NSR Query Results


Output year order : Descending
Format : Normal

NSR database version of April 11, 2024.

Search: Author = S.Hilaire

Found 83 matches.

Back to query form



2023CU04      Phys.Rev.Lett. 131, 202501 (2023)

J.G.Cubiss, A.N.Andreyev, A.E.Barzakh, P.Van Duppen, S.Hilaire, S.Peru, S.Goriely, M.Al Monthery, N.A.Althubiti, B.Andel, S.Antalic, D.Atanasov, K.Blaum, T.E.Cocolios, T.Day Goodacre, A.de Roubin, G.J.Farooq-Smith, D.V.Fedorov, V.N.Fedosseev, D.A.Fink, L.P.Gaffney, L.Ghys, R.D.Harding, M.Huyse, N.Imai, D.T.Joss, S.Kreim, D.Lunney, K.M.Lynch, V.Manea, B.A.Marsh, Y.Martinez Palenzuela, P.L.Molkanov, D.Neidherr, G.G.O'Neill, R.D.Page, S.D.Prosnyak, M.Rosenbusch, R.E.Rossel, S.Rothe, L.Schweikhard, M.D.Seliverstov, S.Sels, L.V.Skripnikov, A.Stott, C.Van Beveren, E.Verstraelen, A.Welker, F.Wienholtz, R.N.Wolf, K.Zuber

Deformation versus Sphericity in the Ground States of the Lightest Gold Isotopes

NUCLEAR MOMENTS 176,177,178,179,180,181,182,183,187,191,193,195Au [from U(p, X), E=1.4 GeV]; measured frequencies; deduced mean-squared charge radii, ground-state deformations, nuclear magnetic moments. Comparison with available data. The in-source, resonance-ionization laser spectroscopy technique, at the ISOLDE facility (CERN).

doi: 10.1103/PhysRevLett.131.202501
Citations: PlumX Metrics

Data from this article have been entered in the XUNDL database. For more information, click here.


2023KO14      Eur.Phys.J. A 59, 131 (2023), Erratum Eur.Phys.J. A 59, 146 (2023)

A.Koning, S.Hilaire, S.Goriely

TALYS: modeling of nuclear reactions

doi: 10.1140/epja/s10050-023-01034-3
Citations: PlumX Metrics


2023WE04      Phys.Rev. C 107, 034313 (2023)

F.Weber, T.E.Albrecht-Schonzart, S.O.Allehabi, S.Berndt, M.Block, H.Dorrer, C.E.Dullmann, V.A.Dzuba, J.G.Ezold, V.V.Flambaum, V.Gadelshin, S.Goriely, A.Harvey, R.Heinke, S.Hilaire, M.Kaja, T.Kieck, N.Kneip, U.Koster, J.Lantis, C.Mokry, D.Munzberg, S.Nothhelfer, S.Oberstedt, S.Peru, S.Raeder, J.Runke, V.Sonnenschein, M.Stemmler, D.Studer, P.Thorle-Pospiech, H.Tomita, N.Trautmann, S.Van Cleve, J.Warbinek, K.Wendt

Nuclear moments and isotope shifts of the actinide isotopes 249-253Cf probed by laser spectroscopy

NUCLEAR MOMENTS 249,250,251,252,253Cf; measured hyperfine spectra; deduced energy positions of three atomic ground-state transitions, isotope shifts. 249,251,253Cf; deduced nuclear magnetic dipole moments, hyperfine parameters. 249,253Cf; deduced spectroscopic quadrupole moments. Comparison with previous experimental data. Laser resonance ionisation high-resolution spectroscopy. Comparison to theoretical estimations. RISIKO mass separator at Johannes Gutenberg University Mainz.

doi: 10.1103/PhysRevC.107.034313
Citations: PlumX Metrics

Data from this article have been entered in the XUNDL database. For more information, click here.


2022GE01      Phys.Rev. C 105, 024302 (2022)

R.-B.Gerst, A.Blazhev, K.Moschner, P.Doornenbal, A.Obertelli, K.Nomura, J.-P.Ebran, S.Hilaire, J.Libert, G.Authelet, H.Baba, D.Calvet, F.Chateau, S.Chen, A.Corsi, A.Delbart, J.-M.Gheller, A.Giganon, A.Gillibert, V.Lapoux, T.Motobayashi, M.Niikura, N.Paul, J.-Y.Rousse, H.Sakurai, C.Santamaria, D.Steppenbeck, R.Taniuchi, T.Uesaka, T.Ando, T.Arici, F.Browne, A.M.Bruce, R.Caroll, L.X.Chung, M.L.Cortes, M.Dewald, B.Ding, F.Flavigny, S.Franchoo, M.Gorska, A.Gottardo, J.Jolie, A.Jungclaus, J.Lee, M.Lettmann, B.D.Linh, J.Liu, Z.Liu, C.Lizarazo, S.Momiyama, S.Nagamine, N.Nakatsuka, C.R.Nita, C.Nobs, L.Olivier, R.Orlandi, Z.Patel, Zs.Podolyak, M.Rudigier, T.Saito, C.Shand, P.-A.Soderstrom, I.Stefan, V.Vaquero, V.Werner, K.Wimmer, Z.Xu

γ-ray spectroscopy of low-lying yrast and non-yrast states in neutron-rich 94, 95, 96Kr

NUCLEAR REACTIONS 1H(94Kr, p), (95Kr, p)(95Kr, np), (97Rb, 2p), (96Kr, p), (96Kr, np), (97Rb, n2p), E≈180 MeV/nucleon [secondary beams from 9Be(238U, X), E=345 MeV/nucleon primary reaction]; measured reaction products, Eγ, Iγ, Ep, Ip, pp-coin, gγ∓coin, pγ-coin. 94,95,96Kr; deduced levels, J, π, T1/2 of isomer and levels in 95Kr. Comparison to five-dimensional collective Hamiltonian (5DCH) beyond-mean-field model and mapped IBM calculations. Beam delivered via the ZeroDegree spectrometer to the Euroball RIKEN Cluster Array (EURICA) at RIBF-RIKEN.

doi: 10.1103/PhysRevC.105.024302
Citations: PlumX Metrics

Data from this article have been entered in the XUNDL database. For more information, click here.


2022JH01      Phys.Rev. C 106, 044607 (2022)

A.Jhingan, C.Schmitt, A.Lemasson, S.Biswas, Y.H.Kim, D.Ramos, A.N.Andreyev, D.Curien, M.Ciemala, E.Clement, O.Dorvaux, B.De Canditiis, F.Didierjean, G.Duchene, J.Dudouet, J.Frankland, G.Fremont, J.Goupil, B.Jacquot, C.Raison, D.Ralet, B.-M.Retailleau, L.Stuttge, I.Tsekhanovich, A.V.Andreev, S.Goriely, S.Hilaire, J.-F.Lemaitre, P.Moller, K.-H.Schmidt

178Hg and asymmetric fission of neutron-deficient pre-actinides

NUCLEAR REACTIONS 54Fe(124Xe, X)178Hg; E=4.3 MeV/nucleon; measured reaction products, fission fragments, (fragment)(fragment)-coin; deduced total kinetic energy distribution, post-neutron (after neutron emission) and pre-neutron (before emission) mass distribution. Comparison to other experimental data in particular with 180Hg and 178Pt fission. Obtained pre-neutron mass-distribution is compared with four different calculations: the dynamical Brownians%hape motion (BSM) model, the microscopic scission point model (SPY2), the improved macromicroscopic scission point model (SPM), and the semiempirical GEneral Fission (GEF) model. VAMOS++ heavy-ion magnetic spectrometer with new SEcond Detection (SED) arm for coincident pair fragment detection at GANIL.

doi: 10.1103/PhysRevC.106.044607
Citations: PlumX Metrics


2021BA45      Phys.Rev.Lett. 127, 192501 (2021)

