NSR Query Results

Output year order : Descending
Format : Normal

NSR database version of April 11, 2024.

Search: Author = J.P.Ebran

Found 39 matches.

Back to query form

2024FR01      Eur.Phys.J. A 60, 45 (2024)

K.Fraboulet, J.-P.Ebran

Addressing energy density functionals in the language of path-integrals II: comparative study of functional renormalization group techniques applied to the (0+0)-D O(N)-symmetric φ4-theory

doi: 10.1140/epja/s10050-023-01069-6
Citations: PlumX Metrics

2023BE01      Phys.Rev. C 107, L021302 (2023)

Y.Beaujeault-Taudiere, M.Frosini, J.-P.Ebran, T.Duguet, R.Roth, V.Soma

Zero- and finite-temperature electromagnetic strength distributions in closed- and open-shell nuclei from first principles

NUCLEAR STRUCTURE 16O, 28Si, 46Ti, 56Fe; calculated zero-temperature dipole polarizability. 56Fe; calculated thermal evolution of mean excitation energies of the dipole modes, low-lying total electromagnetic response (E1+M1) at finite temperatures (kT=0, 1 and 2 MeV). Ab-initio Hartree-Fock-Bogoliubov quasiparticle random-phase approximation (HFB-QRPA). Comparison to available experimental data.

NUCLEAR REACTIONS 16O, 28Si, 46Ti(γ, X), E<50 MeV; calculated integrated isovector E1 photoabsorption σ(E). 56Fe(γ, X), E<40 MeV; calculated electric E1 and magnetic M1 components of integrated photoabsorption σ at different finite temperatures. Comparison to experimental data.

doi: 10.1103/PhysRevC.107.L021302
Citations: PlumX Metrics

2023DU01      Eur.Phys.J. A 59, 13 (2023)

T.Duguet, J.-P.Ebran, M.Frosini, H.Hergert, V.Soma

Rooting the EDF method into the ab initio framework PGCM-PT formalism based on MR-IMSRG pre-processed Hamiltonians

NUCLEAR STRUCTURE 20Ne; calculated energy levels, J, π using the empirical nuclear energy density functional (EDF) method rooted into the recently formulated ab initio many-body perturbation theory built on top of the projected generator coordinate method (PGCM-PT), whenever the latter employs an effective Hamiltonian resulting from a multi-reference in-medium similarity renormalization group (MR-IMSRG) transformation of the nuclear Hamiltonian at play in chiral effective field theory. Comparison with available data.

doi: 10.1140/epja/s10050-023-00914-y
Citations: PlumX Metrics

2023FR04      Eur.Phys.J. A 59, 91 (2023)

K.Fraboulet, J.-P.Ebran

Addressing energy density functionals in the language of path-integrals I: comparative study of diagrammatic techniques applied to the (o+o)-D O(N)-symmetric φ4-theory

doi: 10.1140/epja/s10050-023-00933-9
Citations: PlumX Metrics

2023ME04      Phys.Rev. C 107, 034309 (2023)

F.Mercier, J.-P.Ebran, E.Khan

Covariant energy density functionals with and without tensor couplings at the Hartree-Bogoliubov level

NUCLEAR STRUCTURE Z=4-98, N=4-150; calculated binding energy, rms radii, spin-orbit splitting, tensor energy per nucleon. 20Ne, 120Sn, 238U; calculated one-dimensional potential energy surface. 34Si, 20Ne; calculated total density, proton and neutron densities. Relativistic Hartree-Bogoliubov (RHB) approach with tensor terms in the vector-isoscalar channel. Free parameters of covariant functionals optimized by combining Markov-chain Monte Carlo and simplex algorithms. Comparison with experimental values.

doi: 10.1103/PhysRevC.107.034309
Citations: PlumX Metrics

2023ZH13      Phys.Rev. C 107, 034311 (2023)

J.Zhao, J.-P.Ebran, L.Heitz, E.Khan, F.Mercier, T.Niksic, D.Vretenar

Microscopic description of α, 2α, and cluster decays of 216-220Rn and 220-224Ra

RADIOACTIVITY 212Po, 216,218,220Rn, 220,222,224Ra(α), (2α); 222,224Ra(12C); calculated T1/2, branching ratios. Relativistic Hartree-Bogoliubov model with the DD-PC1 functional and a separable pairing force. Comparison to experimental data.

