NSR Query Results


Output year order : Descending
Format : Normal

NSR database version of April 11, 2024.

Search: Author = R.Roth

Found 96 matches.

Back to query form



2023BE01      Phys.Rev. C 107, L021302 (2023)

Y.Beaujeault-Taudiere, M.Frosini, J.-P.Ebran, T.Duguet, R.Roth, V.Soma

Zero- and finite-temperature electromagnetic strength distributions in closed- and open-shell nuclei from first principles

NUCLEAR STRUCTURE 16O, 28Si, 46Ti, 56Fe; calculated zero-temperature dipole polarizability. 56Fe; calculated thermal evolution of mean excitation energies of the dipole modes, low-lying total electromagnetic response (E1+M1) at finite temperatures (kT=0, 1 and 2 MeV). Ab-initio Hartree-Fock-Bogoliubov quasiparticle random-phase approximation (HFB-QRPA). Comparison to available experimental data.

NUCLEAR REACTIONS 16O, 28Si, 46Ti(γ, X), E<50 MeV; calculated integrated isovector E1 photoabsorption σ(E). 56Fe(γ, X), E<40 MeV; calculated electric E1 and magnetic M1 components of integrated photoabsorption σ at different finite temperatures. Comparison to experimental data.

doi: 10.1103/PhysRevC.107.L021302
Citations: PlumX Metrics


2023KN02      Phys.Lett. B 839, 137781 (2023)

M.Knoll, T.Wolfgruber, M.L.Agel, C.Wenz, R.Roth

Machine learning for the prediction of converged energies from ab initio nuclear structure calculations

NUCLEAR STRUCTURE 6Li, 12C, 16O, 2,3H, 4He; calculated ground-state energies from no-core shell model. Few-body systems, artificial neural networks.

doi: 10.1016/j.physletb.2023.137781
Citations: PlumX Metrics


2023KN05      Phys.Lett. B 846, 138258 (2023)

M.Knoll, R.Roth

Hyperon-nucleon interaction constrained by light hypernuclei

NUCLEAR STRUCTURE 3H, 4,5,6,7,8,9,10He, 6,7Li, 9Be, 13C; calculated ground-state energies, hyperon separation energy with many-body uncertainties from artificial neural networks (ANNs).

doi: 10.1016/j.physletb.2023.138258
Citations: PlumX Metrics


2022CA19      Phys.Lett. B 833, 137374 (2022)

J.Carter, L.M.Donaldson, H.Fujita, Y.Fujita, M.Jingo, C.O.Kureba, M.B.Latif, E.Litvinova, F.Nemulodi, P.von Neumann-Cosel, R.Neveling, P.Papakonstantinou, P.Papka, L.Pellegri, V.Yu.Ponomarev, A.Richter, R.Roth, E.Sideras-Haddad, F.D.Smit, J.A.Swartz, A.Tamii, R.Trippel, I.T.Usman, H.Wibowo

Damping of the isovector giant dipole resonance in 40, 48Ca

NUCLEAR REACTIONS 40,48Ca(p, p'), E=200 MeV; measured reaction products; deduced σ(θ, E), Coulomb σ, contributions from the IsoScalar Giant Monopole Resonance (ISGMR) and the ISGQR lying under the IsoVector Giant Dipole Resonance (IVGDR). Comparison with calculations in the framework of RPA and beyond-RPA in a relativistic approach based on an effective meson-exchange interaction, with the UCOM effective interaction. The Separated Sector Cyclotron (SSC) at the iThemba Laboratory for Accelerator Based Sciences (iThemba LABS), Cape Town, South Africa.

doi: 10.1016/j.physletb.2022.137374
Citations: PlumX Metrics


2022FR04      Eur.Phys.J. A 58, 64 (2022)

M.Frosini, T.Duguet, J.-P.Ebran, B.Bally, H.Hergert, T.R.Rodriguez, R.Roth, J.M.Yao, V.Soma

Multi-reference many-body perturbation theory for nuclei, III. Ab initio calculations at second order in PGCM-PT

doi: 10.1140/epja/s10050-022-00694-x
Citations: PlumX Metrics


2022FR05      Eur.Phys.J. A 58, 63 (2022)

M.Frosini, T.Duguet, J.-P.Ebran, B.Bally, T.Mongelli, T.R.Rodriguez, R.Roth, V.Soma

Multi-reference many-body perturbation theory for nuclei, II. Ab initio study of neon isotopes via PGCM and IM-NCSM calculations

doi: 10.1140/epja/s10050-022-00693-y
Citations: PlumX Metrics


2022MA63      Phys.Rev. C 106, 064002 (2022)

P.Maris, R.Roth, E.Epelbaum, R.J.Furnstahl, J.Golak, K.Hebeler, T.Huther, H.Kamada, H.Krebs, H.Le, Ulf-G.Meissner, J.A.Melendez, A.Nogga, P.Reinert, R.Skibinski, J.P.Vary, H.Witala, T.Wolfgruber

Nuclear properties with semilocal momentum-space regularized chiral interactions beyond N2LO

NUCLEAR STRUCTURE 14,16,18,20,22,24,26O, 40,48Ca; calculated ground-state energies, point-proton radii. 4,6,8He, 6Li, 10Be, 10,12B, 12C; calculated ground state energies. 10,12B, 12C; calculated low-lying levels, J, π. Chiral EFT calculations with semilocal momentum-space regularized NN potentials up to fourth leading order N4LO.

NUCLEAR REACTIONS 2H(n, X), E=70, 135, 200 MeV; calculated σ(E), σ(θ), vector- and tensor analyzing power. Comparison to experimental data.

doi: 10.1103/PhysRevC.106.064002
Citations: PlumX Metrics


2022SO14      Phys.Rev.Lett. 129, 132501 (2022)

F.Sommer, K.Konig, D.M.Rossi, N.Everett, D.Garand, R.P.de Groote, J.D.Holt, P.Imgram, A.Incorvati, C.Kalman, A.Klose, J.Lantis, Y.Liu, A.J.Miller, K.Minamisono, T.Miyagi, W.Nazarewicz, W.Nortershauser, S.V.Pineda, R.Powel, P.-G.Reinhard, L.Renth, E.Romero-Romero, R.Roth, A.Schwenk, C.Sumithrarachchi, A.Teigelhofer

Charge Radii of 55, 56Ni Reveal a Surprisingly Similar Behavior at N=28 in Ca and Ni Isotopes

NUCLEAR MOMENTS 54,55,56,57,58,59,60Ni; measured frequencies; deduced Isotope shifts, differential ms charge radii, and absolute rms charge radii. Comparison with nuclear density functional theory (DFT) calculations. National Superconducting Cyclotron Laboratory (NSCL) at Michigan State University (MSU) and collinear laser spectroscopy (CLS) at the BECOLA facility.

doi: 10.1103/PhysRevLett.129.132501
Citations: PlumX Metrics

Data from this article have been entered in the XUNDL database. For more information, click here.


2021FR01      Phys.Rev.Lett. 126, 102501 (2021)

U.Friman-Gayer, C.Romig, T.Huther, K.Albe, S.Bacca, T.Beck, M.Berger, J.Birkhan, K.Hebeler, O.J.Hernandez, J.Isaak, S.Konig, N.Pietralla, P.C.Ries, J.Rohrer, R.Roth, D.Savran, M.Scheck, A.Schwenk, R.Seutin, V.Werner

Role of Chiral Two-Body Currents in 6Li Magnetic Properties in Light of a New Precision Measurement with the Relative Self-Absorption Technique

RADIOACTIVITY 6Li(IT) [from 6Li(γ, γ'), E<7.1 MeV]; measured decay products, Eγ, Iγ; deduced B(M1), decay width. Comparison with ab initio calculations based on chiral effective field theory that take into account contributions to the magnetic dipole operator beyond leading order.

doi: 10.1103/PhysRevLett.126.102501
Citations: PlumX Metrics

Data from this article have been entered in the XUNDL database. For more information, click here.


2021MA32      Phys.Rev. C 103, 054001 (2021)

P.Maris, E.Epelbaum, R.J.Furnstahl, J.Golak, K.Hebeler, T.Huther, H.Kamada, H.Krebs, Ulf-G.Meissner, J.A.Melendez, A.Nogga, P.Reinert, R.Roth, R.Skibinski, V.Soloviov, K.Topolnicki, J.P.Vary, Yu.Volkotrub, H.Witala, T.Wolfgruber, for the LENPIC Collaboration

Light nuclei with semilocal momentum-space regularized chiral interactions up to third order

NUCLEAR STRUCTURE 3H, 3,4,6,8He, 6,7,8,9Li, 8,10Be, 10,11,12,13B, 12,13,14C, 14,15N, 16O; calculated energies of ground and excited states, S(2n) for 6He and 6Li, α+d breakup up for 6Li, and 3α breakup for 12C, energies, wave functions and radii for 3H, 3,4He. Semilocal momentum-space (SMS) regularized two- and three-nucleon forces up to third chiral order (N2LO), with the two low-energy constants entering the three-body force determined from the triton binding energy and the differential cross-section minimum in elastic nucleon-deuteron scattering. Comparison with experimental data.

