 10.1088/1674-1137/33/S1/007
Citations: PlumX Metrics

2008PE05      Phys.Rev. C 77, 024309 (2008)

J.Peng, H.Sagawa, S.Q.Zhang, J.M.Yao, Y.Zhang, J.Meng

Search for multiple chiral doublets in rhodium isotopes

NUCLEAR STRUCTURE 102,104,106,108,110Rh; calculated triaxial deformation parameters, energy surfaces, configurations, chiral doublets. Triaxial relativistic mean field approach.

doi: 10.1103/PhysRevC.77.024309
Citations: PlumX Metrics

2008WA08      Phys.Rev. C 77, 034314 (2008)

S.Y.Wang, S.Q.Zhang, B.Qi, J.Peng, J.M.Yao, J.Meng

Description of π g9/2 (X) νh11/2 doublet bands in 106Rh

NUCLEAR STRUCTURE 106Rh; calculated excitation energies, B(M1), B(E2) for negative parity doublet bands using particle-rotor model with triaxial relativistic mean-field approach.

doi: 10.1103/PhysRevC.77.034314
Citations: PlumX Metrics

2008YA06      Phys.Rev. C 77, 024315 (2008)

J.M.Yao, B.Sun, P.J.Woods, J.Meng

Effects of triaxial deformation and pairing correlation on the proton emitter 145Tm

NUCLEAR STRUCTURE 144Er, 145Tm; calculated deformation parameters. 145Tm; calculated spectroscopic factors, one-proton separation energies, proton-nucleus potentials, charge and mass radii.

doi: 10.1103/PhysRevC.77.024315
Citations: PlumX Metrics

2008YA09      Chin.Phys.Lett. 25, 1629 (2008)

J.-M.Yao, H.-F.Lu, G.Hillhouse, J.Meng

Core Polarization and Tensor Coupling Effects on Magnetic Moments of Hypernuclei

NUCLEAR STRUCTURE 13C, 17O, 41Ca; calculated magnetic moments of hypernuclei, including the effects of core polarization and tensor coupling.

doi: 10.1088/0256-307X/25/5/029
Citations: PlumX Metrics

2008YA17      Chin.Phys.Lett. 25, 3609 (2008)

J.-M.Yao, J.Meng, D.Pena Arteaga, P.Ring

Three-Dimensional Angular Momentum Projected Relativistic Point-Coupling Approach for Low-Lying Excited States in 24Mg

NUCLEAR STRUCTURE 24Mg; calculated levels, J, π, deformation parameters using a three dimensional angular momentum projection and a triaxial mean-field method. Compared results to data.

doi: 10.1088/0256-307X/25/10/024
Citations: PlumX Metrics

2007BA82      Eur.Phys.J. Special Topics 150, 139 (2007)

S.F.Ban, L.S.Geng, W.H.Long, J.Meng, J.Peng, J.M.Yao, S.Q.Zhang, S.G.Zhou

Structure of nuclei far from the stability in relativistic approach

doi: 10.1140/epjst/e2007-00288-2
Citations: PlumX Metrics

2007CH73      Phys.Rev. C 76, 044325 (2007)

H.Chen, H.Mei, J.Meng, J.M.Yao

Binding energy differences of mirror nuclei in a time-odd triaxial relativistic mean field approach

NUCLEAR STRUCTURE 15N, 15,17O, 17F, 27Al, 27Si, 39K, 39,41Ca, 41Sc; calculated binding energies, charge, neutron and proton rms radii, γ and Β deformations. Used time-odd triaxial relativistic mean field approach.

doi: 10.1103/PhysRevC.76.044325
Citations: PlumX Metrics

2006BA71      Int.J.Mod.Phys. E15, 1447 (2006)

S.F.Ban, L.S.Geng, L.Liu, W.H.Long, J.Meng, J.Peng, J.M.Yao, S.Q.Zhang, S.G.Zhou

Recent progress in relativistic many-body approach

doi: 10.1142/S0218301306005010
Citations: PlumX Metrics

2006CH56      Int.J.Mod.Phys. E15, 1513 (2006)

H.Chen, H.Mei, J.Meng, J.M.Yao

Mirror nuclei 12B and 12N in time-odd triaxial relativistic mean field theory

NUCLEAR STRUCTURE 12B, 12N; calculated binding energies, radii. 12N; calculated single-particle levels energies. Time-odd triaxial relativistic mean field theory.

doi: 10.1142/S0218301306004983
Citations: PlumX Metrics

2006YA12      Phys.Rev. C 74, 024307 (2006)

J.M.Yao, H.Chen, J.Meng

Time-odd triaxial relativistic mean field approach for nuclear magnetic moments

NUCLEAR STRUCTURE 16,17O, 17F; calculated single-particle level energies, density distributions. 15N, 15,17O, 17F, 39K, 39,41Ca, 41Sc; calculated anomalous magnetic moments. Time-odd triaxial relativistic mean field approach.

doi: 10.1103/PhysRevC.74.024307
Citations: PlumX Metrics

Back to query form