A.Barzakh, A.N.Andreyev, C.Raison, J.G.Cubiss, P.Van Duppen, S.Peru, S.Hilaire, S.Goriely, B.Andel, S.Antalic, M.Al Monthery, J.C.Berengut, J.Bieron, M.L.Bissell, A.Borschevsky, K.Chrysalidis, T.E.Cocolios, T.Day Goodacre, J.-P.Dognon, M.Elantkowska, E.Eliav, G.J.Farooq-Smith, D.V.Fedorov, V.N.Fedosseev, L.P.Gaffney, R.F.Garcia Ruiz, M.Godefroid, C.Granados, R.D.Harding, R.Heinke, M.Huyse, J.Karls, P.Larmonier, J.G.Li, K.M.Lynch, D.E.Maison, B.A.Marsh, P.Molkanov, P.Mosat, A.V.Oleynichenko, V.Panteleev, P.Pyykko, M.L.Reitsma, K.Rezynkina, R.E.Rossel, S.Rothe, J.Ruczkowski, S.Schiffmann, C.Seiffert, M.D.Seliverstov, S.Sels, L.V.Skripnikov, M.Stryjczyk, D.Studer, M.Verlinde, S.Wilman, A.V.Zaitsevskii

Large Shape Staggering in Neutron-Deficient Bi Isotopes

NUCLEAR MOMENTS 187,188,189,191Bi; measured frequencies. 209Bi; deduced hfs, mean-square charge radii, magnetic dipole, and electric quadrupole moments. Comparison with HFB PES calculations, available data.

doi: 10.1103/PhysRevLett.127.192501
Citations: PlumX Metrics

Data from this article have been entered in the XUNDL database. For more information, click here.


2021KE09      Phys.Rev. C 104, 044605 (2021)

M.Kerveno, M.Dupuis, A.Bacquias, F.Belloni, D.Bernard, C.Borcea, M.Boromiza, R.Capote, C.De Saint Jean, P.Dessagne, J.C.Drohe, G.Henning, S.Hilaire, T.Kawano, P.Leconte, N.Nankov, A.Negret, M.Nyman, A.Olacel, A.J.M.Plompen, P.Romain, C.Rouki, G.Rudolf, M.Stanoiu, R.Wynants

Measurement of 238U(n, n'γ) cross section data and their impact on reaction models

NUCLEAR REACTIONS 238U(n, n'γ), E<20 MeV from GELINA facility at EC-JRC Geel; measured Eγ, Iγ, γ(TOF)-plot, angle-integrated γ-production σ(E, θ) using time-of-flight (TOF) and prompt γ-ray spectroscopy methods using the GRAPhEME spectrometer at GELINA. 238U; deduced levels, γ transitions, Iγ values, multipolarities, σ for E2 transitions, discrete structure and interband transition; discussed new or revised γ ray energies and intensities for 218.1-, 270.1-, 680.11-, 931.1-, 950.12- and 997.58-keV γ rays, as compared to evaluated data in the ENSDF database and those in 2014Go06 (Phys. Atomic Nuclei 77, 131). Comparison with previous experimental and evaluated reaction cross section data, and with TALYS, EMPIRE and CoH theoretical calculations using nuclear reaction codes dealing with compound nucleus, and pre-equilibrium mechanisms. Relevance to microscopic improving the modeling of the (n, n') reaction.

doi: 10.1103/PhysRevC.104.044605
Citations: PlumX Metrics

Data from this article have been entered in the EXFOR database. For more information, access X4 dataset22795. Data from this article have been entered in the XUNDL database. For more information, click here.


2021PE12      Phys.Rev. C 104, 024328 (2021)

S.Peru, S.Hilaire, S.Goriely, M.Martini

Description of magnetic moments within the Gogny Hartree-Fock-Bogolyubov framework: Application to Hg isotopes

NUCLEAR STRUCTURE 177Hg; calculated potential energy curves for different Kπ blockings as a function of quadrupole deformation parameter β, magnetic moments as a function of spectroscopic quadrupole moments. 178,180,182,184,186,188,190,192,194,196,198,200,202,204Hg; calculated quadrupole deformation parameters β and binding energies of the oblate and prolate minima. 177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200,201,202,203,204,205,206Hg; calculated isotope shifts and spectroscopic quadrupole moments. Gogny Hartree-Fock-Bogolyubov (HFB) calculations with self-consistent blocking of the unpaired nucleon, and D1M interaction. Comparison with experimental data.

doi: 10.1103/PhysRevC.104.024328
Citations: PlumX Metrics


2020AN12      Phys.Rev. C 102, 014319 (2020)

B.Andel, A.N.Andreyev, S.Antalic, M.Al Monthery, A.Barzakh, M.L.Bissell, K.Chrysalidis, T.E.Cocolios, J.G.Cubiss, T.Day Goodacre, N.Dubray, G.J.Farooq-Smith, D.V.Fedorov, V.N.Fedosseev, L.P.Gaffney, R.F.Garcia Ruiz, S.Goriely, C.Granados, R.D.Harding, R.Heinke, S.Hilaire, M.Huyse, J.-F.Lemaitre, K.M.Lynch, B.A.Marsh, P.Molkanov, P.Mosat, S.Peru, C.Raison, S.Rothe, C.Seiffert, M.D.Seliverstov, S.Sels, D.Studer, J.Sundberg, P.Van Duppen

β-delayed fission of isomers in 188Bi

RADIOACTIVITY 188,188m,190,190mBi(α), (β+F)[from U(p, X), E=1.4 GeV using RILIS and HRS separators at ISOLDE-CERN facility]; measured Eα, Iα, fission fragment energies, (fission fragment)(fission fragment)-coin; deduced partial T1/2 of β+-delayed fission (βDF) mode, βDF probabilities. 188Pb; deduced mean total kinetic energy and fission fragment mass distribution after 188Bi β-decay of high-spin isomer of 188Bi, limits of βDF partial half-lives of the two activities in 190Bi. Comparison of partial βDF partial half-lives with calculations based on HFB and QRPA, and those of fragment mass distribution with SPY and FRLDM-based calculations. Systematics of βDF partial T1/2 in neutron deficient nuclei in Tl, Bi, At, Fr, Np, Am, Bk, Es and Md isotopes. 182,184,186,188,190,192Pb; calculated theoretical pre-neutron-emission fission fragment mass distributions (FFMDs) with the SPY model using the D1M-Gogny interaction, and with the FRLDM model.

doi: 10.1103/PhysRevC.102.014319
Citations: PlumX Metrics

Data from this article have been entered in the XUNDL database. For more information, click here.


2020PL02      Eur.Phys.J. A 56, 181 (2020)

A.J.M.Plompen, O.Cabellos, C.De Saint Jean, M.Fleming, A.Algora, M.Angelone, P.Archier, E.Bauge, O.Bersillon, A.Blokhin, F.Cantargi, A.Chebboubi, C.Diez, H.Duarte, E.Dupont, J.Dyrda, B.Erasmus, L.Fiorito, U.Fischer, D.Flammini, D.Foligno, M.R.Gilbert, J.R.Granada, W.Haeck, F.-J.Hambsch, P.Helgesson, S.Hilaire, I.Hill, M.Hursin, R.Ichou, R.Jacqmin, B.Jansky, C.Jouanne, M.A.Kellett, D.H.Kim, H.I.Kim, I.Kodeli, A.J.Koning, A.Yu.Konobeyev, S.Kopecky, B.Kos, A.Krasa, L.C.Leal, N.Leclaire, P.Leconte, Y.O.Lee, H.Leeb, O.Litaize, M.Majerle, J.I.Marquez Damian, F.Michel-Sendis, R.W.Mills, B.Morillon, G.Noguere, M.Pecchia, S.Pelloni, P.Pereslavtsev, R.J.Perry, D.Rochman, A.Rohrmoser, P.Romain, P.Romojaro, D.Roubtsov, P.Sauvan, P.Schillebeeckx, K.H.Schmidt, O.Serot, S.Simakov, I.Sirakov, H.Sjostrand, A.Stankovskiy, J.C.Sublet, P.Tamagno, A.Trkov, S.van der Marck, F.Alvarez-Velarde, R.Villari, T.C.Ware, K.Yokoyama, G.Zerovnik