NUCLEAR REACTIONS 1H(polarized d, d), E=70, 140, 200, 270 MeV; 2H(p, d), (polarized p, d), E=65 MeV; calculated analyzing powers Ay(θ) and differential cross sections for elastic scattering using semilocal momentum-space (SMS) regularized two- and three-nucleon forces up to third chiral order (N2LO) three-nucleon force (3NF). Comparison with experimental data.

doi: 10.1103/PhysRevC.103.054001
Citations: PlumX Metrics


2020DA10      Phys.Rev. C 102, 011302 (2020)

A.D'Alessio, T.Mongelli, M.Arnold, S.Bassauer, J.Birkhan, I.Brandherm, M.Hilcker, T.Huther, J.Isaak, L.Jurgensen, T.Klaus, M.Mathy, P.von Neumann-Cosel, N.Pietralla, V.Yu.Ponomarev, P.C.Ries, R.Roth, M.Singer, G.Steinhilber, K.Vobig, V.Werner

Precision measurement of the E2 transition strength to the 2+1 state of 12C

NUCLEAR REACTIONS 12C(e, e'), E=42.5 MeV; measured scattered E(e), I(e) using the LINTOTT spectrometer at the Darmstadt S-DALINAC facility; deduced form factor, B(E2) and quadrupole moment for the first 2+ state in 12C. Comparison in-medium no-core shell model (IM-NCSM) calculations with NLO to N3LO interactions, and with previous experimental results.

doi: 10.1103/PhysRevC.102.011302
Citations: PlumX Metrics


2020HE25      Phys.Lett. B 809, 135678 (2020)

S.Heil, M.Petri, K.Vobig, D.Bazin, J.Belarge, P.Bender, B.A.Brown, R.Elder, B.Elman, A.Gade, T.Haylett, J.D.Holt, T.Huther, A.Hufnagel, H.Iwasaki, N.Kobayashi, C.Loelius, B.Longfellow, E.Lunderberg, M.Mathy, J.Menendez, S.Paschalis, R.Roth, A.Schwenk, J.Simonis, I.Syndikus, D.Weisshaar, K.Whitmore

Electromagnetic properties of 21O for benchmarking nuclear Hamiltonians

NUCLEAR REACTIONS 9Be(24F, 21O), E=95 MeV/nucleon; measured reaction products, Eγ, Iγ. 21O; deduced γ-ray energies, J, π, level T1/2, B(E2). Comparison with theoretical calculations.

doi: 10.1016/j.physletb.2020.135678
Citations: PlumX Metrics

Data from this article have been entered in the XUNDL database. For more information, click here.


2019BR24      J.Phys.(London) G46, 115101 (2019)

J.Braun, W.Elkamhawy, R.Roth, H.-W.Hammer

Electric structure of shallow D-wave states in Halo EFT

NUCLEAR STRUCTURE 15C; calculated electric form factors of one-neutron halo nuclei with shallow D-wave states up to next-to-leading order and the E2 transition, B(E2). Comparison with available data.

doi: 10.1088/1361-6471/ab368f
Citations: PlumX Metrics


2019EP01      Phys.Rev. C 99, 024313 (2019)

E.Epelbaum, J.Golak, K.Hebeler, T.Huther, H.Kamada, H.Krebs, P.Maris, Ulf-G.Meissner, A.Nogga, R.Roth, R.Skibinski, K.Topolnicki, J.P.Vary, K.Vobig, H.Witala, for the LENPIC Collaboration

Few- and many-nucleon systems with semilocal coordinate-space regularized chiral two- and three-body forces

NUCLEAR REACTIONS 2H(n, n), E=14.1, 70, 108, 135, 250 MeV; analyzed differential σ(θ); deduced low energy coefficients; calculated differential σ(θ), neutron analyzing powers Ay(θ), and deuteron vector and tensor analyzing powers using chiral effective field theory with semilocal coordinate-space regularized two- and three-nucleon forces. Comparison with experimental data.

NUCLEAR STRUCTURE 4,6,8He, 6,7,8,9Li, 8,9,10Be, 10,11,12B, 12C, 16O; calculated ground state binding energies, and excitation energies using chiral N2LO interactions.

doi: 10.1103/PhysRevC.99.024313
Citations: PlumX Metrics


2019MA33      Phys.Rev.Lett. 122, 182501 (2019)

B.Maass, T.Huther, K.Konig, J.Kramer, J.Krause, A.Lovato, P.Muller, K.Pachucki, M.Puchalski, R.Roth, R.Sanchez, F.Sommer, R.B.Wiringa, W.Nortershauser

Nuclear Charge Radii of 10, 11B

NUCLEAR MOMENTS 10,11B; measured frequencies; deduced nuclear charge radii by combining high-accuracy ab initio mass-shift calculations and a high-accuracy measurement of the isotope shift.

doi: 10.1103/PhysRevLett.122.182501
Citations: PlumX Metrics

Data from this article have been entered in the XUNDL database. For more information, click here.


2019TI04      Phys.Rev. C 99, 034321 (2019)

A.Tichai, J.Muller, K.Vobig, R.Roth

Natural orbitals for ab initio no-core shell model calculations

NUCLEAR STRUCTURE 4He, 12C, 14,15,16,17,18,19,20,21,22,23,24,25,26O; calculated squared radial wave functions of different single particle orbits in 16O, ground state energies and point-proton radii of 4He and 16O, ground state energies of 14O to 26O nuclei, and levels, quadrupole moment, B(E2), and B(M1) of 12C using ab initio no-core shell model (NCSM) calculations with natural-orbital, Hartree-Fock, and harmonic oscillator bases.

doi: 10.1103/PhysRevC.99.034321
Citations: PlumX Metrics


2019WI10      Phys.Rev. C 100, 044313 (2019)

R.Wirth, R.Roth

Similarity renormalization group evolution of hypernuclear Hamiltonians

NUCLEAR STRUCTURE 7Li, 9Be, 11B, 13C; calculated low-lying levels, J, π, extrapolated ground-state energies for the hypernuclei. 4,5,6,7H, 5,6,7,8,9,10He; calculated extrapolated absolute energies of low-lying natural-parity states for hypernuclei. 6Li, 8Be, 10B, 12C; calculated low-lying levels, J, π, extrapolated ground-state energies for the core nuclei of corresponding hypernuclei. 3,4,5,6H, 4,5,6,7,8,9He; calculated extrapolated absolute energies of low-lying natural-parity states for the core nuclei of corresponding hypernuclei. Similarity renormalization group (SRG) calculations in a basis spanned by antisymmetric harmonic-oscillator states with respect to three-body Jacobi coordinates and N4LOEMN+N2LONL, N3LOEM+N2LOL and N3LOEM+N2LONLnucleonic Hamiltonians. Comparison with available experimental data.

doi: 10.1103/PhysRevC.100.044313
Citations: PlumX Metrics


2018BI08      Phys.Rev. C 98, 014002 (2018)

S.Binder, A.Calci, E.Epelbaum, R.J.Furnstahl, J.Golak, K.Hebeler, T.Huther, H.Kamada, H.Krebs, P.Maris, Ulf-G.Meissner, A.Nogga, R.Roth, R.Skibinski, K.Topolnicki, J.P.Vary, K.Vobig, H.Witala, at the LENPIC Collaboration

Few-nucleon and many-nucleon systems with semilocal coordinate-space regularized chiral nucleon-nucleon forces

NUCLEAR REACTIONS 2H(n, n), E=5, 10, 14.1 MeV; 2H(n, 2np), E=13, 65 MeV; calculated differential σ(θ), Ay analyzing powers, nucleon and deuteron vector analyzing powers, phase shifts, polarization-transfer coefficient, breakup cross sections, and pd analyzing powers.

