NSR Query Results


Output year order : Descending
Format : Normal

NSR database version of April 26, 2024.

Search: Author = B.Bally

Found 22 matches.

Back to query form



2024BA06      Eur.Phys.J. A 60, (2024)

B.Bally, T.R.Rodriguez

Symmetry-projected variational calculations with the numerical suite TAURUS

NUCLEAR STRUCTURE 24Mg; calculated projected energy surface, energy levels, J, π, rms radii, nuclear magnetic and quadrupole moments, B(E2) using the numerical codes TAURUSpav and TAURUSmix.

doi: 10.1140/epja/s10050-024-01271-0
Citations: PlumX Metrics


2023BA06      Eur.Phys.J. A 59, 58 (2023)

B.Bally, G.Giacalone, M.Bender

The shape of gold

NUCLEAR STRUCTURE 197Au; calculated total energy surfaces, energy levels, J, π, radii, nuclear dipole magnetics and electric quadrupole moments, B(Eλ), B(Mλ), collective wave function squared, deformations, impact of triaxiality using state-of-the-art multi-reference energy density functional (MR-EDF).

doi: 10.1140/epja/s10050-023-00955-3
Citations: PlumX Metrics


2022BA03      Phys.Rev.Lett. 128, 082301 (2022)

Be.Bally, M.Bender, G.Giacalone, V.Soma

Evidence of the Triaxial Structure of 129Xe at the Large Hadron Collider

NUCLEAR STRUCTURE 129Xe, 208Pb; calculated structure of the ground states, beyond-mean-field potential energy surfaces, elliptic flow and the mean transverse momentum. Comparison with available data.

doi: 10.1103/PhysRevLett.128.082301
Citations: PlumX Metrics


2022BA35      Eur.Phys.J. A 58, 187 (2022)

B.Bally, G.Giacalone, M.Bender

Structure of 128, 129, 130Xe through multi-reference energy density functional calculations

NUCLEAR STRUCTURE 128,129,130Xe; calculated total energy surfaces, energy levels, J, π, binding energies, rms radii, dipole and quadrupole moments, deformation parameters using state-of-the-art multi-reference energy density functional calculations that combine projection on proton and neutron number as well as angular momentum with shape mixing using the Skyrme-type pseudo-potential SLyMR1. Comparison with available data.

doi: 10.1140/epja/s10050-022-00833-4
Citations: PlumX Metrics


2022FR04      Eur.Phys.J. A 58, 64 (2022)

M.Frosini, T.Duguet, J.-P.Ebran, B.Bally, H.Hergert, T.R.Rodriguez, R.Roth, J.M.Yao, V.Soma

Multi-reference many-body perturbation theory for nuclei, III. Ab initio calculations at second order in PGCM-PT

doi: 10.1140/epja/s10050-022-00694-x
Citations: PlumX Metrics


2022FR05      Eur.Phys.J. A 58, 63 (2022)

M.Frosini, T.Duguet, J.-P.Ebran, B.Bally, T.Mongelli, T.R.Rodriguez, R.Roth, V.Soma

Multi-reference many-body perturbation theory for nuclei, II. Ab initio study of neon isotopes via PGCM and IM-NCSM calculations

doi: 10.1140/epja/s10050-022-00693-y
Citations: PlumX Metrics


2021BA16      Phys.Rev. C 103, 024315 (2021)

B.Bally, M.Bender

Projection on particle number and angular momentum: Example of triaxial Bogoliubov quasiparticle states

NUCLEAR STRUCTURE 240Pu; calculated norm kernel as a function of Euler angle β and decomposition of weights of the projected components for axial reflection-symmetric states of 240Pu. 25Mg; calculated summed weights of components with given spin (J) projected out from one-quasiparticle states, and projected energies of yrast states projected from two one-quasiparticle states of 25Mg, and cranked to different values of spin (J) in both cases. Analyzed consequences of conserved subgroups of the broken symmetry groups. Quantum-number projection technique using the algebra of group representation theory. Relevance to the description of even-even, odd-A, and odd-odd nuclei.

doi: 10.1103/PhysRevC.103.024315
Citations: PlumX Metrics


2021BA17      Eur.Phys.J. A 57, 69 (2021); Erratum Eur.Phys.J. A 57, 124 (2021)

B.Bally, A.Sanchez-Fernandez, T.R.Rodriguez

Symmetry-projected variational calculations with the numerical suite TAURUS

doi: 10.1140/epja/s10050-021-00369-z
Citations: PlumX Metrics


2021FR06      Eur.Phys.J. A 57, 151 (2021)