The joint evaluated fission and fusion nuclear data library, JEFF-3.3

doi: 10.1140/epja/s10050-020-00141-9
Citations: PlumX Metrics


2019BR10      Phys.Rev. C 99, 054330 (2019)

C.P.Brits, K.L.Malatji, M.Wiedeking, B.V.Kheswa, S.Goriely, F.L.Bello Garrote, D.L.Bleuel, F.Giacoppo, A.Gorgen, M.Guttormsen, K.Hadynska-Klek, T.W.Hagen, S.Hilaire, V.W.Ingeberg, H.Jia, M.Klintefjord, A.C.Larsen, S.N.T.Majola, P.Papka, S.Peru, B.Qi, T.Renstrom, S.J.Rose, E.Sahin, S.Siem, G.M.Tveten, F.Zeiser

Nuclear level densities and γ-ray strength functions of 180, 181, 182Ta

NUCLEAR REACTIONS 181Ta(d, p), E=12.5 MeV; 181Ta(d, d'), (d, t), E=12.5, 15 MeV; 181Ta(3He, 3He'), (3He, α), E=34 MeV; measured Ep, Ip, Ed, Id, E(t), I(t), E(3He), I(3He), Eα, Iα, Eγ, Iγ, and (particle)γ-coin using the SiRi particle telescope for charged particles and CACTUS scintillator for γ detection at the Oslo Cyclotron Laboratory. 180,181,182Ta; deduced γ strength functions (γSF), nuclear level densities (NLDs) by OSLO method, energy and γ deformation of scissors resonance (SR). Back-shifted Fermi-gas, constant temperature plus Fermi gas, and Hartree-Fock-Bogoliubov plus combinatorial models used for absolute normalization of experimental NLDs at the neutron separation energies. 181Ta(n, γ), E=0.004-1 MeV; deduced σ(E). Comparison with theoretical model calculations, and with previous experimental results. 181,182Ta; calculated potential energy surfaces in (ϵ2, γ) plane for the ground states using the cranking Nilsson model plus shell correction method.

doi: 10.1103/PhysRevC.99.054330
Citations: PlumX Metrics


2019GO30      Eur.Phys.J. A 55, 172 (2019)

S.Goriely, P.Dimitriou, M.Wiedeking, T.Belgya, R.Firestone, J.Kopecky, M.Krticka, V.Plujko, R.Schwengner, S.Siem, H.Utsunomiya, S.Hilaire, S.Peru, Y.S.Cho, D.M.Filipescu, N.Iwamoto, T.Kawano, V.Varlamov, R.Xu

Reference database for photon strength functions

doi: 10.1140/epja/i2019-12840-1
Citations: PlumX Metrics


2019KR04      Phys.Rev. C 99, 044308 (2019)

M.Krticka, S.Goriely, S.Hilaire, S.Peru, S.Valenta

Constraints on the dipole photon strength functions from experimental multistep cascade spectra

NUCLEAR STRUCTURE 96,98Mo, 112,114Cd, 153,155,156,157,158,159Gd, 162,164Dy, 235,237,239U; analyzed experimental data for multistep γ cascade (MSC) spectra from DANCE detector at LANSCE-LANL; deduced parameter for the zero-ϵγ limit of the M1 photo-strength function (PSF) in the D1M+QRPA+0lim model. 96,98Mo, 112Cd, 156,157Gd, 162,164Dy, 235,239U; calculated sum energy spectra, multiplicity distributions (MD), multistep γ cascade spectra (MCS) from decay of resonances populated in neutron-capture using axially deformed HFB plus quasiparticle random phase approximation (QRPA) with D1M Gogny interaction and a phenomenological low-energy contribution. Comparison with experimental data. Z=10-110, N=10-230; calculated Maxwellian-averaged cross sections for (n, γ) at a temperature of 109K using D1M+QRPA+0lim formalism and compared with GLO+SF PSF recommended in RIPL-3.

doi: 10.1103/PhysRevC.99.044308
Citations: PlumX Metrics


2019LE06      Phys.Rev. C 99, 034612 (2019)

J.-F.Lemaitre, S.Goriely, S.Hilaire, J.-L.Sida

Fully microscopic scission-point model to predict fission fragment observables

NUCLEAR REACTIONS 235U, 239Pu(n, F), E=thermal; calculated proton density distribution, scission distance, Coulomb and nuclear interaction energies for the scission configuration of 236U into 104Mo and 132Sn, fission yields for four different estimates of the nuclear interaction energy and three proton densities at scission neck of 240Pu, pre-neutron-emission fission yields, kinetic energy (KE) distribution, fission yields for various neck densities, isotopic fission yields, proton odd-even effect amplitude for isotopic yields. Z=78-110, N=90-250; calculated peak multiplicities in the isobaric yields, mean TKE of fragments, mean available energy release per fission and mean prompt neutron multiplicity per fission, and mean deformation of fission fragments for about 2000 fissioning nuclei lying between proton and neutron drip lines from Pt to Mt for an initial excitation energy of 8 MeV. Z=91, N=125-200; Z=98, N=130-225; Z=106, N=145-240; calculated pre-neutron-emission isotonic yields and fragment deformation from fission of Pa, Ca and Sg isotopic chains with an excitation energy of 8 MeV. Calculations used upgraded version of scission-point yield (SPY2) model to estimate yields and the kinetic energy distributions of fission fragments, and using nuclear ingredients of 7000 nuclei at 120 axial quadrupole deformations, describing the fragments properties at the scission point.Comparison with available experimental data.

RADIOACTIVITY 252Cf(SF); calculated pre-neutron emission fission yields, fission yields for various neck densities, isotopic fission yields, kinetic energy per fragment, mean deformation, mean total kinetic energy, and proton odd-even effect amplitude for isotopic yields. Comparison with available experimental data.

doi: 10.1103/PhysRevC.99.034612
Citations: PlumX Metrics


2019PE23      Eur.Phys.J. A 55, 232 (2019)

S.Peru, I.Deloncle, S.Hilaire, S.Goriely, M.Martini

Study of dipole excitations in even-even 156-166Dy with QRPA using the Gogny force

doi: 10.1140/epja/i2019-12896-9
Citations: PlumX Metrics


2019UT01      Phys.Rev. C 99, 024609 (2019)

H.Utsunomiya, T.Renstrom, G.M.Tveten, S.Goriely, T.Ari-izumi, D.Filipescu, J.Kaur, Y.-W.Lui, W.Luo, S.Miyamoto, A.C.Larsen, S.Hilaire, S.Peru, A.J.Koning

γ-ray strength function for thallium isotopes relevant to the 205Pb - 205Tl chronometry

NUCLEAR REACTIONS 203,205Tl(γ, n), E=7.9-13.0 MeV; measured E(n), I(n), σ(E) using 4π 3He proportional counter array for neutron detection at NewSUBARU synchrotronic radiation facility; deduced GDR parameters and γ-ray strength function (γSF), the latter on the basis of the Hartree-Fock-Bogolyubov plus quasiparticle random-phase approximation using the Gogny D1M interaction for E1 and M1 components with the zero-limit correction (QRPA+D1M+0lim). 203,205Tl(n, γ), Eγ=0.001-4 MeV; calculated σ(E) with the D1M+QRPA+0lim, and compared with available experimental results. 204Tl(n, γ), T=0-1 GK; calculated Maxwellian averaged σ(E) (MACS) with the D1M+QRPA+0lim strength function, and compared with experimental results, and recommended σ in compilations by Bao et al.

doi: 10.1103/PhysRevC.99.024609
Citations: PlumX Metrics

Data from this article have been entered in the EXFOR database. For more information, access X4 datasetK2615.