NUCLEAR STRUCTURE 3H, 3,4He, 6Li; calculated binding energies, ground-state energies of 4He and 6Li, proton rms radii. 3H, 4,6,8He, 6,7,8,9Li, 8,9Be, 10B, 16,24O, 40,48Ca; calculated ground state energies. 3H, 3He, 6,7,8,9Li, 7,9Be, 8,9,10B, 9C; calculated magnetic dipole moments. 16,24O, 40,48Ca; calculated charge radii. Faddeev-Yakubovsky equations, with no-core configuration interaction approach, coupled-cluster (CC) theory, and in-medium similarity renormalization group (IM-SRG)methods with SCS chiral nucleon-nucleon (NN) potentials. Comparison with experimental values, and with other theoretical predictions.

doi: 10.1103/PhysRevC.98.014002
Citations: PlumX Metrics


2018FE06      Phys.Rev. C 97, 044325 (2018)

R.W.Fearick, B.Erler, H.Matsubara, P.von Neumann-Cosel, A.Richter, R.Roth, A.Tamii

Origin of fine structure of the giant dipole resonance in sd-shell nuclei

NUCLEAR REACTIONS 24Mg, 28Si, 32S, 40Ca(p, p'), E=295 MeV; analyzed experimental spectra encompassing giant-dipole resonance (GDR), and B(E1) strength distributions. Multipole decomposition and wavelet analysis; deduced fine structure of the GDR, wavelet power spectra from experimental data. Random phase approximation (RPA) calculations on a deformed ground state with a realistic nucleon-nucleon interaction. B(E1) strength distributions and wavelet power spectra computed in HFB+QRPA approach with D1S Gogny force.

doi: 10.1103/PhysRevC.97.044325
Citations: PlumX Metrics


2018MO07      Phys.Rev.Lett. 120, 152503 (2018)

T.D.Morris, J.Simonis, S.R.Stroberg, C.Stumpf, G.Hagen, J.D.Holt, G.R.Jansen, T.Papenbrock, R.Roth, A.Schwenk

Structure of the Lightest Tin Isotopes

NUCLEAR STRUCTURE 100,108,116,124,132Sn, 101Sn, 105Te; calculated energy levels, J, π using nucleon-nucleon and three-nucleon forces constrained by data of few-nucleon systems.

doi: 10.1103/physrevlett.120.152503
Citations: PlumX Metrics


2018TI07      Phys.Lett. B 786, 195 (2018)

A.Tichai, P.Arthuis, T.Duguet, H.Hergert, V.Soma, R.Roth

Bogoliubov many-body perturbation theory for open-shell nuclei

NUCLEAR STRUCTURE 14,16,18,20,22,24,26,28O, 34,36,38,40,42,44,46,48,50,52,54,56,58,60Ca, 48,50,52,54,56,58,60,62,64,66,68,70,72,74,76,78Ni; calculated absolute ground-state binding energies and two-neutron separation energies. A Rayleigh–Schrodinger many-body perturbation theory (MBPT) approach.

doi: 10.1016/j.physletb.2018.09.044
Citations: PlumX Metrics


2018TI08      Phys.Lett. B 786, 448 (2018)

A.Tichai, E.Gebrerufael, K.Vobig, R.Roth

Open-shell nuclei from No-Core Shell Model with perturbative improvement

NUCLEAR STRUCTURE 6,7Li, 10,11,12,13,14,15,16,17,18,19,20C, 16,17,18,19,20,21,22,23,24,25,26O, 17,18,19,20,21,22,23,24,25,26,27,28,29,30,31F; calculated ground-state energies, excitation spectra, J, π. Comparison with available data.

doi: 10.1016/j.physletb.2018.10.029
Citations: PlumX Metrics


2018WI03      Phys.Rev. C 97, 064315 (2018)

R.Wirth, D.Gazda, P.Navratil, R.Roth

Hypernuclear no-core shell model

NUCLEAR STRUCTURE 4,5,6,7He; calculated ground state energies, excitation energies of low-lying states in 4,5,6,7He hypernuclei and 4,5,6He core nuclei using Jacobi-coordinate (J-NCSM) and Slater-determinant formulations of no-core shell model (NCSM) for the ab initio description of single-Λ hypernuclei. Comparison with available experimental values.

doi: 10.1103/PhysRevC.97.064315
Citations: PlumX Metrics


2017GE02      Phys.Rev.Lett. 118, 152503 (2017)

E.Gebrerufael, K.Vobig, H.Hergert, R.Roth

Ab Initio Description of Open-Shell Nuclei: Merging No-Core Shell Model and In-Medium Similarity Renormalization Group

NUCLEAR STRUCTURE 12C, 20O; calculated ground-state energies, level energies, J, π. Comparison with experimental data.

doi: 10.1103/PhysRevLett.118.152503
Citations: PlumX Metrics


2017KU11      Phys.Rev.Lett. 118, 262502 (2017)

A.Kumar, R.Kanungo, A.Calci, P.Navratil, A.Sanetullaev, M.Alcorta, V.Bildstein, G.Christian, B.Davids, J.Dohet-Eraly, J.Fallis, A.T.Gallant, G.Hackman, B.Hadinia, G.Hupin, S.Ishimoto, R.Krucken, A.T.Laffoley, J.Lighthall, D.Miller, S.Quaglioni, J.S.Randhawa, E.T.Rand, A.Rojas, R.Roth, A.Shotter, J.Tanaka, I.Tanihata, C.Unsworth

Nuclear Force Imprints Revealed on the Elastic Scattering of Protons with 10C

NUCLEAR REACTIONS 10C(p, p), E(cm)=4.15, 4.4 eV; measured reaction products, Ep, Ip; deduced σ(θ). Comparison with ab initio no-core shell model with continuum calculations.

doi: 10.1103/PhysRevLett.118.262502
Citations: PlumX Metrics


2017PA06      Acta Phys.Pol. B48, 537 (2017)

P.Papakonstantinou, R.Trippel, R.Roth

From Chiral NN(N) Interactions to Giant and Pygmy Resonances via Extended RPA

NUCLEAR STRUCTURE 40,48Ca; calculated giant and pygmy resonances strength distributions, B(E1) using RPA-based methods with AV18 b(Argonne) plus UCOM interactions or chiral EFT plus SRG interaction. Compared with available data.

doi: 10.5506/APhysPolB.48.537
Citations: PlumX Metrics


2017ST03      Phys.Rev.Lett. 118, 032502 (2017)

S.R.Stroberg, A.Calci, H.Hergert, J.D.Holt, S.K.Bogner, R.Roth, A.Schwenk

Nucleus-Dependent Valence-Space Approach to Nuclear Structure

NUCLEAR STRUCTURE 16,18,22O, 10B, 22Na, 46V, C, N, O, Na, Ca, Ni; calculated ground-state energies, J, π, the extension of ab initio nuclear structure calculations.

doi: 10.1103/PhysRevLett.118.032502
Citations: PlumX Metrics


2016BI06      Phys.Rev. C 93, 044002 (2016)

S.Binder, A.Calci, E.Epelbaum, R.J.Furnstahl, J.Golak, K.Hebeler, H.Kamada, H.Krebs, J.Langhammer, S.Liebig, P.Maris, Ulf-G.Meissner, D.Minossi, A.Nogga, H.Potter, R.Roth, R.Skibinski, K.Topolnicki, J.P.Vary, H.Witala, for the LENPIC Collaboration

Few-nucleon systems with state-of-the-art chiral nucleon-nucleon forces

NUCLEAR STRUCTURE 3H, 4He, 6Li; calculated energies of ground-state and lowest two states, point-proton radius using improved NN chiral potentials LO, NLO, N2LO, N3LO and N4LO. Comparison with experimental data.

NUCLEAR REACTIONS 3H, 4He, 6Li(d, X), (polarized d, d), E=10, 70, 135, 200 MeV; total σ(E), differential cross section and tensor analyzing powers for elastic scattering based on NN chiral potentials LO, NLO, N2LO, N3LO and N4LO. Comparison with experimental data.

doi: 10.1103/PhysRevC.93.044002
Citations: PlumX Metrics


2016CA29      Phys.Rev. C 94, 014322 (2016)

A.Calci, R.Roth

Sensitivities and correlations of nuclear structure observables emerging from chiral interactions

NUCLEAR STRUCTURE 6Li, 10B, 12C; calculated energy levels, magnetic dipole and electric quadrupole moments, B(M1), B(E2); deduced correlations between E1 and M1 observables. Ab initio, importance-truncated no-core shell model, with systematic uncertainties of chiral NN+3N interactions. Comparison with experimental data.

doi: 10.1103/PhysRevC.94.014322
Citations: PlumX Metrics


2016CA39      Phys.Rev.Lett. 117, 242501 (2016)

A.Calci, P.Navratil, R.Roth, J.Dohet-Eraly, S.Quaglioni, G.Hupin

Can Ab Initio Theory Explain the Phenomenon of Parity Inversion in 11Be?