NUCLEAR STRUCTURE 212Po, 216,218,220Rn, 220,222,224Ra; calculated deformation-energy surfaces (quadrupole, octupole and hexadecupole).

doi: 10.1103/PhysRevC.107.034311
Citations: PlumX Metrics

2022FR04      Eur.Phys.J. A 58, 64 (2022)

M.Frosini, T.Duguet, J.-P.Ebran, B.Bally, H.Hergert, T.R.Rodriguez, R.Roth, J.M.Yao, V.Soma

Multi-reference many-body perturbation theory for nuclei, III. Ab initio calculations at second order in PGCM-PT

doi: 10.1140/epja/s10050-022-00694-x
Citations: PlumX Metrics

2022FR05      Eur.Phys.J. A 58, 63 (2022)

M.Frosini, T.Duguet, J.-P.Ebran, B.Bally, T.Mongelli, T.R.Rodriguez, R.Roth, V.Soma

Multi-reference many-body perturbation theory for nuclei, II. Ab initio study of neon isotopes via PGCM and IM-NCSM calculations

doi: 10.1140/epja/s10050-022-00693-y
Citations: PlumX Metrics

2022FR06      Eur.Phys.J. A 58, 62 (2022)

M.Frosini, T.Duguet, J.-P.Ebran, V.Soma

Multi-reference many-body perturbation theory for nuclei, I. Novel PGCM-PT formalism

doi: 10.1140/epja/s10050-022-00692-z
Citations: PlumX Metrics

2022GE01      Phys.Rev. C 105, 024302 (2022)

R.-B.Gerst, A.Blazhev, K.Moschner, P.Doornenbal, A.Obertelli, K.Nomura, J.-P.Ebran, S.Hilaire, J.Libert, G.Authelet, H.Baba, D.Calvet, F.Chateau, S.Chen, A.Corsi, A.Delbart, J.-M.Gheller, A.Giganon, A.Gillibert, V.Lapoux, T.Motobayashi, M.Niikura, N.Paul, J.-Y.Rousse, H.Sakurai, C.Santamaria, D.Steppenbeck, R.Taniuchi, T.Uesaka, T.Ando, T.Arici, F.Browne, A.M.Bruce, R.Caroll, L.X.Chung, M.L.Cortes, M.Dewald, B.Ding, F.Flavigny, S.Franchoo, M.Gorska, A.Gottardo, J.Jolie, A.Jungclaus, J.Lee, M.Lettmann, B.D.Linh, J.Liu, Z.Liu, C.Lizarazo, S.Momiyama, S.Nagamine, N.Nakatsuka, C.R.Nita, C.Nobs, L.Olivier, R.Orlandi, Z.Patel, Zs.Podolyak, M.Rudigier, T.Saito, C.Shand, P.-A.Soderstrom, I.Stefan, V.Vaquero, V.Werner, K.Wimmer, Z.Xu

γ-ray spectroscopy of low-lying yrast and non-yrast states in neutron-rich 94, 95, 96Kr

NUCLEAR REACTIONS 1H(94Kr, p), (95Kr, p)(95Kr, np), (97Rb, 2p), (96Kr, p), (96Kr, np), (97Rb, n2p), E≈180 MeV/nucleon [secondary beams from 9Be(238U, X), E=345 MeV/nucleon primary reaction]; measured reaction products, Eγ, Iγ, Ep, Ip, pp-coin, gγ∓coin, pγ-coin. 94,95,96Kr; deduced levels, J, π, T1/2 of isomer and levels in 95Kr. Comparison to five-dimensional collective Hamiltonian (5DCH) beyond-mean-field model and mapped IBM calculations. Beam delivered via the ZeroDegree spectrometer to the Euroball RIKEN Cluster Array (EURICA) at RIBF-RIKEN.

doi: 10.1103/PhysRevC.105.024302
Citations: PlumX Metrics

Data from this article have been entered in the XUNDL database. For more information, click here.

2022KH10      Phys.Rev. C 106, 064330 (2022)

E.Khan, L.Heitz, F.Mercier, J.-P.Ebran

α-particle formation and clustering in nuclei

NUCLEAR STRUCTURE 4He, 8Be, 16O, 20Ne; calculated microscopic densities, nucleonic localization function. Calculations utilizing calculated with the covariant DD-ME2 and Skyrme energy density functional. Quantified the criteria defining α-cluster in nuclei.