2019UT02      Phys.Rev. C 100, 034605 (2019)

H.Utsunomiya, T.Renstrom, G.M.Tveten, S.Goriely, T.Ari-izumi, V.W.Ingeberg, B.V.Kheswa, Y.-W.Lui, S.Miyamoto, S.Hilaire, S.Peru, A.J.Koning

γ-ray strength function for barium isotopes

NUCLEAR REACTIONS 137Ba(γ, n)136Ba, E=7-13 MeV; 138Ba(γ, n)137Ba, E=8.75-13 MeV from laser Compton scattering at the NewSUBARU synchrotron radiation facility at the University of Hyogo; measured En, In; deduced σ(E), E1 and M1 γ-strength functions; σ(E) compared to TALYS calculations. The photoneutron data used to constrain the γ strength function on the basis of the Hartree-Fock-Bogolyubov plus quasiparticle random phase approximation using the Gogny D1M interaction. Comparison with previous experimental data. 131,133Ba(n, γ), kT=30 keV; estimated Maxwellian-averaged cross sections.

doi: 10.1103/PhysRevC.100.034605
Citations: PlumX Metrics

Data from this article have been entered in the EXFOR database. For more information, access X4 datasetK2640.


2018GO15      Phys.Rev. C 98, 014327 (2018)

S.Goriely, S.Hilaire, S.Peru, K.Sieja

Gogny-HFB+QRPA dipole strength function and its application to radiative nucleon capture cross section

NUCLEAR STRUCTURE 72,74,76Ge, 75As, 76,80,82Se, 90,92,94Zr, 103Rh, 107,109Ag, 115In, 112,114,117,118,119,120,122,124Sn, 127I, 133Cs, 136,138Ba, 141Pr, 142,143,144,145,146,148,150Nd, 144,148,149,150,152,153,154Sm, 153Eu, 156,160Gd, 159Tb, 165Ho, 168Er, 171,174Yb, 175,176Lu, 178,180Hf, 182,184,186W, 186,188,189,190,192Os, 191,193Ir, 194,195,196,198Pt, 44Sc, 44Ti, 134Xe, 50V, 56Fe, 89Y, 92,94,96,98Mo, 106,108Pd, 106,112Cd, 139La, 162,164Dy, 167Er, 180,182Ta, 206,208Pb, 232Th, 232Pa, 237,238,239U, 238Np; calculated E1 and M1 deexcitation strength functions, and compared with experimental GDR and Oslo strengths. A=40-250, Z=20-83; calculated total average radiative widths, and compared with experimental data, ratios of theoretical to experimental MACS at kT=30 keV. Z=8-94, N=10-190; calculated ratio of (n, γ) and (p, γ) MACS at T=109 K obtained using D1M+QRPA+0lim+ and the ones obtained using the generalized Lorentzian (GLO) model for nuclei between the neutron and proton driplines. Axially symmetric deformed quasiparticle random-phase approximation with finite-range D1M Gogny force (Gogny-HFB+QRPA).

NUCLEAR REACTIONS 135Ba(n, γ), E=1 keV-1 MeV; 100Mo(n, γ), E=1 keV-20 MeV; calculated σ(E) with D1M+QRPA E1 and M1 strengths, and compared with experimental data. Cl(p, γ), E=172.5 MeV; calculated ratio of (n, γ) MACS at T=109 K obtained using D1M+QRPA+0lim+ and the ones obtained using the generalized Lorentzian (GLO) model.

doi: 10.1103/PhysRevC.98.014327
Citations: PlumX Metrics


2018LE11      Phys.Rev. C 98, 024623 (2018)

J.-F.Lemaitre, S.Goriely, S.Hilaire, N.Dubray

Microscopic description of the fission path with the Gogny interaction

NUCLEAR STRUCTURE 260Fm, 286Sg; calculated potential energy surfaces (PES) and least-energy path (LEP) in (Q30, Q20) plane using Dijkstra's minimization algorithm. 226Th, 236,238U, 240Pu; calculated LEP as function of Q20 with different corrections in the ATDHF and GCM frameworks. 230,232Th, 232,234,236,238U, 238,240,242,244Pu, 242,244,246,248Cm; calculated primary and secondary fission barrier heights in the ADTHF and GCM frameworks using Gogny D1M interaction, and compared with empirical values. Z=90-110, N=110-250; calculated heights of primary fission barriers for even-even nuclei using Gogny D1M interaction, and compared with values from HFB14 calculations.

RADIOACTIVITY 232,234,236,238U, 240Pu, 248Cm, 250,252,254,256Fm, 252,254,256No, 256,258,260Rf, 258,260,262Sg, 264Hs(SF); calculated spontaneous fission half-lives as a function of the fissibility parameter with either the ATDHF or the GCM correction. Comparison with experimental data.

doi: 10.1103/PhysRevC.98.024623
Citations: PlumX Metrics


2018RE15      Phys.Rev. C 98, 054310 (2018)

T.Renstrom, H.Utsunomiya, H.T.Nyhus, A.C.Larsen, M.Guttormsen, G.M.Tveten, D.M.Filipescu, I.Gheorghe, S.Goriely, S.Hilaire, Y.-W.Lui, J.E.Midtbo, S.Peru, T.Shima, S.Siem, O.Tesileanu

Verification of detailed balance for γ absorption and emission in Dy isotopes

NUCLEAR REACTIONS 162,163Dy(γ, n), E=6.4-13.5 MeV laser Compton backscattered γ-ray beam; measured neutron spectra, and σ(E) using 4π 3He proportional counter array for neutron detection at the NewSUBARU synchrotronic radiation facility; deduced renormalized nuclear level densities (NLD), γ-strength functions (γSF). 160,161,162,163,164Dy; deduced γ strength functions, nuclear level densities, E1 γ strength function, and M1 scissors resonance σ, centroids, widths, B(M1). 159,160,161,162,163Dy(n, γ), E=0.001-1 MeV; calculated σ(E) with TALYS-1.8 code, and compared to previous experimental data. 160,161,162,163,164Dy(3He, α), (3He, 3He'), E*<8 MeV; analyzed previous experimental data; deduced level densities.

doi: 10.1103/PhysRevC.98.054310
Citations: PlumX Metrics

Data from this article have been entered in the EXFOR database. For more information, access X4 datasetK2613.


2018UT03      Phys.Rev. C 98, 054619 (2018)

H.Utsunomiya, T.Renstrom, G.M.Tveten, S.Goriely, S.Katayama, T.Ari-izumi, D.Takenaka, D.Symochko, B.V.Kheswa, V.W.Ingeberg, T.Glodariu, Y.-W.Lui, S.Miyamoto, A.C.Larsen, J.E.Midtbo, A.Gorgen, S.Siem, L.Crespo Campo, M.Guttormsen, S.Hilaire, S.Peru, A.J.Koning

Photoneutron cross sections for Ni isotopes: Toward understanding (n, γ) cross sections relevant to weak s-process nucleosynthesis

NUCLEAR REACTIONS 58,60,61,64Ni(γ, n), E=8.00-22.02 MeV; measured E(n), I(n), σ(E) using 3He proportional counters for neutrons and LaBr3(Ce) detector for γ-flux at NewSUBARU synchrotron radiation facility; deduced γ-ray strength functions (γSF); compared σ(E) with previous experimental data, and with TALYS predictions. 58,60,63,64(n, γ), E=0.01-10 MeV; calculated radiative σ(E) and Maxwellian averaged σ (MACS) in terms of the experimentally constrained γ-ray strength functions from the Hartree-Fock-Bogolyubov plus quasiparticle-random-phase approximation (HFB+QRPA) based on the Gogny D1M interaction for E1 and M1 components, supplemented with the M1 upbend. Relevance to the s-process nucleosynthesis, and radioactive nuclei at the s-process branching points.

doi: 10.1103/PhysRevC.98.054619
Citations: PlumX Metrics

Data from this article have been entered in the EXFOR database. For more information, access X4 datasetK2614.