NUCLEAR STRUCTURE 11Be; calculated J, π, B(E1). Comparison with experimental data.

doi: 10.1103/PhysRevLett.117.242501
Citations: PlumX Metrics


2016GE01      Phys.Rev. C 93, 031301 (2016)

E.Gebrerufael, A.Calci, R.Roth

Open-shell nuclei and excited states from multireference normal-ordered Hamiltonians

NUCLEAR STRUCTURE 4He, 16O, 6Li, 10B, 12C; calculated absolute ground-state energies for 4He and 10B, levels, J, π for 6Li, 10B, +12C as function of Nmax for NN+3N-induced NN+3N-full Hamiltonians. The ab initio nuclear structure calculations using a multireference formulation of normal ordering and Wick's theorem. Comparison with experimental values.

doi: 10.1103/PhysRevC.93.031301
Citations: PlumX Metrics


2016SH35      Phys.Rev.Lett. 117, 182502 (2016)

A.M.Shirokov, G.Papadimitriou, A.I.Mazur, I.A.Mazur, R.Roth, J.P.Vary

Prediction for a Four-Neutron Resonance

NUCLEAR REACTIONS 4He(8He, 8Be), E<30 MeV; calculated scattering phase shifts, tetraneutron ground state energy, resonance parameters. ab initio approach using the JISP16 realistic NN interaction.

doi: 10.1103/PhysRevLett.117.182502
Citations: PlumX Metrics


2016ST06      Phys.Rev. C 93, 021301 (2016)

C.Stumpf, J.Braun, R.Roth

Importance-truncated large-scale shell model

NUCLEAR STRUCTURE 56Ni, 60Zn, 64Ge; calculated levels, J, π, natural-parity states, B(E2) and quadrupole moment for first 2+ state in 56Ni. Importance-truncated scheme for large-scale shell model (IT-SM) calculations. Relevance to future applications of valence-space interactions derived in ab initio approaches in larger valence spaces.

doi: 10.1103/PhysRevC.93.021301
Citations: PlumX Metrics


2016US03      Phys.Rev. C 94, 024308 (2016)

I.T.Usman, Z.Buthelezi, J.Carter, G.R.J.Cooper, R.W.Fearick, S.V.Fortsch, H.Fujita, Y.Fujita, P.von Neumann-Cosel, R.Neveling, P.Papakonstantinou, I.Pysmenetska, A.Richter, R.Roth, E.Sideras-Haddad, F.D.Smit

Fine structure of the isoscalar giant quadrupole resonance in 28Si and 27Al

NUCLEAR REACTIONS 27Al, Si(p, p'), E=200 MeV; measured scattered proton spectra, angular distributions using K600 magnetic spectrometer of iThemba LABS. 27Al, 28Si; deduced levels and resonances between 6-30 MeV excitation, isoscalar giant quadrupole resonance (ISGQR), E2 strength distributions, continuous wavelet transform (CWT) power spectra. Wavelet analysis. Comparison with random phase approximation (RPA), and second-RPA (SRPA) calculations with realistic interaction from unitary correlation operator method (UCOM). Comparison with (α, α') and (e, e') data.

doi: 10.1103/PhysRevC.94.024308
Citations: PlumX Metrics

Data from this article have been entered in the XUNDL database. For more information, click here.


2016WI07      Phys.Rev.Lett. 117, 182501 (2016)

R.Wirth, R.Roth

Induced Hyperon-Nucleon-Nucleon Interactions and the Hyperon Puzzle

NUCLEAR STRUCTURE 6,7Li, 8,9Be, 12,13C; calculated hypernuclei separation and binding energies, energy levels, J, π.

doi: 10.1103/PhysRevLett.117.182501
Citations: PlumX Metrics


2015BE02      Phys.Lett. B 741, 128 (2015)

J.Beller, C.Stumpf, M.Scheck, N.Pietralla, D.Deleanu, D.M.Filipescu, T.Glodariu, W.Haxton, A.Idini, J.H.Kelley, E.Kwan, G.Martinez-Pinedo, R.Raut, C.Romig, R.Roth, G.Rusev, D.Savran, A.P.Tonchev, W.Tornow, J.Wagner, H.R.Weller, N.-V.Zamfir, M.Zweidinger

Separation of the 1+/1- parity doublet in 20Ne

NUCLEAR REACTIONS 20Ne, 28Si(polarized γ, γ'), E=11.26 MeV; measured reaction products, Eγ, Iγ; deduced the energy difference of the parity doublet, the ratio of their integrated σ. Comparison with shell model calculations.

doi: 10.1016/j.physletb.2014.12.018
Citations: PlumX Metrics

Data from this article have been entered in the XUNDL database. For more information, click here.


2015LA04      Phys.Rev. C 91, 021301 (2015)

J.Langhammer, P.Navratil, S.Quaglioni, G.Hupin, A.Calci, R.Roth

Continuum and three-nucleon force effects on 9Be energy levels

NUCLEAR STRUCTURE 9Be; calculated n-8Be phase shifts and eigenphase shifts for negative parity, levels, J, π relative to the n-8Be threshold. Calculations based on ab initio no-core shell model with continuum to include three-nucleon (3N) interactions.

doi: 10.1103/PhysRevC.91.021301
Citations: PlumX Metrics


2015PA40      Phys.Rev. C 92, 034311 (2015)

P.Papakonstantinou, H.Hergert, R.Roth

Isoscalar and neutron modes in the E1 spectra of Ni isotopes and the relevance of shell effects and the continuum

NUCLEAR REACTIONS 48,56,58,68,78Ni(γ, X), E<40 MeV; calculated photoabsorption σ(E), isoscalar strength distributions. 48,50,52,54,56,58,60,62,64,66,68,70,72,74,76,78,80,82,84Ni; calculated isoscalar (IS) and E1 transition strengths as function of excitation energy, proton and neutron transition densities of isoscalar low-energy mode, neutron occupation probabilities, contributions of two-quasiparticle configurations to transition matrix element, electric dipole polarizability. QRPA+D1S Gogny model and CRPA+SLy4 Skyrme model for dipole response. Comparison with available experimental data.

doi: 10.1103/PhysRevC.92.034311
Citations: PlumX Metrics


2015SM03      Phys.Rev. C 92, 064314 (2015)

D.Smalley, H.Iwasaki, P.Navratil, R.Roth, J.Langhammer, V.M.Bader, D.Bazin, J.S.Berryman, C.M.Campbell, J.Dohet-Eraly, P.Fallon, A.Gade, C.Langer, A.Lemasson, C.Loelius, A.O.Macchiavelli, C.Morse, J.Parker, S.Quaglioni, F.Recchia, S.R.Stroberg, D.Weisshaar, K.Whitmore, K.Wimmer

Lifetime measurements of 17C excited states and three-body and continuum effects

NUCLEAR REACTIONS 9Be(18C, 17C), E=74.2 MeV/nucleon, [secondary 18C beam from 9Be(22Ne, X), E=120 MeV/nucleon primary reaction using A1900 fragment separator at NSCL-MSU]; measured one-neutron knockout reaction products, Eγ, Iγ, (particle)γ-coin using GRETINA array for γ rays, and S800 spectrograph for particles, level half-lives using RDM method and a plunger device. 17C; deduced levels, J, π, B(M1). Comparison with importance-truncated no-core shell model (IT-NCSM), and importance-truncated no-core shell model with continuum (IT-NCSMC) calculations.

doi: 10.1103/PhysRevC.92.064314
Citations: PlumX Metrics

Data from this article have been entered in the XUNDL database. For more information, click here.


2014BI14      Phys.Lett. B 736, 119 (2014)

S.Binder, J.Langhammer, A.Calci, R.Roth

Ab initio path to heavy nuclei

NUCLEAR STRUCTURE 16,24O, 36,40,48,52,54Ca, 48,56,60,62,66,68,78Ni, 90Zr, 100,106,108,114,116,118,120,132Sn; calculated ground state energies in ab initio approaches based on chiral Hamiltonian.

doi: 10.1016/j.physletb.2014.07.010
Citations: PlumX Metrics


2014BO25      Phys.Rev.Lett. 113, 142501 (2014)

S.K.Bogner, H.Hergert, J.D.Holt, A.Schwenk, S.Binder, A.Calci, J.Langhammer, R.Roth

Nonperturbative Shell-Model Interactions from the In-Medium Similarity Renormalization Group

NUCLEAR STRUCTURE 21,22,23,24,25,26O; calculated energy levels, J, π. Comparison with experimental data.

doi: 10.1103/PhysRevLett.113.142501
Citations: PlumX Metrics


2014DE04      Phys.Lett. B 730, 288 (2014)

V.Derya, D.Savran, J.Endres, M.N.Harakeh, H.Hergert, J.H.Kelley, P.Papakonstantinou, N.Pietralla, V.Yu.Ponomarev, R.Roth, G.Rusev, A.P.Tonchev, W.Tornow, H.J.Wortche, A.Zilges

Isospin properties of electric dipole excitations in 48Ca

NUCLEAR REACTIONS 48Ca(polarized γ, γ'), E=6.6-9.51 MeV; 40,48Ca, 16O(α, α'γ), E=136 MeV; measured reaction products, Eγ, Iγ; deduced B(E1), J, π. Comparison with RPA calculations, available data.

doi: 10.1016/j.physletb.2014.01.050
Citations: PlumX Metrics

Data from this article have been entered in the EXFOR database. For more information, access X4 datasetO2175. Data from this article have been entered in the XUNDL database. For more information, click here.