M.Frosini, T.Duguet, B.Bally, Y.Beaujeault-Taudiere, J.-P.Ebran, V.Soma

In-medium k-body reduction of n-body operators; A flexible symmetry-conserving approach based on the sole one-body density matrix

doi: 10.1140/epja/s10050-021-00458-z
Citations: PlumX Metrics


2021RO22      Phys.Rev. C 104, 054317 (2021)

A.M.Romero, J.M.Yao, B.Bally, T.R.Rodriguez, J.Engel

Application of an efficient generator-coordinate subspace-selection algorithm to neutrinoless double-β decay

RADIOACTIVITY 76Ge(2β-); calculated valence-space nuclear matrix elements (NMEs) for 0νββ decay mode with shell model, ab initio methods using the GCN2850 interaction, and the energy-transition-orthogonality procedure (ENTROP).

NUCLEAR STRUCTURE 76Ge, 76Se; calculated valence-space ground-state energies of 76Ge and 76Se in the natural basis, and the energy-transition-orthogonality procedure (ENTROP), positive-parity low-energy levels using three methods: shell-model code BIGSTICK, a gradient descent procedure, and by ENTROP, potential-energy surfaces in (β, γ) plane by ENTROP.

doi: 10.1103/PhysRevC.104.054317
Citations: PlumX Metrics


2021SA49      Phys.Rev. C 104, 054306 (2021)

A.Sanchez-Fernandez, B.Bally, T.R.Rodriguez

Variational approximations to exact solutions in shell-model valence spaces: Systematic calculations in the sd shell

NUCLEAR STRUCTURE 24Ne; calculated total Hartree-Fock-Bogoliubov (HFB) and variation after particle-number projection (VAPNP) energies, isoscalar and isovector pairing amplitudes, quadrupole moments, B(E2), distribution in eigenstates of proton and neutron number operators of the intrinsic wave functions, total energy surfaces in (β2, γ) plane as a function of the triaxial deformation. 25Ne, 24Na; calculated HFB and VAPNP energies. 17,18,19,20,21,22,23,24,25,26,27O, 18,19,20,21,22,23,24,25,26,27,28,29Ne, 20,21,22,23,24,25,26,27,28,29,30,31Mg, 22,23,24,25,26,27,28,29,30,31,32,33Si, 24,25,26,27,28,29,30,31,32,33,34,35S, 26,27,28,29,30,31,32,33,34,35,36,37Ar; 18,20,22,24,26,28F, 20,22,24,26,28,30Na, 22,24,26,28,30,32Al, 24,26,28,30,32,34P, 26,28,30,32,34,36Cl, 28,30,32,34,36,38K; calculated energy differences with respect to the exact solution for unconstrained HFB, VAPNP and projected generator coordinate methods (PGCM) for even-even, even-odd nuclei and odd-odd nuclei in the sd shell; analyzed role of proton-neutron (pn) mixing and the quadrupole and pairing degrees of freedom in sd-shell nuclei. Calculations based on Hartree-Fock-Bogoliubov (HFB), variation after particle-number projection (VAPNP), and projected generator coordinate methods (PGCM), using the USD Hamiltonian.

doi: 10.1103/PhysRevC.104.054306
Citations: PlumX Metrics


2020BR08      Phys.Rev. C 102, 014307 (2020)

R.Briselet, Ch.Theisen, B.Sulignano, M.Airiau, K.Auranen, D.M.Cox, F.Dechery, A.Drouart, Z.Favier, B.Gall, T.Goigoux, T.Grahn, P.T.Greenlees, K.Hauschild, A.Herzan, R.-D.Herzberg, U.Jakobsson, R.Julin, S.Juutinen, J.Konki, M.Leino, A.Lopez-Martens, A.Mistry, P.Nieminen, J.Pakarinen, P.Papadakis, P.Peura, E.Rey-Herme, P.Rahkila, J.Rubert, P.Ruotsalainen, M.Sandzelius, J.Saren, C.Scholey, J.Sorri, S.Stolze, J.Uusitalo, M.Vandebrouck, A.Ward, M.Zielinska, B.Bally, M.Bender, W.Ryssens

In-beam γ-ray and electron spectroscopy of 249, 251Md

NUCLEAR REACTIONS 203,205Tl(48Ca, 2n), E=218 MeV; measured Eγ, Iγ, E(ce), I(ce), γγ-coin, and γ(ce)-coin using the RITU gas-filled recoil separator, GREAT spectrometer, and SAGE array at the University of Jyvaskyla Accelerator Laboratory. Recoil-decay tagging method. 249,251Md; deduced high-spin levels, J, π, K- and L-conversion coefficients, multipolarities, rotational bands, Nilsson configurations, octupole correlations. Comparison with Skyrme-Hartree-Fock-Bogoliubov theoretical calculations. 251Md, 255Lr; discussed identical transitions and bands.

doi: 10.1103/PhysRevC.102.014307
Citations: PlumX Metrics

Data from this article have been entered in the XUNDL database. For more information, click here.