2017KO20      Phys.Rev. C 95, 054317 (2017)

J.Kopecky, S.Goriely, S.Peru, S.Hilaire, M.Martini

E1 and M1 strength functions from average resonance capture data

NUCLEAR REACTIONS 75As, 91Zr, 95,97Mo, 101Ru, 105Pd, 113Cd, 123Te, 127I, 134,135Ba, 145Nd, 154Sm, 153Eu, 154,155,156,157,158Gd, 161,162,163,164Dy, 165Ho, 167Er, 169Tm, 171,173Yb, 175Lu, 177Hf, 181Ta, 183,184,186W, 187,188,190,192Os, 192,194Ir, 194,195,196,198Pt, 197Au, 232Th, 238U, 239Pu(n, γ), E=2, 24 keV; analyzed average resonance capture (ARC) data measured at different filter beam facilities ANL, INEL, and BNL between 1970 and 1990; deduced E1 and M1 photon strength function, comparison to the photon strength function extracted from other experimental methods, such as photoneutron data and Oslo-method data, and with quasiparticle random phase approximation (QRPA) calculations based on the D1M Gogny force.

doi: 10.1103/PhysRevC.95.054317
Citations: PlumX Metrics


2017PI15      Eur.Phys.J. A 53, 193 (2017)

N.Pillet, S.Hilaire

Towards an extended Gogny force History, state of the art and perspectives

NUCLEAR STRUCTURE Z=6-106[1385 nuclei]; calculated Q, mass and charge radii, deformation using HFB approximation with D2 and D1S forces and density-dependent term extended to finite range.

doi: 10.1140/epja/i2017-12369-3
Citations: PlumX Metrics


2016CL01      Phys.Rev.Lett. 116, 022701 (2016)

E.Clement, M.Zielinska, A.Gorgen, W.Korten, S.Peru, J.Libert, H.Goutte, S.Hilaire, B.Bastin, C.Bauer, A.Blazhev, N.Bree, B.Bruyneel, P.A.Butler, J.Butterworth, P.Delahaye, A.Dijon, D.T.Doherty, A.Ekstrom, C.Fitzpatrick, C.Fransen, G.Georgiev, R.Gernhauser, H.Hess, J.Iwanicki, D.G.Jenkins, A.C.Larsen, J.Ljungvall, R.Lutter, P.Marley, K.Moschner, P.J.Napiorkowski, J.Pakarinen, A.Petts, P.Reiter, T.Renstrom, M.Seidlitz, B.Siebeck, S.Siem, C.Sotty, J.Srebrny, I.Stefanescu, G.M.Tveten, J.Van de Walle, M.Vermeulen, D.Voulot, N.Warr, F.Wenander, A.Wiens, H.De Witte, K.Wrzosek-Lipska

Spectroscopic Quadrupole Moments in 96, 98Sr: Evidence for Shape Coexistence in Neutron-Rich Strontium Isotopes at N=60

NUCLEAR REACTIONS 109Ag, 120Sn(96Sr, 96Sr'), E=275 MeV;60Ni, 208Pb(98Sr, 98Sr'), E=276 MeV; measured reaction products, Eγ, Iγ. 96,98Sr; deduced B(E2) and B(M1)values, spectroscopic quadrupole moments. Comparison with beyond-mean-field calculations using the Gogny D1S interaction, least squares fitting code GOSIA.

NUCLEAR STRUCTURE 96,98Sr; calculated B(E2) values with the Gogny D1S interaction in a five-dimensional collective Hamiltonian (5DCH) formalism.

doi: 10.1103/PhysRevLett.116.022701
Citations: PlumX Metrics

Data from this article have been entered in the XUNDL database. For more information, click here.


2016CL03      Phys.Rev. C 94, 054326 (2016)

E.Clement, M.Zielinska, S.Peru, H.Goutte, S.Hilaire, A.Gorgen, W.Korten, D.T.Doherty, B.Bastin, C.Bauer, A.Blazhev, N.Bree, B.Bruyneel, P.A.Butler, J.Butterworth, J.Cederkall, P.Delahaye, A.Dijon, A.Ekstrom, C.Fitzpatrick, C.Fransen, G.Georgiev, R.Gernhauser, H.Hess, J.Iwanicki, D.G.Jenkins, A.C.Larsen, J.Ljungvall, R.Lutter, P.Marley, K.Moschner, P.J.Napiorkowski, J.Pakarinen, A.Petts, P.Reiter, T.Renstrom, M.Seidlitz, B.Siebeck, S.Siem, C.Sotty, J.Srebrny, I.Stefanescu, G.M.Tveten, J.Van de Walle, M.Vermeulen, D.Voulot, N.Warr, F.Wenander, A.Wiens, H.De Witte, K.Wrzosek-Lipska

Low-energy Coulomb excitation of 96, 98Sr beams

NUCLEAR REACTIONS 60Ni, 208Pb(98Sr, 98Sr'), E=276.3 MeV; 109Ag, 120Sn(96Sr, 96Sr'), E=275.5 MeV; measured Eγ, Iγ, scattered Sr ions and target recoils, (particle)γ-coin, γ(θ), differential Coulomb excitation cross sections using Miniball array for γ detection and Si strip detectors for ions at REX-ISOLDE-CERN facility. 96,98Sr; deduced levels, E2 and M1 matrix elements, B(E2) and level half-lives, quadrupole moments and deformation parameters, E0 monopole transition strengths using GOSIA2 analysis. Comparison with previous experimental data and five-dimensional collective Hamiltonian and Gogny D1S force, and using complex excited VAMPIR approach. Systematics of level energies, transitional and spectroscopic quadrupole moments in 94,96Kr, 96,98Sr, 98,100Zr, 100,102Mo. Systematics of energy and B(E2) for first 2+ state, and energies of second 0+ states in 90,92,94,96,98,100,102Sr. 60Ni, 208Pb(98Rb, 98Rb'), E=276 MeV; measured Eγ, Iγ, scattered Rb ions and target recoils, (particle)γ-coin, γ(θ), level half-lives by recoil-distance Doppler shift method. 98Rb; deduced levels.

doi: 10.1103/PhysRevC.94.054326
Citations: PlumX Metrics

Data from this article have been entered in the XUNDL database. For more information, click here.