2014GA25      Few-Body Systems 55, 857 (2014)

D.Gazda, J.Mares, P.Navratil, R.Roth, R.Wirth

No-Core Shell Model for Nuclear Systems with Strangeness

NUCLEAR STRUCTURE 3,4H, 4He; calculated hypernuclei ground state, and separation energies. ab initio approach, comparison with available data.

doi: 10.1007/s00601-014-0848-9
Citations: PlumX Metrics


2014GO30      Eur.Phys.J. A 50, 177 (2014)

J.Golak, R.Skibinski, K.Topolnicki, H.Witala, E.Epelbaum, H.Krebs, H.Kamada, Ulf-G.Meissner, V.Bernard, P.Maris, J.Vary, S.Binder, A.Calci, K.Hebeler, J.Langhammer, R.Roth, A.Nogga, S.Liebig, D.Minossi

Low-energy neutron-deuteron reactions with N3LO chiral forces

NUCLEAR REACTIONS 2H(n, n), E=6.5, 10 MeV; calculated analyzing power. 2H(n, x), E=13.0 MeV; calculated σ(θ). Three-nucleon Faddeev equations with different N3LO chiral forces. Compared to data.

doi: 10.1140/epja/i2014-14177-7
Citations: PlumX Metrics


2014GU20      J.Phys.(London) G41, 115107 (2014)

A.Gunther, P.Papakonstantinou, R.Roth

Giant resonances based on unitarily transformed two-nucleon plus phenomenological three-nucleon interactions

NUCLEAR STRUCTURE 4He, 16,24O, 40,48Ca, 48,56,60,78Ni, 88Sr, 90Zr, 100,114,132Sn, 146Gd, 208Pb; calculated ground-state energies, charge radii, giant resonance. Comparison with available data.

doi: 10.1088/0954-3899/41/11/115107
Citations: PlumX Metrics


2014HE23      Phys.Rev. C 90, 041302 (2014)

H.Hergert, S.K.Bogner, T.D.Morris, S.Binder, A.Calci, J.Langhammer, R.Roth

Ab initio multireference in-medium similarity renormalization group calculations of even calcium and nickel isotopes

NUCLEAR STRUCTURE 34,36,38,40,42,44,46,48,50,52,54,56,58,60,62Ca, 48,50,52,54,56,58,60,62,64,66,68,70,72,74,76,78,80,82,84,86,88,90Ni; calculated ground state energies, and S(2n) using multireference in-medium similarity renormalization group based on NN+3N nucleon interactions from chiral effective field theory. Comparison with other calculations and experimental results.

doi: 10.1103/PhysRevC.90.041302
Citations: PlumX Metrics


2014HU17      Few-Body Systems 55, 1013 (2014)

G.Hupin, S.Quaglioni, J.Langhammer, P.Navratil, A.Calci, R.Roth

Progress on Light-Ion Fusion Reactions with Three-Nucleon Forces

NUCLEAR REACTIONS 4He(n, n), E<16 MeV; calculated σ(θ), phase shifts. Comparison with available data.

doi: 10.1007/s00601-013-0800-4
Citations: PlumX Metrics


2014MA47      Phys.Rev. C 90, 014314 (2014)

P.Maris, J.P.Vary, A.Calci, J.Langhammer, S.Binder, R.Roth

12C properties with evolved chiral three-nucleon interactions

NUCLEAR STRUCTURE 12C; calculated levels, J, π, point-proton rms radii, quadrupole moments, B(E2), B(M1) using ab initio no-core shell model (NCSM), important truncated no-core shell model (IT-NCSM) methods with similarity renormalization group (SRG) involved chiral NN + 3N Hamiltonians. Comparison with experimental data.

doi: 10.1103/PhysRevC.90.014314
Citations: PlumX Metrics


2014PA10      Phys.Rev. C 89, 034306 (2014), Erratum Phys.Rev. C 91, 029903 (2015)

P.Papakonstantinou, H.Hergert, V.Yu.Ponomarev, R.Roth

Low-energy electric dipole response of Sn isotopes

NUCLEAR REACTIONS 100,102,104,106,108,110,112,114,116,118,120,122,124,126,128,130,132,134,136,138,140Sn(γ, xn), E<50 MeV; calculated point-proton and neutron root rms radii, fraction of Thomas-Reiche-Kuhn (TRK) sum rule, photoabsorption σ(E), isoscalar low-energy states, resonances and dipole strengths, B(E1), summed E1 strength, longitudinal electroexcitation form factor for 116Sn. Self-consistent quasi-particle random-phase approximation (QRPA) and Gogny D1S force. Phenomenological Realistic two-body interaction supplemented by a three-body contact term. Comparison with experimental data.

doi: 10.1103/PhysRevC.89.034306
Citations: PlumX Metrics


2014RO18      Phys.Rev. C 90, 024325 (2014)

R.Roth, A.Calci, J.Langhammer, S.Binder

Evolved chiral NN+3N Hamiltonians for ab initio nuclear structure calculations

NUCLEAR STRUCTURE 4He, 7Li, 8,10Be, 12,14C, 16O; calculated ground state energies, level spectrum for 12C. Inclusion of Chiral NN+3N interactions into ab initio nuclear structure calculations. Similarity renormalization group (SRG) evolution in the 3N sector. JT-coupled storage scheme for 3N matrix elements with on-the-fly decoupling. Importance of truncated no-core shell model with 3N interactions.

doi: 10.1103/PhysRevC.90.024325
Citations: PlumX Metrics


2014RO22      Few-Body Systems 55, 659 (2014)

R.Roth, A.Calci, J.Langhammer, S.Binder

Ab Initio Nuclear Structure Theory: From Few to Many

NUCLEAR STRUCTURE 12,16,18C; calculated energy levels, J, π, ground state energies. IT-NCSM calculations.

doi: 10.1007/s00601-014-0860-0
Citations: PlumX Metrics


2014WI05      Phys.Rev.Lett. 113, 192502 (2014)

R.Wirth, D.Gazda, P.Navratil, A.Calci, J.Langhammer, R.Roth

AbInitio Description of p-Shell Hypernuclei

NUCLEAR STRUCTURE 7Li, 9Be, 13C; calculated ground-state energy of s-shell hypernuclei, absolute and excitation energies.

doi: 10.1103/PhysRevLett.113.192502
Citations: PlumX Metrics


2013BI01      Phys.Rev. C 87, 021303 (2013)

S.Binder, J.Langhammer, A.Calci, P.Navratil, R.Roth

Ab initio calculations of medium-mass nuclei with explicit chiral 3N interactions

NUCLEAR STRUCTURE 16,24O, 40,48Ca, 56Ni; calculated ground-state energies as functions of different parameters. Ab initio coupled-cluster calculations with chiral three-nucleon (3N) interactions.

doi: 10.1103/PhysRevC.87.021303
Citations: PlumX Metrics


2013BI13      Phys.Rev. C 88, 054319 (2013)

S.Binder, P.Piecuch, A.Calci, J.Langhammer, P.Navratil, R.Roth

Extension of coupled-cluster theory with a noniterative treatment of connected triply excited clusters to three-body Hamiltonians

NUCLEAR STRUCTURE 16,24O, 40Ca; calculated total binding energies using coupled-cluster (CC) approach with singles, doubles, and the noniterative treatment of triples and chiral NN interaction at N3LO. Role of residual normal-ordered three-body contributions.

doi: 10.1103/PhysRevC.88.054319
Citations: PlumX Metrics


2013FO11      J.Phys.(London) G40, 055105 (2013)

C.Forssen, R.Roth, P.Navratil

Systematics of 2+ states in C isotopes from the no-core shell model

NUCLEAR STRUCTURE 10,12,14,16,18,20C; calculated B(E2), electric quadrupole moments, excitation energies. NCSM calculations, comparison with available data.

doi: 10.1088/0954-3899/40/5/055105
Citations: PlumX Metrics


2013HE07      Phys.Rev. C 87, 034307 (2013)