RADIOACTIVITY 212Po(α); calculated density and nucleonic localization function during α-decay.

doi: 10.1103/PhysRevC.106.064330
Citations: PlumX Metrics

2022ME06      Phys.Rev. C 105, 034343 (2022)

F.Mercier, J.-P.Ebran, E.Khan

Low-energy monopole strength in spherical and axially deformed nuclei: Cluster and soft modes

NUCLEAR STRUCTURE 40,42,44,46,48,50,52,54,56,58,60,62Ca, 46,48,50,52,54,56,58,60,62,64,66,68,70,72,74,76,78,80,82,84,86Ni, 24,26,28,30,32,34,36Mg; calculated isoscalar monopole strength distribution, single-particle spectrum, transition densities, soft mode and cluster exciations contribution to the total strength. 20Ne; calculated ground-state density, localization function, transition densities. Studied the evolution of monopole strength with pairing energy, deformation, neutron excess. Covariant QRPA calculations, formulated within the finite amplitude method, on top of constrained relativistic Hartree-Bogoliubov (RHB) reference states.

doi: 10.1103/PhysRevC.105.034343
Citations: PlumX Metrics

2022YU07      Phys.Rev. C 106, 054309 (2022)

E.Yuksel, F.Mercier, J.-P.Ebran, E.Khan

Clustering in nuclei at finite temperature

NUCLEAR STRUCTURE 20,32Ne; calculated deformation parameter, pairing gap, entropy, total intrinsic density and excitation energy as a function of temperature, proton, neutron and α localization densities, proton and nuetron isoscalar and isovector densities. Finite temperature relativistic Hartree-Bogoliubov (FT-RHB) method with the relativistic density-dependent meson-nucleon coupling functional DD-ME2.

doi: 10.1103/PhysRevC.106.054309
Citations: PlumX Metrics

2021EB01      J.Phys.(London) G48, 025106 (2021)

J.-P.Ebran, E.Khan, R.-D.Lasseri

Nucleonic localisation and alpha radioactivity

RADIOACTIVITY 186,188,190,192,194,196,198,200,202,204,206,208,210,212,214,216,218Po, 194,196,198,200,202,204,206,208,210,212,214,216,218,220,222Rn, 202,204,206,208,210,212,214,216,218,220,222,224,226Ra, 104Te(α); calculated T1/2. Comparison with available data.

doi: 10.1088/1361-6471/abcf25
Citations: PlumX Metrics

2021FR06      Eur.Phys.J. A 57, 151 (2021)

M.Frosini, T.Duguet, B.Bally, Y.Beaujeault-Taudiere, J.-P.Ebran, V.Soma

In-medium k-body reduction of n-body operators; A flexible symmetry-conserving approach based on the sole one-body density matrix

doi: 10.1140/epja/s10050-021-00458-z
Citations: PlumX Metrics

2021ME03      Phys.Rev. C 103, 024303 (2021)

F.Mercier, A.Bjelcic, T.Niksic, J.-P.Ebran, E.Khan, D.Vretenar

Low-energy cluster modes in N=Z nuclei

NUCLEAR STRUCTURE 20Ne; calculated self-consistent equilibrium density contour, monopole strength function, QFAM response to strength functions for the isoscalar monopole (Kπ=0+ and 0-), isoscalar dipole (Kπ=1+ and 1-), isoscalar quadrupole (Kπ=2+ and 2-) and isoscalar octupole (Kπ=3-) operators, centroids of the monopole strength function, density and localization function contours induced by monopole and octupole perturbations, neutron 2-qp contributions to the isoscalar monopole excitation as function of β2. 24Mg, 28Si, 32S; calculated low-energy isoscalar monopole strength distributions, QFAM response, neutron 2-qp contributions to the low-energy monopole modes. Finite amplitude method (FAM) based on the microscopic framework of relativistic nuclear energy density functionals with DD-PC1 parametrization for α-conjugate or α-cluster nuclei.

doi: 10.1103/PhysRevC.103.024303
Citations: PlumX Metrics

2021ME16      Phys.Rev.Lett. 127, 012501 (2021)

F.Mercier, J.Zhao, J.-P.Ebran, E.Khan, T.Niksic, D.Vretenar

Microscopic Description of 2α Decay in 212Po and 224Ra Isotopes

RADIOACTIVITY 212Po, 224Ra(2α), (α); calculated axially symmetric deformation energy surfaces as functions of quadrupole, octupole, and hexadecapole collective coordinates. Self-consistent framework based on energy density functionals.