2016GO18      Eur.Phys.J. A 52, 202 (2016)

S.Goriely, S.Hilaire, M.Girod, S.Peru

The Gogny-Hartree-Fock-Bogoliubov nuclear-mass model

NUCLEAR STRUCTURE Z=1-107; calculated binding energy, mass excess of nuclei in AME-2013 using Skyrme-HFB with D1S, D1H, D1M interactions.

doi: 10.1140/epja/i2016-16202-3
Citations: PlumX Metrics


2016GO28      Phys.Rev. C 94, 044306 (2016)

S.Goriely, S.Hilaire, S.Peru, M.Martini, I.Deloncle, F.Lechaftois

Gogny-Hartree-Fock-Bogolyubov plus quasiparticle random-phase approximation predictions of the M1 strength function and its impact on radiative neutron capture cross section

NUCLEAR STRUCTURE 58,62,66,70,74,78,80,82,84Ni, 120,124,128,132,136,140,144,148,152,156,160Sn, 92Zr, 106Pd, 198Au, 208Pb, 232Th, 238U, 240Pu; N=6-150, 412 even-even nuclei; calculated B(M1) strengths, centroid M1 energies, integrated B(M1) strengths, M1 photoabsorption σ for 128,134Xe, B(E1) strengths for 232Th and 238U. A=20-250; calculated Γγ for E1 and M1 contributions. Large-scale calculations in the framework of axially-symmetric-deformed quasiparticle random phase approximation (QRPA) based on finite-range D1M Gogny force. Comparison with available experimental data. Analyzed impact on radiative neutron capture cross sections.

doi: 10.1103/PhysRevC.94.044306
Citations: PlumX Metrics


2016HI08      Eur.Phys.J. A 52, 336 (2016)

S.Hilaire, S.Goriely, S.Peru, N.Dubray, M.Dupuis, E.Bauge

Nuclear reaction inputs based on effective interactions

NUCLEAR STRUCTURE A=20-250; calculated s-wave neutron resonance mean spacing using ab initio calculations with BSk9 Skyrme interaction. 240Pu; calculated potential energy surface, quadrupole moment using Gogny-type interaction.

NUCLEAR REACTIONS 235U(n, F), E=0.02-12 MeV; calculated σ using ab initio Skyrme interactions. 40Ca, 48Cr, 89Y, 165Ho, 181Ta, 208Pb, 233Th, 238U, 242Pu(n, x), E=0.01-200 MeV; calculated total reaction σ using JLM approach with D1M nuclear matter densities. Compared with available data.

doi: 10.1140/epja/i2016-16336-2
Citations: PlumX Metrics


2016KA29      Phys.Rev. C 94, 014612 (2016)

T.Kawano, R.Capote, S.Hilaire, P.Chau Huu-Tai

Statistical Hauser-Feshbach theory with width-fluctuation correction including direct reaction channels for neutron-induced reactions at low energies

NUCLEAR REACTIONS 238U(n, n'), E<4 MeV; calculated reaction σ(E) with the Engelbrecht and Weidenmuller (EW) transformation, and compared with the modified transmission calculation and with the evaluated cross sections in JENDL-4, ratios of calculated capture, total inelastic, and fission cross sections. Statistical Hauser-Feshbach calculations based on Gaussian orthogonal ensemble (GOE) model in the diagonalized space, and Monte Carlo technique for sampling the S matrix.

doi: 10.1103/PhysRevC.94.014612
Citations: PlumX Metrics


2016MA43      Phys.Rev. C 94, 014304 (2016)

M.Martini, S.Peru, S.Hilaire, S.Goriely, F.Lechaftois

Large-scale deformed quasiparticle random-phase approximation calculations of the γ-ray strength function using the Gogny force

NUCLEAR STRUCTURE 34S, 70,76Ge, 92Zr, 120Sn, 152Sm, 158Gd, 196Pt, 208Pb, 238U, 240Pu; A=10-250; calculated E1 γ-strength functions, B(E1) distributions in the GDR region. 115,120,125,130,135,140,145,150,155Sn; calculated and comparison E1 strength functions for Sn isotopes obtained with the three prescriptions used to correct the HFB+QRPA model based on D1M force. Self-consistent Hartree-Fock-Bogoliubov (HFB) plus axially symmetric deformed quasiparticle random-phase approximation (QRPA) calculations based on finite-range Gogny interactions D1S and D1M. Comparison with experimental photoabsorption data. Discussed predictions of γ-ray strength functions and Maxwellian-averaged neutron capture rates for Sn isotopes.

NUCLEAR REACTIONS 28Si, 60Ni, 70,74Ge, 76,80Se, 90,94Zr, 90,98Mo, 116,119,120Sn, 124,128Te, 138Ba, 142Ce, 144,148Nd, 144,150,154Sm, 158Gd, 174Yb, 181Ta, 190Os, 206Pb, 232Th, 236,238U, 239Pu(γ, X), E*=5-30 MeV; calculated σ and compared with experimental data near the GDR. Self-consistent Hartree-Fock-Bogoliubov (HFB) plus axially symmetric deformed quasiparticle random-phase approximation (QRPA) calculations based on finite-range Gogny interactions D1S and D1M.

doi: 10.1103/PhysRevC.94.014304
Citations: PlumX Metrics


2015AL32      Eur.Phys.J. A 51, 186 (2015)

N.Alamanos, E.Bauge, S.Hilaire

Topical issue on perspectives on nuclear data for the next decade

doi: 10.1140/epja/i2015-15186-8
Citations: PlumX Metrics


2015DU16      Eur.Phys.J. A 51, 168 (2015)

M.Dupuis, E.Bauge, S.Hilaire, F.Lechaftois, S.Peru, N.Pillet, C.Robin

Progress in microscopic direct reaction modeling of nucleon induced reactions

doi: 10.1140/epja/i2015-15168-x
Citations: PlumX Metrics


2015LE02      Acta Phys.Pol. B46, 585 (2015)

J.-F.Lemaitre, S.Hilaire, S.Panebianco, J.-L.Sida

Nuclear Fission Modelling with SPY

doi: 10.5506/APhysPolB.46.585
Citations: PlumX Metrics


2015LE11      Phys.Rev. C 92, 034617 (2015)

J.-F.Lemaitre, S.Panebianco, J.-L.Sida, S.Hilaire, S.Heinrich

New statistical scission-point model to predict fission fragment observables

NUCLEAR REACTIONS 235U(n, F), E=thermal; calculated Coulomb energy and available energy as a function of the fragments deformation for fragment pairs (132Sn+104Mo), (118Pd+118Pd), maximum available energy as a function of the fragment proton and neutron numbers, fragment mass and charge yields, mean fragment deformation, fission fragment kinetic energy, and comparison with available data and ENDF/B-VII.1 data library. Z=85-92, N=118-142; calculated charge yields for the fission of light actinides, and compared to experimental data. Z=70-110, N=75-250 for compound nuclei; calculated peak multiplicity in the mass yields, and estimated mean prompt neutron multiplicity per fragment as a function of the compound nucleus for an excitation energy of 8 MeV. A new statistical scission-point yield (SPY) model. 132Sn, 104Mo, 118Pd; calculated potential energy as a function of deformation using liquid drop, HFB and shifted HFB models.

doi: 10.1103/PhysRevC.92.034617
Citations: PlumX Metrics


2015NY01      Phys.Rev. C 91, 015808 (2015)

H.-T.Nyhus, T.Renstrom, H.Utsunomiya, S.Goriely, D.M.Filipescu, I.Gheorghe, O.Tesileanu, T.Glodariu, T.Shima, K.Takahisa, S.Miyamoto, Y.-W.Lui, S.Hilaire, S.Peru, M.Martini, L.Siess, A.J.Koning

Photoneutron cross sections for neodymium isotopes: Toward a unified understanding of (γ, n) and (n, γ) reactions in the rare earth region

NUCLEAR REACTIONS 143,144,145,146,148Nd(γ, n), E=7.55-13.00 MeV laser Compton scattered (LCS) rays; measured neutron spectra, σ(E) at GACKO (Gamma Collaboration Hutch of Konan University) using SUBARU synchrotron radiation facility; deduced σ(E) for 147Nd(n, γ) by combining present (γ, n) data with existing (n, γ) data for 142,143,144,145,146,148Nd(n, γ), and using γ-SF method. Comparison of σ(E) for 147Nd(n, γ) with JENDL-4.0, ENDF/B-VII.1, and ROSFOND-2010 evaluated libraries. Comparison with predictions of Skyrme-Fock-Bogoliubov (HFB) plus quasiparticle random phase approximation (QRPA) model, and axially symmetric-deformed Gogny HFB plus QRPA model of E1 γ-ray strength using TALYS code. Comparison with previous experimental data.

doi: 10.1103/PhysRevC.91.015808
Citations: PlumX Metrics

Data from this article have been entered in the EXFOR database. For more information, access X4 datasetK2478.