2020DU16      Phys.Rev. C 102, 054320 (2020)

T.Duguet, B.Bally, A.Tichai

Zero-pairing limit of Hartree-Fock-Bogoliubov reference states

NUCLEAR STRUCTURE 18,22,26O, 44Ca; calculated zero pairing energies, valence shell canonical pairing gap, nondegenerate elementary excitations, zero particle-number variances, weights of Slater determinants associated with a given particle number, neutron-number variance of the constrained HFB solution, pairing gaps and average occupation of neutron canonical states near Fermi energy. 40,42,44,46,48Ca; calculated pairing energies in the zero-pairing limit, and compared with analytical prediction. Zero-pairing limit of an even-number parity Bogoliubov state solution of Hartree-Fock-Bogoliubov (HFB) equation with a two-nucleon interaction derived within the framework of chiral effective field theory.

doi: 10.1103/PhysRevC.102.054320
Citations: PlumX Metrics


2020YA16      Phys.Rev.Lett. 124, 232501 (2020)

J.M.Yao, B.Bally, J.Engel, R.Wirth, T.R.Rodriguez, H.Hergert

Ab Initio Treatment of Collective Correlations and the Neutrinoless Double Beta Decay of 48Ca

RADIOACTIVITY 48Ca(2β-); calculated particle-number projected potential energy surfaces. 48Ti; deduced nuclear matrix elements correlations with B(E2).

doi: 10.1103/PhysRevLett.124.232501
Citations: PlumX Metrics


2019BA42      Phys.Rev. C 100, 044308 (2019)

B.Bally, A.Sanchez-Fernandez, T.R.Rodriguez

Variational approximations to exact solutions in shell-model valence spaces: Calcium isotopes in the pf shell

NUCLEAR STRUCTURE 48Ca; calculated total energy surfaces (TES) as a function of the quadrupole degrees of freedom in the (β2, γ) plane, intrinsic pairing energy, particle-number projected, and particle-number and angular-momentum projected total energy surfaces as a function of the axial quadrupole (β2, γ=0 or 180 degrees) and nn-pairing degrees of freedom, levels, J, π, wave functions, B(E2), spectroscopic electric quadrupole moments, occupation numbers. 42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60Ca; calculated ground-state energies, energy difference between the approximate and exact ground-state energies computed with different variational approaches, excitation energies as a function of the angular momentum. Calculations used several projected generator coordinate methods (PGCM) in reproducing the exact eigenstates of the shell-model Hamiltonian KB3G in the pf-shell valence space.

doi: 10.1103/PhysRevC.100.044308
Citations: PlumX Metrics


2018BA07      Phys.Rev. C 97, 024304 (2018)

B.Bally, T.Duguet

Norm overlap between many-body states: Uncorrelated overlap between arbitrary Bogoliubov product states

doi: 10.1103/PhysRevC.97.024304
Citations: PlumX Metrics


2017PA01      Phys.Rev.Lett. 118, 032501 (2017)

N.Paul, A.Corsi, A.Obertelli, P.Doornenbal, G.Authelet, H.Baba, B.Bally, M.Bender, D.Calvet, F.Chateau, S.Chen, J.-P.Delaroche, A.Delbart, J.-M.Gheller, A.Giganon, A.Gillibert, M.Girod, P.-H.Heenen, V.Lapoux, J.Libert, T.Motobayashi, M.Niikura, T.Otsuka, T.R.Rodriguez, J.-Y.Rousse, H.Sakurai, C.Santamaria, N.Shimizu, D.Steppenbeck, R.Taniuchi, T.Togashi, Y.Tsunoda, T.Uesaka, T.Ando, T.Arici, A.Blazhev, F.Browne, A.M.Bruce, R.Carroll, L.X.Chung, M.L.Cortes, M.Dewald, B.Ding, F.Flavigny, S.Franchoo, M.Gorska, A.Gottardo, A.Jungclaus, J.Lee, M.Lettmann, B.D.Linh, J.Liu, Z.Liu, C.Lizarazo, S.Momiyama, K.Moschner, S.Nagamine, N.Nakatsuka, C.Nita, C.R.Nobs, L.Olivier, Z.Patel, Z.Podolyak, M.Rudigier, T.Saito, C.Shand, P.-A.Soderstrom, I.Stefan, R.Orlandi, V.Vaquero, V.Werner, K.Wimmer, Z.Xu

Are There Signatures of Harmonic Oscillator Shells Far from Stability? First Spectroscopy of 110Zr

NUCLEAR REACTIONS H(113Tc, p)112Mo, (111Nb, p)110Zr, E=260 MeV/nucleon; measured reaction products, Eγ, Iγ; deduced 2+ state energies, R4/2 energy ratio. Comparison with Monte Carlo shell model predictions.

doi: 10.1103/PhysRevLett.118.032501
Citations: PlumX Metrics

Data from this article have been entered in the XUNDL database. For more information, click here.