doi: 10.1103/PhysRevLett.127.012501
Citations: PlumX Metrics

2020EB01      Phys.Rev. C 102, 014305 (2020)

J.-P.Ebran, M.Girod, E.Khan, R.D.Lasseri, P.Schuck

α-particle condensation: A nuclear quantum phase transition

NUCLEAR STRUCTURE 16O; calculated binding energy as a function of deformation parameters β20, β30, β32, nucleon radial density for rms radii, neutron single particle levels, single-nucleon occupation numbers, Mott-like transition towards α-clusterized states using microscopic energy density functional (EDF) theory with the relativistic and the Gogny approaches. Discussed phase transition in nucleon density from Fermi gas to tetrahedral α-clustered configuration at critical density.

doi: 10.1103/PhysRevC.102.014305
Citations: PlumX Metrics

2020LA08      Phys.Rev.Lett. 124, 162502 (2020)

R.-D.Lasseri, D.Regnier, J.-P.Ebran, A.Penon

Taming Nuclear Complexity with a Committee of Multilayer Neural Networks

NUCLEAR STRUCTURE N<250; calculated the ground-state andexcited energies of more than 1800 atomic nuclei with an accuracy akin to the one achieved by state-of-the-art nuclear energy density functionals (EDFs).

doi: 10.1103/PhysRevLett.124.162502
Citations: PlumX Metrics

2020ME08      Phys.Rev. C 102, 011301 (2020)

F.Mercier, J.Zhao, R.D.Lasseri, J.-P.Ebran, E.Khan, T.Niksic, D.Vretenar

Microscopic description of the self-conjugate 108Xe and 104Te α-decay chain

RADIOACTIVITY 108Xe, 104Te(α); calculated deformation energy surfaces in (β20, β30) and (β20, β40) planes, total nucleon density of the fragments around scission for α emission, T1/2 using self-consistent microscopic energy density functional framework with relativistic density functional DD-PC1 Comparison with experimental half-lives.

doi: 10.1103/PhysRevC.102.011301
Citations: PlumX Metrics

2020SO18      Phys.Lett. B 809, 135740 (2020)

O.Sorlin, F.de Oliveira Santos, J.P.Ebran

Reduced spin-orbit splitting in 35Si: Weak binding or density-depletion effect?

NUCLEAR STRUCTURE 35Si, 41Ca; analyzed available data; calculated splitting evolution, single-particle energies, charge density distributions using the self-consistent Covariant Energy Density Functional calculations with the DD-ME2 parametrization.

doi: 10.1016/j.physletb.2020.135740
Citations: PlumX Metrics

2019MA23      Phys.Rev. C 99, 034317 (2019)

P.Marevic, J.-P.Ebran, E.Khan, T.Niksic, D.Vretenar

Cluster structures in 12C from global energy density functionals

NUCLEAR STRUCTURE 12C; calculated deformation energy surfaces in (β2, β3) plane, energy curves as functions of the axial quadrupole deformation β2, low-energy levels, J, π, intraband B(E2) values, spectroscopic quadrupole moments, amplitudes of the collective wave functions squared, and characteristic intrinsic nucleon densities of first three 2+ and 0+ states; analyzed low-lying excitation spectrum and cluster structures in 12C using beyond mean-field framework based on global energy density functionals. Comparison with experimental values.

NUCLEAR REACTIONS 12C(e, e), (e, e'), θ2=0-14 fm2; calculated electron scattering form factors using the MR-EDF framework, and compared with experimental data, and with predictions of the AMD and THSR models.

doi: 10.1103/PhysRevC.99.034317
Citations: PlumX Metrics

2018EB02      Phys.Rev. C 97, 061301 (2018)

J.-P.Ebran, E.Khan, R.-D.Lasseri, D.Vretenar

Single-particle spatial dispersion and clusters in nuclei

NUCLEAR STRUCTURE 288Cf; calculated radial dispersion of the single-neutron, and harmonic-oscillator wave functions. Z=1-120, N=1-200; calculated radial dispersion of single-particle states of valence nucleons. 20Ne; calculated single-particle neutron levels, dispersion of valence neutron wave function, and partial intrinsic valence neutron densities as a function of axial deformation. Self-consistent relativistic mean-field (RMF) framework based on nuclear energy density functionals, and with the harmonic-oscillator approximation for the nuclear potential.