2014BA22      Nucl.Data Sheets 118, 32 (2014)

E.Bauge, M.Dupuis, S.Hilaire, S.Peru, A.J.Koning, D.Rochman, S.Goriely

Connecting the Dots, or Nuclear Data in the Age of Supercomputing

NUCLEAR REACTIONS 238U(n, xn), E=14.1 MeV; calculated σ(En, θ=300, σ(En, θ=900 using TMC )TALYS/TEFAL/NJOY) code system. Compared to data.

NUCLEAR STRUCTURE N=4-170; calculated binding energy, Q using beyond-the-mean-field level using different interactions.

doi: 10.1016/j.nds.2014.04.004
Citations: PlumX Metrics


2014FI17      Phys.Rev. C 90, 064616 (2014)

D.M.Filipescu, I.Gheorghe, H.Utsunomiya, S.Goriely, T.Renstrom, H.-T.Nyhus, O.Tesileanu, T.Glodariu, T.Shima, K.Takahisa, S.Miyamoto, Y.-W.Lui, S.Hilaire, S.Peru, M.Martini, A.J.Koning

Photoneutron cross sections for samarium isotopes: Toward a unified understanding of (γ, n) and (n, γ) reactions in the rare earth region

NUCLEAR REACTIONS 144,147,148,149,150,152,154Sm(γ, n), E=6-17 MeV; measured E(n), I(n), monochromatic and nonmonochromatic σ(E). Comparison with previous experimental results, and predictions from Skyrme HFB+QRPA using BSk7 interaction, and axially deformed Gogny HFB+QRPA models using D1M interaction. 147,148,149,150,151,152Sm(n, γ), E=0.001-1 MeV; analyzed measured σ(E) with a TALYS calculation using D1M+QRPA calculation for the E1 strength function. 153Sm(n, γ), E=0.001-1 MeV; predicted σ(E) from TALYS calculations using γ-strength function (γSF) approach. Comparison with evaluated libraries JENDL-4.0, ENDF/B-VII.1, ROSFOND-2010.

doi: 10.1103/PhysRevC.90.064616
Citations: PlumX Metrics

Data from this article have been entered in the EXFOR database. For more information, access X4 datasetK2472.


2014KO31      Nucl.Data Sheets 119, 310 (2014)

T.Kondo, H.Utsunomiya, S.Goriely, C.Iwamoto, H.Akimune, T.Yamagata, H.Toyokawa, H.Harada, F.Kitatani, Y.-W.Lui, S.Hilaire, A.J.Koning

Partial Photoneutron Cross Sections for 207, 208Pb

NUCLEAR REACTIONS 207,208Pb(polarized γ, n), E=6.5-12.5 MeV; measured En, In; deduced σ, partial σ(E1), σ(M1), B(E1), B(M1), pygmy dipole resonance near the neutron threshold, relative contribution of M1 γ-decay strength to total photoneutron σ; calculated partial E1 σ using HFB plus QRPA and paramaterized PDR. Compared with Harvey data (renormalized by a factor of 1.22).

doi: 10.1016/j.nds.2014.08.085
Citations: PlumX Metrics


2014MA38      Nucl.Data Sheets 118, 273 (2014)

M.Martini, S.Hilaire, S.Goriely, A.J.Koning, S.Peru

Improved Nuclear Inputs for Nuclear Model Codes Based on the Gogny Interaction

NUCLEAR STRUCTURE 238U; calculated positive parity level density, temperature (and level density for T=0) below 100 MeV.

NUCLEAR REACTIONS 174Yb, 180Hf, 238U(γ, x), E=5-25 MeV; calculated photoabsorption σ using QRPA with broadening. Sn(n, x), E≈90 keV; calculated Maxwell-averaged neutron capture rate for isotopes between 115 and 160 using GLO and QRPA.

doi: 10.1016/j.nds.2014.04.056
Citations: PlumX Metrics


2014XU09      Phys.Rev. C 90, 024604 (2014)

Y.Xu, S.Goriely, A.J.Koning, S.Hilaire

Systematic study of neutron capture including the compound, pre-equilibrium, and direct mechanisms

NUCLEAR REACTIONS 16,18O, 22Ne, 26Mg, 27Al, 37Cl, 48Ca, 61Ni, 97Mo, 112Sn, 176Lu, 208Pb, 232Th(n, γ), E=0.001-10 MeV; calculated total capture σ(E) for three processes of compound-nucleus capture (CNC), pre-equilibrium capture (PEC), and direct capture (DIC) using Hauser-Feshbach model, the exciton model, and potential model, respectively, and Compared with experimental data. Z=8-100, N=10-180; calculated total neutron-capture cross sections and astrophysical reaction rates using TALYS code for about 8000 nuclei. Impact of the newly determined reaction rates on the r process abundances.

doi: 10.1103/PhysRevC.90.024604
Citations: PlumX Metrics


2013GO17      Phys.Rev.Lett. 111, 242502 (2013)

S.Goriely, J.-L.Sida, J.-F.Lemaitre, S.Panebianco, N.Dubray, S.Hilaire, A.Bauswein, H.-T.Janka

New Fission Fragment Distributions and r-Process Origin of the Rare-Earth Elements

doi: 10.1103/PhysRevLett.111.242502
Citations: PlumX Metrics


2013KE02      Phys.Rev. C 87, 024609 (2013)

M.Kerveno, J.C.Thiry, A.Bacquias, C.Borcea, P.Dessagne, J.C.Drohe, S.Goriely, S.Hilaire, E.Jericha, H.Karam, A.Negret, A.Pavlik, A.J.M.Plompen, P.Romain, C.Rouki, G.Rudolf, M.Stanoiu

Measurement of 235U(n, n'γ) and 235U(n, 2nγ) reaction cross sections

NUCLEAR REACTIONS 235U(n, n'), (n, 2n), E=0-20 MeV; measured Eγ, Iγ, σ(E), TOF, prompt gamma-ray spectroscopy at GELINA facility in Geel. Activation method. Comparison with calculations using TALYS-1.2 computer code.

doi: 10.1103/PhysRevC.87.024609
Citations: PlumX Metrics

Data from this article have been entered in the EXFOR database. For more information, access X4 dataset23138.


2013UT02      Phys.Rev. C 88, 015805 (2013)

H.Utsunomiya, S.Goriely, T.Kondo, C.Iwamoto, H.Akimune, T.Yamagata, H.Toyokawa, H.Harada, F.Kitatani, Y.-W.Lui, A.C.Larsen, M.Guttormsen, P.E.Koehler, S.Hilaire, S.Peru, M.Martini, A.J.Koning

Photoneutron cross sections for Mo isotopes: A step toward a unified understanding of (γ, n) and (n, γ) reactions

NUCLEAR REACTIONS 94,95,96,97,98,100Mo(γ, n), E=7.55-13.00 MeV laser Compton scattered (LCS) γ rays; measured neutron spectra, σ(E). Comparison with previous experimental measurements, and with predictions of Skyrme Hartree-Fock-Bogoliubov (HFB) plus quasiparticle random phase approximation (QRPA) model, and axially symmetric-deformed Gogny HFB plus QRPA model of E1 γ-ray strength. 94,95,96,97(n, γ); analyzed σ(E) data by combining data from (γ, n), (γ, γ'), (3He, αγ) and (3He, 3He'γ) experiments. 93,99Mo(n, γ); predicted TALYS σ using (γ, γ') and (3He, 3He'γ) data. Comparison with JENDL-4.0, ENDF/B-VII.1, and ROSFOND-2010 evaluated reaction data files.

doi: 10.1103/PhysRevC.88.015805
Citations: PlumX Metrics

Data from this article have been entered in the EXFOR database. For more information, access X4 datasetK2433.