H.Hergert, S.K.Bogner, S.Binder, A.Calci, J.Langhammer, R.Roth, A.Schwenk

In-medium similarity renormalization group with chiral two- plus three-nucleon interactions

NUCLEAR STRUCTURE 4He, 16,24O, 40,48Ca, 48,56Ni; calculated ground states energies, and binding energies using the in-medium similarity renormalization group (IM-SRG), based on chiral two- plus three-nucleon interactions. Comparison with coupled cluster calculations, truncated no-core shell model, and with experimental data.

doi: 10.1103/PhysRevC.87.034307
Citations: PlumX Metrics


2013HE15      Phys.Rev.Lett. 110, 242501 (2013)

H.Hergert, S.Binder, A.Calci, J.Langhammer, R.Roth

Ab Initio Calculations of Even Oxygen Isotopes with Chiral Two-Plus-Three-Nucleon Interactions

NUCLEAR STRUCTURE 14,16,18,20,22,24,26O; calculated ground-state energies and their uncertainties. In-medium similarity renormalization group (IM-SRG) for open-shell nuclei using a multireference formalism based on a generalized Wick theorem introduced in quantum chemistry. The resulting multireference IM-SRG(MR-IM-SRG) is used to perform the first ab initio study.

doi: 10.1103/PhysRevLett.110.242501
Citations: PlumX Metrics


2013HU10      Phys.Rev. C 88, 054622 (2013)

G.Hupin, J.Langhammer, P.Navratil, S.Quaglioni, A.Calci, R.Roth

Ab initio many-body calculations of nucleon-4He scattering with three-nucleon forces

NUCLEAR REACTIONS 4He(n, n), E=11, 15 MeV; 4He(p, p), E=5.95, 9.89, 7.89, 11.99 MeV; calculated scattering differential σ(E, θ), and analyzing powers. No-core shell model combined with resonating-group method (NCSM/RGM) including three-nucleon (3N) interactions. Algebraic expressions for 3N-force integration kernels. Comparison with experimental data.

doi: 10.1103/PhysRevC.88.054622
Citations: PlumX Metrics


2013LI32      J.Phys.:Conf.Ser. 445, 012005 (2013)

L.Liu, T.Otsuka, N.Shimizu, Y.Utsuno, R.Roth

No-Core MCSM calculation for 10Be and 12Be low-lying spectra

NUCLEAR STRUCTURE 10Be; calculated levels, J, π. 10Be, 10C; calculated B(E2). NCMCSM (No-core Monte Carlo Shell Model); compared to data. Also 12Be mentioned, but no results presented.

doi: 10.1088/1742-6596/445/1/012005
Citations: PlumX Metrics


2012LA27      Phys.Rev. C 86, 054315 (2012)

J.Langhammer, R.Roth, C.Stumpf

Spectra of open-shell nuclei with Pade-resummed degenerate perturbation theory

NUCLEAR STRUCTURE 6,7Li; calculated level energies using degenerate many-body perturbation theory. Pade approximation. Recursive formulation. Comparison with no-core shell-model calculations.

doi: 10.1103/PhysRevC.86.054315
Citations: PlumX Metrics


2012LI32      Phys.Rev. C 86, 014302 (2012)

L.Liu, T.Otsuka, N.Shimizu, Y.Utsuno, R.Roth

No-core Monte Carlo shell-model calculation for 10Be and 12Be low-lying spectra

NUCLEAR STRUCTURE 4He; calculated ground-state energy as a function of harmonic oscillator parameter, center of mass motion energy. 10,12Be, 10C; calculated levels, J, π, B(E2), deformation parameter, spectroscopic quadrupole moments, single-particle-orbit occupation numbers. No-core Monte Carlo shell-model (MCSM) with unitary correlation operator method (UCOM). Comparison with experimental data.

doi: 10.1103/PhysRevC.86.014302
Citations: PlumX Metrics


2012NA21      Prog.Theor.Phys.(Kyoto), Suppl. 196, 117 (2012)

P.Navratil, S.Quaglioni, R.Roth, W.Horiuchi

Ab Initio Calculations of Light-Ion Reactions

NUCLEAR REACTIONS 7Be(p, γ), E<2.5 MeV; 3H(d, n), 3He(d, p), E<1 MeV; calculated S-factors, scattering phase shifts.

doi: 10.1143/PTPS.196.117
Citations: PlumX Metrics


2012PA05      Phys.Lett. B 709, 270 (2012)

P.Papakonstantinou, H.Hergert, V.Yu.Ponomarev, R.Roth

Low-energy dipole strength and the critical case of 48Ca

NUCLEAR STRUCTURE 36,40,44,48,52Ca; calculated isoscalar dipole, E1 and electric dipole strengths. QRPA calculations.

doi: 10.1016/j.physletb.2012.02.024
Citations: PlumX Metrics


2012PE16      Phys.Rev. C 86, 044329 (2012)

M.Petri, S.Paschalis, R.M.Clark, P.Fallon, A.O.Macchiavelli, K.Starosta, T.Baugher, D.Bazin, L.Cartegni, H.L.Crawford, M.Cromaz, U.Datta Pramanik, G.de Angelis, A.Dewald, A.Gade, G.F.Grinyer, S.Gros, M.Hackstein, H.B.Jeppesen, I.Y.Lee, S.McDaniel, D.Miller, M.M.Rajabali, A.Ratkiewicz, W.Rother, P.Voss, K.A.Walsh, D.Weisshaar, M.Wiedeking, B.A.Brown, C.Forssen, P.Navratil, R.Roth

Structure of 16C: Testing shell model and ab initio approaches

NUCLEAR REACTIONS 9Be(17N, X)16O, E=72 MeV/nucleon, [17N secondary beam from 9Be(22Ne, X), E=150 MeV/nucleon primary reaction]; measured Eγ, Iγ, σ, half-life of first 2+ state in 16O by RDM plunger method using SeGA array at NSCL facility. 16C; deduced levels, J, π, B(E2), spectroscopic factors and proton amplitude of first 2+ state, gamma-ray branching ratios from second 2+ state. Comparison of with shell-model calculations using three interactions.

doi: 10.1103/PhysRevC.86.044329
Citations: PlumX Metrics

Data from this article have been entered in the XUNDL database. For more information, click here.


2012RO19      Phys.Rev.Lett. 109, 052501 (2012)

R.Roth, S.Binder, K.Vobig, A.Calci, J.Langhammer, P.Navratil

Medium-Mass Nuclei with Normal-Ordered Chiral NN+3N Interactions

NUCLEAR STRUCTURE 4He, 16,24O, 40,48Ca; calculated ground-state energies. NO2B approximation, chiral NN+3N hamiltonians.

doi: 10.1103/PhysRevLett.109.052501
Citations: PlumX Metrics


2012RO31      Prog.Theor.Phys.(Kyoto), Suppl. 196, 131 (2012)

R.Roth, J.Langhammer, A.Calci, S.Binder, P.Navratil

Ab Initio Nuclear Structure Theory with Chiral NN+3N Interactions

NUCLEAR STRUCTURE 12C, 16O; calculated ground state energies, level scheme, J, π.

doi: 10.1143/PTPS.196.131
Citations: PlumX Metrics


2012SI20      Phys.Rev. C 86, 054609 (2012)

E.C.Simpson, P.Navratil, R.Roth, J.A.Tostevin

Microscopic two-nucleon overlaps and knockout reactions from 12C

NUCLEAR REACTIONS 12C(12C, 10C), (12C, 10B), (12C, 10Be), E=250, 1050, 2100 MeV/nucleon; calculated inclusive and exclusive cross sections for two-nucleon (2n, np, 2p) knockout reactions, FWHM momentum distribution. No-core shell-model (NCSM) calculations. Comparison with experimental data.

NUCLEAR STRUCTURE 10B; calculated levels, J, π, isospin. No-core shell-model (NCSM) calculations with different interactions. Comparison with experimental data.

doi: 10.1103/PhysRevC.86.054609
Citations: PlumX Metrics


2012VO05      Phys.Rev. C 86, 011303 (2012)

P.Voss, T.Baugher, D.Bazin, R.M.Clark, H.L.Crawford, A.Dewald, P.Fallon, A.Gade, G.F.Grinyer, H.Iwasaki, A.O.Macchiavelli, S.McDaniel, D.Miller, M.Petri, A.Ratkiewicz, W.Rother, K.Starosta, K.A.Walsh, D.Weisshaar, C.Forssen, R.Roth, P.Navratil

Excited-state transition-rate measurements in 18C

NUCLEAR REACTIONS 9Be(19Ne, p)18C, [19Ne secondary beam from 9Be(22Ne, X), E=120 MeV/nucleon primary beam], E=72 MeV/nucleon; measured time-of-flight, energy loss, Eγ, Iγ, (18C)γ-coin using SeGA array, level half-lives by RDM method using the Koln/NSCL plunger device. 18C; deduced levels, J, π, B(E2) of first two 2+ states. 14,18C; comparison of experimental values of level energies, B(E2), B(M1) and quadrupole moment of first two 2+ states with calculations using large-scale ab initio no-core shell model calculations. Inclusion of three-body forces to explain low-lying states in A=18 system.

doi: 10.1103/PhysRevC.86.011303
Citations: PlumX Metrics

Data from this article have been entered in the XUNDL database. For more information, click here.