doi: 10.1103/PhysRevC.97.061301
Citations: PlumX Metrics

2018LA09      Phys.Rev. C 98, 014310 (2018)

R.-D.Lasseri, J.-P.Ebran, E.Khan, N.Sandulescu

Localization of pairing correlations in nuclei within relativistic mean field models

NUCLEAR STRUCTURE 66Ni, 124Sn, 200Pb; calculated ground state energies, rms neutron radii, pairing energies, mean distance between two neutrons, average coherence lengths for pairing tensor and Cooper pair wave function, and two-body correlation functions. 120Sn; calculated coherence length for various intensities of the pairing force, and uivi for single-particle states. Relativistic Hartree-Bogoliubov (RHB) and relativistic mean field (RMF) plus projected BCS (RHB+RMF+PBCS) models.

doi: 10.1103/PhysRevC.98.014310
Citations: PlumX Metrics

2018MA13      Phys.Rev. C 97, 024334 (2018)

P.Marevic, J.-P.Ebran, E.Khan, T.Niksic, D.Vretenar

Quadrupole and octupole collectivity and cluster structures in neon isotopes

NUCLEAR STRUCTURE 20,22,24,26,28,30,32,34Ne; calculated mean-field potential energy surfaces (PES) in (β2, β3) plane, angular momentum- and parity-projected PES in (β2, β3) plane, S(2n), collective wave functions, and average deformation parameters for the ground state, level energies of the first 2+ and 4+ states, B(E2) to the ground state, spectroscopic quadrupole moments. 20,22,24,32,34Ne; calculated levels, J, π, collective spectrum, B(E2), B(E3), collective wave functions of excited states, intrinsic nucleon and valence neutrons densities. Self-consistent relativistic mean-field framework with restoration of symmetries and configuration mixing. Discussed role of valence neutrons in the formation of molecular-type bonds between clusters. Description of cluster structures. Comparison with experimental data.

doi: 10.1103/PhysRevC.97.024334
Citations: PlumX Metrics

2018RI03      Phys.Rev. C 97, 064316 (2018)

J.Ripoche, T.Duguet, J.-P.Ebran, D.Lacroix

Combining symmetry breaking and restoration with configuration interaction: Extension to z-signature symmetry in the case of the Lipkin model

doi: 10.1103/PhysRevC.97.064316
Citations: PlumX Metrics

2017EB02      J.Phys.(London) G44, 103001 (2017)

J.-P.Ebran, E.Khan, T.Niksic, D.Vretenar

Localization and clustering in atomic nuclei

NUCLEAR STRUCTURE 14,16C, 16O, 24Mg, 32S; calculated nucleon localization, and formation of clusters in nucleonic matter, nucleonic density.

doi: 10.1088/1361-6471/aa809b
Citations: PlumX Metrics

2017MU05      Nat.Phys. 13, 152 (2017)

A.Mutschler, A.Lemasson, O.Sorlin, D.Bazin, C.Borcea, R.Borcea, Z.Dombradi, J.-P.Ebran, A.Gade, H.Iwasaki, E.Khan, A.Lepailleur, F.Recchia, T.Roger, F.Rotaru, D.Sohler, M.Stanoiu, S.R.Stroberg, J.A.Tostevin, M.Vandebrouck, D.Weisshaar, K.Wimmer

A proton density bubble in the doubly magic 34Si nucleus

NUCLEAR REACTIONS 9Be(34Si, p)33Al, E<140 MeV/nucleon; measured reaction products, Eγ, Iγ. 34Si; deduced γ-ray energies, parallel momentum distributions of the strongest populated states, neutron and proton density distributions. Comparison with available data.

doi: 10.1038/nphys3916
Citations: PlumX Metrics

Data from this article have been entered in the XUNDL database. For more information, click here.