2017VE03      Phys.Rev. C 95, 061302 (2017)

M.Venhart, F.A.Ali, W.Ryssens, J.L.Wood, D.T.Joss, A.N.Andreyev, K.Auranen, B.Bally, M.Balogh, M.Bender, R.J.Carroll, J.L.Easton, P.T.Greenlees, T.Grahn, P.-H.Heenen, A.Herzan, U.Jakobsson, R.Julin, S.Juutinen, D.Klc, J.Konki, E.Lawrie, M.Leino, V.Matousek, C.G.McPeake, D.O'Donnell, R.D.Page, J.Pakarinen, J.Partanen, P.Peura, P.Rahkila, P.Ruotsalainen, M.Sandzelius, J.Saren, B.Saygi, M.Sedlak, C.Scholey, J.Sorri, S.Stolze, A.Thornthwaite, J.Uusitalo, M.Veselsky

De-excitation of the strongly coupled band in 177Au and implications for core intruder configurations in the light Hg isotopes

NUCLEAR REACTIONS 92Mo(88Sr, 2np), E=399 MeV; measured reaction products, Eγ, Iγ, (ion implants)γ-coin, γγ-coin, γγ(θ)(DCO), α-decay tagging method using Jurogam-II array, GREAT spectrometer, and RITU gas-filled separator at the K=130 MeV cyclotron facility of the University of Jyvaskyla. 177Au; deduced high-spin levels, conversion coefficients, multipolarity, J, π, bands, configuration. Comparisons with cranked Hartree-Fock-Bogoliubov (HFB) calculations based on Skyrme energy functionals, and with the structures of 187Au and 178Hg nuclei.

doi: 10.1103/PhysRevC.95.061302
Citations: PlumX Metrics

Data from this article have been entered in the XUNDL database. For more information, click here.


2014BA43      Phys.Rev.Lett. 113, 162501 (2014)

B.Bally, B.Avez, M.Bender, P.-H.Heenen

Beyond Mean-Field Calculations for Odd-Mass Nuclei

NUCLEAR STRUCTURE 25Mg. calculated energy levels, J, π, B(Eλ). Comparison with available data.

doi: 10.1103/PhysRevLett.113.162501
Citations: PlumX Metrics


2012BA23      Int.J.Mod.Phys. E21, 1250026 (2012)

B.Bally, B.Avez, M.Bender, P.-H.Heenen

Symmetry restoration for odd-mass nuclei with a Skyrme energy density functional

NUCLEAR STRUCTURE 49Cr; calculated nonprojected energy surface, β-γ planes, density distributions. HFB calculations, Skyrme interaction.

doi: 10.1142/S0218301312500267
Citations: PlumX Metrics


2012SM05      Phys.Rev. C 86, 034314 (2012)

N.A.Smirnova, K.Heyde, B.Bally, F.Nowacki, K.Sieja

Nuclear shell evolution and in-medium NN interaction

NUCLEAR STRUCTURE 16,18,20,22,28,36O, 24Ne, 26Mg, 34,42Si, 36,44S, 40,42,44,46,48Ca, 50Ti, 52Cr, 54Fe, 56Ni, 80,82,84,86,88,90Zr, 92Mo, 94Ru, 96Pd, 98Cd, 100Sn; calculated neutron and proton effective single-particle energies (ESPEs) based on an effective two-body shell-model interaction in sdpf shell-model space. Role of central and tensor terms in understanding evolution of the shell gaps at N=20 and N=28.

doi: 10.1103/PhysRevC.86.034314
Citations: PlumX Metrics


2010SM02      Phys.Lett. B 686, 109 (2010)

N.A.Smirnova, B.Bally, K.Heyde, F.Nowacki, K.Sieja

Shell evolution and nuclear forces

NUCLEAR STRUCTURE 28,36O, 34,42Si, 36S, 40,48,52,54,60Ca; calculated systematics of neutron effective single-particle and proton single-hole state energies. 27O, 33Si, 35S, 39Ca; calculated binding energy. Shell model with spin-tensor decomposition and realistic interaction.

doi: 10.1016/j.physletb.2010.02.051
Citations: PlumX Metrics


Back to query form