2011HE11      Phys.Rev. C 83, 064317 (2011)

H.Hergert, P.Papakonstantinou, R.Roth

Quasiparticle random-phase approximation with interactions from the Similarity Renormalization Group

NUCLEAR STRUCTURE 56Ca; calculated number operator response for nonspurious monopole states, isoscalar and isovector dipole strengths. 4He, 16,24O, 34Si, 40,48Ca, 56,68,78Ni, 88Sr, 90Zr, 100,114,132Sn, 146Gd, 208Pb; calculated ground-state energy per nucleon and charge radii. 16O, 40,48Ca, 100,132Sn; calculated proton and neutron spin-orbit splittings. 36,38,40,42,44,46,48,50,52,54,56,58,60Ca; calculated ground-state energies per nucleon, charge radii, odd-even mass differences, and pairing energies, isoscalar and isovector monopole, dipole and quadrupole responses, isoscalar monopole centroids and energies of the first excited 0+ states, centroids of isovector dipole response, isoscalar quadrupole centroids and energies of the first 2+ states. 40,48Ca; calculated single particle energies. 120Sn; calculated canonical single-neutron energies, isoscalar monopole response, running energy-weighted sums, centroid energies of the isoscalar monopole strength distribution. 50Ca; calculated proton and neutron transition densities for monopole peaks. 36,44Ca; calculated proton and neutron dipole transition densities. 54Ca; calculated proton and neutron quadrupole transition densities for a pygmy and a GQR mode. Quasiparticle random phase approximation built on the HFB ground states. Comparison with experimental data.

doi: 10.1103/PhysRevC.83.064317
Citations: PlumX Metrics


2011NA30      Phys.Lett. B 704, 379 (2011)

P.Navratil, R.Roth, S.Quaglioni

Ab initio many-body calculation of the 7Be(p, γ)8B radiative capture

NUCLEAR REACTIONS 7Be(p, γ), (p, p'), E < 7 MeV; calculated σ, σ(θ), S-factors, scattering lengths. Ab initio no-core shell model/resonating group method (NCSM/RGM).

NUCLEAR STRUCTURE 7Be; calculated charge radius, quadrupole and magnetic moments, B(M1). NCSM framework.

doi: 10.1016/j.physletb.2011.09.079
Citations: PlumX Metrics


2011NA39      J.Phys.:Conf.Ser. 312, 082002 (2011)

P.Navratil, S.Quaglioni, R.Roth

Ab Initio Theory of Light-ion Reactions

NUCLEAR REACTIONS 4He(p, p), E=12, 14.32, 17 MeV; calculated σ(θ), analyzing power. 3H(n, n), E=14 MeV;3He(p, p), E=13.6 MeV; calculated phase shift, σ(θ). 7Be(p, p), E(cm)=0-6 MeV;8He(n, n), E(cm)=0-5 MeV; calculated phase shifts. 7Be(p, p'), E(cm)=0-6 MeV; calculated σ. 3He(d, p), E(cm)=8-2000 keV; calculated S-factor. Ab initio NCSM (no-core shell model) with RGM (resonating-group method); compared with available data.

doi: 10.1088/1742-6596/312/4/082002
Citations: PlumX Metrics


2011PA12      Eur.Phys.J. A 47, 14 (2011)

P.Papakonstantinou, V.Yu.Ponomarev, R.Roth, J.Wambach

Isoscalar dipole coherence at low energies and forbidden E1 strength

NUCLEAR STRUCTURE 16O, 40Ca, 56Ni, 100Sn; calculated ISD, E1 response, GDR peak energy, B(E1), γ transition strengths, transition densities using RPA with finite-range forces.

doi: 10.1140/epja/i2011-11014-7
Citations: PlumX Metrics


2011RO32      Phys.Rev.Lett. 107, 072501 (2011)

R.Roth, J.Langhammer, A.Calci, S.Binder, P.Navratil

Similarity-Transformed Chiral NN + 3N Interactions for the Ab Initio Description of 12C and 16O

NUCLEAR STRUCTURE 4He, 6Li, 12C, 16O; calculated ground-state energies, lowest-energy states, J, π. Ab initio no-core shell model (NCSM).

doi: 10.1103/PhysRevLett.107.072501
Citations: PlumX Metrics


2011US01      Phys.Lett. B 698, 191 (2011)

I.Usman, Z.Buthelezi, J.Carter, G.R.J.Cooper, R.W.Fearick, S.V.Fortsch, H.Fujita, Y.Fujita, Y.Kalmykov, P.von Neumann-Cosel, R.Neveling, P.Papakonstantinou, A.Richter, R.Roth, A.Shevchenko, E.Sideras-Haddad, F.D.Smit

Fine structure of the isoscalar giant quadrupole resonance in 40Ca due to Landau damping?

NUCLEAR REACTIONS 40Ca(p, p'), E=200 MeV; measured proton spectra. 40Ca; deduced energy scale for isoscalar giant quadrupole resonance, fine structure. Comparison with RPA and SRPA calculations.

doi: 10.1016/j.physletb.2011.03.015
Citations: PlumX Metrics

Data from this article have been entered in the EXFOR database. For more information, access X4 datasetD0687.


2010GU13      Phys.Rev. C 82, 024319 (2010)

A.Gunther, R.Roth, H.Hergert, S.Reinhardt

Systematics of binding energies and radii based on realistic two-nucleon plus phenomenological three-nucleon interactions

NUCLEAR STRUCTURE 4He, 16,24O, 34Si, 40,48Ca, 48,56,60,78Ni, 88Sr, 90Zr, 100,114,132Sn, 146Gd, 208Pb; calculated ground-state energies and binding energies per nucleon and charge radii of closed-shell nuclei. 40Ca, 90Zr; calculated single-particle spectra. Hartree-Fock calculations using MBPT, S-UCOM(SRG) and S-SRG interactions. Comparison with experimental data.

doi: 10.1103/PhysRevC.82.024319
Citations: PlumX Metrics


2010NA18      Phys.Rev. C 82, 034609 (2010)

P.Navratil, R.Roth, S.Quaglioni

Ab initio many-body calculations of nucleon scattering on 4He, 7Li, 7Be, 12C, and 16O

NUCLEAR REACTIONS 4He, 7Li, 7Be, 12C, 16O(n, n), (p, p), E not given; calculated σ, σ(θ), analyzing powers, phase shifts. No-core shell model, resonating-group method (NCSM/RGM). Comparison with experimental data. Predicted resonances for 8Li and 8B.

doi: 10.1103/PhysRevC.82.034609
Citations: PlumX Metrics


2010PA03      Phys.Rev. C 81, 024317 (2010)

P.Papakonstantinou, R.Roth

Large-scale second random-phase approximation calculations with finite-range interactions

NUCLEAR STRUCTURE 16O; calculated isoscalar monopole response, isovector dipole response, number of 0+ states, 0+ component of the double dipole resonance, fragmentation and shift of particle-hole 0+ states and isoscalar 3- response. 48Ca; isoscalar quadrupole (GQR) response. Large-scale second random phase approximation (SRPA) calculations for giant resonances and low-lying collective excitations.

doi: 10.1103/PhysRevC.81.024317
Citations: PlumX Metrics


2009HE14      Phys.Rev. C 80, 024312 (2009)

H.Hergert, R.Roth

Pairing in the framework of the unitary correlation operator method (UCOM): Hartree-Fock-Bogoliubov calculations

NUCLEAR STRUCTURE 100,102,104,106,108,110,112,114,116,118,120,122,124,126,128,130,132Sn; calculated ground state energies, charge radii, canonical single-particle spectra, canonical and average gaps using self-consistent Hartree-Fock-Bogoliubov framework and effective interactions from the unitary correlation operator method (UCOM). Comparison with experimental data.

doi: 10.1103/PhysRevC.80.024312
Citations: PlumX Metrics


2009RO09      Phys.Rev. C 79, 054325 (2009)

R.Roth, J.R.Gour, P.Piecuch

Ab initio coupled-cluster and configuration interaction calculations for 16O using the VUCOM interaction