2017PI07      Phys.Rev. D 95, 075026 (2017)

H.Pihan-Le Bars, C.Guerlin, R.-D.Lasseri, J.-P.Ebran, Q.G.Bailey, S.Bize, E.Khan, P.Wolf

Lorentz-symmetry test at Planck-scale suppression with nucleons in a spin-polarized 133Cs cold atom clock

ATOMIC PHYSICS 133Cs; analyzed available data; deduced an improved model that links the frequency shift of the 133Cs hyperfine Zeeman transitions to the Lorentz-violating Standard Model extension (SME) coefficients of the proton and neutron.

doi: 10.1103/PhysRevD.95.075026
Citations: PlumX Metrics

2017RI01      Phys.Rev. C 95, 014326 (2017)

J.Ripoche, D.Lacroix, D.Gambacurta, J.-P.Ebran, T.Duguet

Combining symmetry breaking and restoration with configuration interaction: A highly accurate many-body scheme applied to the pairing Hamiltonian

doi: 10.1103/PhysRevC.95.014326
Citations: PlumX Metrics

2016EB02      Phys.Rev. C 94, 024304 (2016)

J.-P.Ebran, A.Mutschler, E.Khan, D.Vretenar

Spin-orbit interaction in relativistic nuclear structure models

NUCLEAR STRUCTURE 16O, 34Si, 208Pb; calculated radial dependence of proton and neutron ratio of parameters of spin-orbit potential for the ground states using RMF effective interactions DD-ME2 and DD-PC1, and relativistic Hartree-Fock effective interaction PKO2. 202,204,206,208,210,212,214Pb; calculated isotope shifts using RMF with DD-ME2 and PKO2 interactions, and relativistic Hartree-Fock effective interaction PKO2. Comparison with experimental data. Relativistic self-consistent mean-field (SCMF) models.

doi: 10.1103/PhysRevC.94.024304
Citations: PlumX Metrics

2015DU17      Eur.Phys.J. A 51, 162 (2015)

T.Duguet, M.Bender, J.-P.Ebran, T.Lesinski, V.Soma

Ab initio-driven nuclear energy density functional method - A proposal for safe/correlated/improvable parametrizations of the off-diagonal EDF kernels

doi: 10.1140/epja/i2015-15162-4
Citations: PlumX Metrics

2014BU01      Phys.Rev.Lett. 112, 042502 (2014)

G.Burgunder, O.Sorlin, F.Nowacki, S.Giron, F.Hammache, M.Moukaddam, N.de Sereville, D.Beaumel, L.Caceres, E.clement, G.Duchene, J.P.Ebran, B.Fernandez-Dominguez, F.Flavigny, S.Franchoo, J.Gibelin, A.Gillibert, S.Grevy, J.Guillot, A.Lepailleur, I.Matea, A.Matta, L.Nalpas, A.Obertelli, T.Otsuka, J.Pancin, A.Poves, R.Raabe, J.A.Scarpaci, I.Stefan, C.Stodel, T.Suzuki, J.C.Thomas

Experimental Study of the Two-Body Spin-Orbit Force in Nuclei

NUCLEAR REACTIONS 2H(34Si, p), E=20.5 MeV/nucleon; 2H(36S, p), E=19 MeV/nucleon; measured reaction products, Ep, Ip; deduced σ(θ), level energies, spectroscopic factors, reduction of spin-orbit splitting, two-body spin-orbit interaction. Comparison with strength calculations for N3LO and KLS nucleon-nucleon forces.

doi: 10.1103/PhysRevLett.112.042502
Citations: PlumX Metrics

Data from this article have been entered in the EXFOR database. For more information, access X4 datasetO2220. Data from this article have been entered in the XUNDL database. For more information, click here.

2014EB01      Phys.Rev. C 89, 031303 (2014)

J.-P.Ebran, E.Khan, T.Niksic, D.Vretenar

Cluster-liquid transition in finite, saturated fermionic systems

NUCLEAR STRUCTURE 20Ne; calculated self-consistent deformation energy curve as function of β2, reflection-asymmetric axial intrinsic density. 16O; calculated self-consistent intrinsic nucleon density. Deformation-constrained self-consistent mean-field calculations using RHB model with the DD-ME2 density functional. Cluster formation in finite nuclei and in dilute nuclear matter. Mott-like transition.

doi: 10.1103/PhysRevC.89.031303
Citations: PlumX Metrics

2014EB03      Phys.Rev. C 90, 054329 (2014)

J.-P.Ebran, E.Khan, T.Niksic, D.Vretenar

Density functional theory studies of cluster states in nuclei

NUCLEAR STRUCTURE 36Ar; calculated neutron single-particle levels, binding energy curves as function of deformation parameter β2. 12C, 20Ne; calculated energy gap between occupied neutron levels as a function of β2, total nucleonic density. 8Be, 12C, 16O, 20Ne, 24Mg, 28Si, 32S, 36Ar, 40Ca; calculated positive-parity projected density plots for excited configurations in N=Z nuclei. 8Be, 12C; calculated self-consistent energy surfaces as function of β2 and β3 deformation parameters, contours of neutron density, surface plots of the partial densities. 8,9,10,11,12,13,14Be; calculated total, proton, and neutron self-consistent mean-field (SCMF) equilibrium intrinsic densities. 10,14Be, 10,14,16C; calculated nucleonic densities for excited configuration. Relativistic Hartree-Bogoliubov calculations of cluster states in light N=Z and neutron-rich nuclei in the framework of nuclear energy density functionals functional DD-ME2.