NUCLEAR STRUCTURE 16O; calculated intrinsic ground-state energies using the importance-truncated configuration interaction and no-core shell model (NSCM) calculations.

doi: 10.1103/PhysRevC.79.054325
Citations: PlumX Metrics


2009RO13      Phys.Rev. C 79, 064324 (2009)

R.Roth

Importance truncation for large-scale configuration interaction approaches

NUCLEAR STRUCTURE 4,6,8He, 12C, 16O; calculated ground state energies using importance truncated no-core shell-model (IT-NCSM).

doi: 10.1103/PhysRevC.79.064324
Citations: PlumX Metrics


2008RO09      Eur.Phys.J. Special Topics 156, 191 (2008)

R.Roth

Ab initio nuclear structure calculations with transformed realistic interactions

doi: 10.1140\epjst/e2008-00616-0
Citations: PlumX Metrics


2008RO14      Phys.Rev. C 77, 064003 (2008)

R.Roth, S.Reinhardt, H.Hergert

Unitary correlation operator method and similarity renormalization group: Connections and differences

NUCLEAR STRUCTURE 4He, 16,24O, 40,48Ca, 56,60,78Ni, 88Sr, 90Zr, 114Sn, 132Sn, 146Gd, 208Pb; calculated ground state energies, charge radii. Unitary Correlation Operator method and Similarity renormalization group method.

doi: 10.1103/PhysRevC.77.064003
Citations: PlumX Metrics


2008RO17      Nucl.Phys. A805, 416c (2008)

R.Roth

Towards Ab-Initio Nuclear Structure Calculations Beyond the p-Shell

NUCLEAR STRUCTURE 4He, 16O, 40Ca; calculated ground state energies using an importance truncated no-core shell model.

doi: 10.1016/j.nuclphysa.2008.02.263
Citations: PlumX Metrics


2007HE15      Prog.Part.Nucl.Phys. 59, 470 (2007)

H.Hergert, R.Roth, A.Zapp

Hartree-Fock-Bogoliubov calculations with correlated realistic interactions

doi: 10.1016/j.ppnp.2007.01.005
Citations: PlumX Metrics


2007HE16      Phys.Rev. C 75, 051001 (2007)

H.Hergert, R.Roth

Unitary correlation operator method from a similarity renormalization group perspective

doi: 10.1103/PhysRevC.75.051001
Citations: PlumX Metrics


2007PA08      Phys.Rev. C 75, 014310 (2007)

P.Papakonstantinou, R.Roth, N.Paar

Nuclear collective excitations using correlated realistic interactions: The role of explicit random-phase approximation correlations

NUCLEAR STRUCTURE 16O, 40Ca, 90Zr, 100Sn, 208Pb; calculated giant resonance energies, strength distributions.

doi: 10.1103/PhysRevC.75.014310
Citations: PlumX Metrics


2007RO21      Phys.Rev.Lett. 99, 092501 (2007)

R.Roth, P.Navratil

Ab Initio Study of 40Ca with an Importance-Truncated No-Core Shell Model

NUCLEAR STRUCTURE 4He, 16O, 40Ca; calculated ground state energies using a no-core shell model and an improved truncation scheme.

doi: 10.1103/PhysRevLett.99.092501
Citations: PlumX Metrics


2007RO22      Nucl.Phys. A788, 12c (2007)

R.Roth, H.Hergert, N.Paar, P.Papakonstantinou

Nuclear Structure in the UCOM Framework: From Realistic Interactions to Collective Excitations

NUCLEAR STRUCTURE 4He, 16,24O, 34Si, 40,48Ca, 48,56,78Ni, 88Sr, 90Zr, 100,114,132Sn, 146Gd, 208Pb; calculated ground-state energies. 40Ca, 90Zr, 208Pb; calculated giant resonance strength distributions. Unitary correlation operator method, no-core shell model, Hartree-Fock, RPA, many-body perturbation theory. Comparison with data.

doi: 10.1016/j.nuclphysa.2007.01.008
Citations: PlumX Metrics


2006PA11      Int.J.Mod.Phys. E15, 346 (2006)

N.Paar, P.Papakonstantinou, R.Roth, H.Hergert

Self-consistent description of collective excitations in the unitary correlation operator method

NUCLEAR STRUCTURE 16O, 40,48Ca, 90Zr, 132Sn, 208Pb; calculated giant resonance strength distributions. Unitary correlation operator method, RPA.

doi: 10.1142/S0218301306004193
Citations: PlumX Metrics


2006PA24      Phys.Rev. C 74, 014318 (2006)

N.Paar, P.Papakonstantinou, H.Hergert, R.Roth

Collective multipole excitations based on correlated realistic nucleon-nucleon interactions

NUCLEAR STRUCTURE 16O, 40Ca; calculated single-particle level energies. 16O, 40,48Ca, 90Zr, 132Sn, 208Pb; calculated transition strength distributions, giant resonance features. Unitary correlation operator method.

doi: 10.1103/PhysRevC.74.014318
Citations: PlumX Metrics


2006PA30      Phys.Atomic Nuclei 69, 1345 (2006)

N.Paar, P.Papakonstantinou, H.Hergert, R.Roth

Collective Excitations in the Unitary Correlation Operator Method and Relativistic QRPA Studies of Exotic Nuclei

NUCLEAR STRUCTURE 40Ca; calculated single-particle level energies. 4He, 16,24O, 34Si, 40,48Ca, 48,56,68,78Ni, 88Sr, 90Zr, 100,114,132Sn, 146Gd, 208Pb; calculated binding energies. 16O, 40,48Ca, 42Ti, 44Cr, 46Fe, 90Zr, 132Sn, 208Pb; calculated transition strength distributions. Self-consistent RPA approach, unitary correlation operator method.

doi: 10.1134/S1063778806080114
Citations: PlumX Metrics


2006RO15      Phys.Rev. C 73, 044312 (2006)

R.Roth, P.Papakonstantinou, N.Paar, H.Hergert, T.Neff, H.Feldmeier

Hartree-Fock and many body perturbation theory with correlated realistic NN interactions

NUCLEAR STRUCTURE 4He, 16,24O, 34Si, 40,48Ca, 48,56,78Ni, 88Sr, 90Zr, 100,114,132Sn, 146Gd, 208Pb; calculated ground-state energies, radii. 16O, 40Ca, 100,132Sn, 208Pb; calculated single-particle energies. O, Ca, Ni, Sn; calculated ground-state energies for even-A isotopes. Correlated realistic nucleon-nucleon interactions.

doi: 10.1103/PhysRevC.73.044312
Citations: PlumX Metrics


2005NE03      Nucl.Phys. A752, 321c (2005)

T.Neff, H.Feldmeier, R.Roth

Structure of light nuclei in Fermionic Molecular Dynamics

NUCLEAR STRUCTURE 4,5,6,7,8He, 7,8,9,10,11,12,13,14Be; calculated binding energies, radii, deformation. Fermionic molecular dynamics model.

doi: 10.1016/j.nuclphysa.2005.02.092
Citations: PlumX Metrics


2005RO32      Phys.Rev. C 72, 034002 (2005)

R.Roth, H.Hergert, P.Papakonstantinou, T.Neff, H.Feldmeier

Matrix elements and few-body calculations within the unitary correlation operator method

NUCLEAR STRUCTURE 3H, 4He; calculated ground-state energies vs oscillator parameter. Unitary correlation operator method.

doi: 10.1103/PhysRevC.72.034002
Citations: PlumX Metrics


2004RO37      Nucl.Phys. A745, 3 (2004)

R.Roth, T.Neff, H.Hergert, H.Feldmeier

Nuclear structure based on correlated realistic nucleon-nucleon potentials

NUCLEAR STRUCTURE 3,4He, 7Li, 9Be, 10B, 12C, 14N, 16O, 20Ne, 23Na, 24Mg, 27Al, 28Si, 32S, 36Ar, 36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,54Ca, 50Ti, 56Fe, 60Ni; calculated binding energies, radii. 7Li, 9Be, 12C, 16O, 20,22,24,26Ne, 26Mg, 40,48Ca; calculated particle density distributions. 7Li, 9Be, 12C, 20Ne; calculated levels, J, π. Unitary correlation operator method, fermionic molecular dynamics model.

doi: 10.1016/j.nuclphysa.2004.08.024
Citations: PlumX Metrics


1998FE03      Nucl.Phys. A632, 61 (1998)

H.Feldmeier, T.Neff, R.Roth, J.Schnack

A Unitary Correlation Operator Method

doi: 10.1016/S0375-9474(97)00805-1
Citations: PlumX Metrics


Back to query form