doi: 10.1103/PhysRevC.90.054329
Citations: PlumX Metrics

2013EB01      Phys.Rev. C 87, 044307 (2013)

J.-P.Ebran, E.Khan, T.Niksic, D.Vretenar

Localization and clustering in the nuclear Fermi liquid

NUCLEAR STRUCTURE 16O, 20Ne, 24Mg, 28Si, 32S, 40Ca, 90Zr, 208Pb; calculated localization parameter α for cluster structures, ground-state density contours. Nuclear energy density functionals SLy4 and DD-ME2. Formation of liquid drops, clusters, and halo structures in nuclei.

doi: 10.1103/PhysRevC.87.044307
Citations: PlumX Metrics

2012GA45      Phys.Rev.Lett. 109, 202503 (2012)

L.Gaudefroy, W.Mittig, N.A.Orr, S.Varet, M.Chartier, P.Roussel-Chomaz, J.P.Ebran, B.Fernandez-Dominguez, G.Fremont, P.Gangnant, A.Gillibert, S.Grevy, J.F.Libin, V.A.Maslov, S.Paschalis, B.Pietras, Yu.-E.Penionzhkevich, C.Spitaels, A.C.C.Villari

Direct Mass Measurements of 19B, 22C, 29F, 31Ne, 34Na and Other Light Exotic Nuclei

ATOMIC MASSES 19B, 20,22C, 22,23N, 27,29F, 30,31Ne, 33,34Na, 43,44S, 45,46Cl, 47Ar; measured TOF for reaction products; deduced masses, two-neutron separation energies, matter radii, Borromean systems. Comparison with available data.

doi: 10.1103/PhysRevLett.109.202503
Citations: PlumX Metrics

Data from this article have been entered in the XUNDL database. For more information, click here.

2011EB02      Phys.Rev. C 83, 064323 (2011)

J.-P.Ebran, E.Khan, D.Pena Arteaga, D.Vretenar

Relativistic Hartree-Fock-Bogoliubov model for deformed nuclei

NUCLEAR STRUCTURE 18,22,26,30Ne; calculated proton and neutron density contours. 22,24,26,28,30,32,34,36,38,40Mg; calculated two-neutron separation energies. 18,20,22,24,26,28,30,32Ne;calculated binding energies, charge radii, deformation parameter. 10,12,14,16,18,20,22C; calculated deformation parameter. 26Ne, 28Mg; calculated single proton and neutron levels. Relativistic Hartree-Fock-Bogoliubov model for axially deformed nuclei (RHFBz) using effective Lagrangian with density-dependent meson-nucleon couplings in the particle-hole channel and the central part of the Gogny force in the particle-particle channel. Comparison with experimental data.

doi: 10.1103/PhysRevC.83.064323
Citations: PlumX Metrics

2008MO02      Phys.Rev.Lett. 100, 042501 (2008)

C.Monrozeau, E.Khan, Y.Blumenfeld, C.E.Demonchy, W.Mittig, P.Roussel-Chomaz, D.Beaumel, M.Caamano, D.Cortina-Gil, J.P.Ebran, N.Frascaria, U.Garg, M.Gelin, A.Gillibert, D.Gupta, N.Keeley, F.Marechal, A.Obertelli, J-A.Scarpaci

First Measurement of the Giant Monopole and Quadrupole Resonances in a Short-Lived Nucleus: 56Ni

NUCLEAR REACTIONS 2H(56Ni, 56Ni), E=50 MeV/nucleon; measured deuteron recoil energies and yields. 56Ni; deduced isoscaler giant monopole and giant quadrupole resonance centroids and angular distributions.

doi: 10.1103/PhysRevLett.100.042501
Citations: PlumX Metrics

Data from this article have been entered in the EXFOR database. For more information, access X4 datasetO1613. Data from this article have been entered in the XUNDL database. For more information, click here.

Back to query form