2012BA38      Eur.Phys.J. A 48, 113 (2012)

E.Bauge, G.Belier, J.Cartier, A.Chatillon, J.M.Daugas, J.P.Delaroche, P.Dossantos-Uzarralde, H.Duarte, N.Dubray, M.Ducauze-Philippe, L.Gaudefroy, G.Gosselin, T.Granier, S.Hilaire, H.-T.P.Chau, J.M.Laborie, B.Laurent, X.Ledoux, C.Le Luel, V.Meot, P.Morel, B.Morillon, O.Roig, P.Romain, J.Taieb, C.Varignon, N.Authier, P.Casoli, B.Richard

Coherent investigation of nuclear data at CEA DAM: Theoretical models, experiments and evaluated data

NUCLEAR REACTIONS 175,176Lu(n, γ), E≈0.02-100 eV; measured Eγ, Iγ, γγ-coin; deduced σ, resonances. Compared with ENDF/B-VII.0 with SAMMY7. 176Lu(n, γ), E=80-40000 eV; measured Eγ, Iγ, γγ-coin; deduced σ. Compared with ENDF/B-VII.0 and other data. 174Lu(3He, p), E=60-600 keV; measured prompt and delayed Eγ, Iγ, γγ-coin; deduced γ ray emission probability vs energy; calculated γ ray emission probability using TALYS.177mLu(n, γ), (n, X), E=thermal; measured measured Eγ, Iγ, γγ-coin; deduced σ, resonance parameters. 239Pu(n, F), E not given; measured prompt En, In using FIGARO. Compared with other data, ENDF/B-VII and BRC evaluation. 2H(n, 2n), E=4-26 MeV; measured En, In using CARMEN; deduced σ. Compared with other data, ENDF/B-VII, Ac18, NJOY. 234U(n, F), E=0.15-1.2 MeV;236U(n, F), E=0.75-2.0 MeV;238U(n, F), E=0.01-1 MeV; calculated σ using TALYS. Compared with data. 238U(n, F), E=2, 2.9, 6.01, 7.02, 8.01, 8.94, 14.3, 14.7 MeV; calculated prompt fission σ(n, En). Compared with data. 239Pu(n, γ), (n, F), (n, n'), (n, 2n), (n, 3n), E=0.001-20 MeV; calculated σ, uncertainties, correlation matrix using BFMC.

doi: 10.1140/epja/i2012-12113-7
Citations: PlumX Metrics


2012BU09      Phys.Rev. C 85, 064328 (2012)

A.Burger, A.C.Larsen, S.Hilaire, M.Guttormsen, S.Harissopulos, M.Kmiecik, T.Konstantinopoulos, M.Krticka, A.Lagoyannis, T.Lonnroth, K.Mazurek, M.Norrby, H.T.Nyhus, G.Perdikakis, S.Siem, A.Spyrou, N.U.H.Syed

Nuclear level density and γ-ray strength function of 43Sc

NUCLEAR REACTIONS 46Ti(p, α), E=32 MeV; measured Eγ, Eα, αγ-coin. 43Sc; deduced nuclear level density and γ-ray strength function. Comparison with 45Sc level density, and with microscopic, combinatorial model calculations. Oslo method.

doi: 10.1103/PhysRevC.85.064328
Citations: PlumX Metrics

Data from this article have been entered in the EXFOR database. For more information, access X4 datasetO1992.


2012GO12      J.Phys.:Conf.Ser. 337, 012026 (2012)

S.Goriely, S.Hilaire, A.J.Koning, M.Girod

Nuclear ingredients for cross section calculation of exotic nuclei

doi: 10.1088/1742-6596/337/1/012026
Citations: PlumX Metrics


2012GO13      J.Phys.:Conf.Ser. 337, 012027 (2012)

S.Goriely, S.Hilaire, M.Girod

Latest development of the combinatorial model of nuclear level densities

NUCLEAR STRUCTURE 238U; calculated deformation, positive parity level density vs excitation energy, temperature using combinatorial approach. A=15-255; calculated s-wave neutron resonance spacings using HFB plus combinatorial densities. Compared with published compilation by Capote et al.

doi: 10.1088/1742-6596/337/1/012027
Citations: PlumX Metrics


2012HI11      Phys.Rev. C 86, 064317 (2012)

S.Hilaire, M.Girod, S.Goriely, A.J.Koning

Temperature-dependent combinatorial level densities with the D1M Gogny force

NUCLEAR STRUCTURE 54Cr, 100Ru, 130Xe, 180Hf, 208Pb, 238U; calculated excitation energies, quadrupole deformations, moments of inertia as function of nuclear temperature. A=20-250; deduced ratio of HFB plus combinatorial densities to experimental s-wave neutron resonance spacings as function of temperature. 40Ca, 42K, 50,51V, 56,57Fe, 58Ni, 60Co, 68Zn, 90Zr, 90,94Nb, 93,94,95,96,97,98Mo, 107Cd, 127Te, 132Xe, 148,149Sm, 155Eu, 160,161,162Dy, 166,167,168Er, 171,172Yb, 178Hf, 194Ir, 208Pb, 210Bi, 237U, 238U, 238Np, 239Pu, 242Am; calculated combinatorial nuclear level densities (NLD) using temperature-dependent D1M Gogny interaction. Comparison with experimental data. Z=50, N=50-120; deduced ratio of Maxwellian-averaged (n, γ) rates for T9=1 obtained with current NLDs and those in previous calculations.

doi: 10.1103/PhysRevC.86.064317
Citations: PlumX Metrics


2012KO26      Phys.Rev. C 86, 014316 (2012)

T.Kondo, H.Utsunomiya, S.Goriely, I.Daoutidis, C.Iwamoto, H.Akimune, A.Okamoto, T.Yamagata, M.Kamata, O.Itoh, H.Toyokawa, Y.-W.Lui, H.Harada, F.Kitatani, S.Hilaire, A.J.Koning

Total and partial photoneutron cross sections for Pb isotopes

NUCLEAR REACTIONS 206,207,208Pb(polarized γ, n), E=7.0-13.5 MeV; measured En, In, angular distribution of neutrons using 4π neutron detector, total photoneutron σ(E), partial E1 and M1 photoneutron σ(E) for 207,208Pb using quasimonochromatic laser-Compton scattering (LCS) γ rays. Comparison with previous experimental studies, and with theoretical calculations using Hartree-Fock-Bogoliubov with quasiparticle random phase approximation.

doi: 10.1103/PhysRevC.86.014316
Citations: PlumX Metrics

Data from this article have been entered in the EXFOR database. For more information, access X4 datasetK2385.


2012PA40      Phys.Rev. C 86, 064601 (2012)

S.Panebianco, J.-L.Sida, H.Goutte, J.-F.Lemaitre, N.Dubray, S.Hilaire

Role of deformed shell effects on the mass asymmetry in nuclear fission of mercury isotopes

RADIOACTIVITY 180,198Hg, 235U(SF); calculated minimum absolute available energy at scission for all possible fragmentations, symmetric and asymmetric fission. Microscopic scission-point model.

doi: 10.1103/PhysRevC.86.064601
Citations: PlumX Metrics


2011DO15      J.Korean Phys.Soc. 59, 1260s (2011)

P.Dossantos-Uzarralde, V.Nimal, G.Dejonghe, M.Sancandi, R.Andre, S.Hilaire

An Intrusive Method for the Uncertainty Propagation

doi: 10.3938/jkps.59.1260
Citations: PlumX Metrics


2011GO05      Phys.Rev. C 83, 034601 (2011)

S.Goriely, S.Hilaire, A.J.Koning, R.Capote

Towards an improved evaluation of neutron-induced fission cross sections on actinides

NUCLEAR REACTIONS 232,233,234,235,236,237,238U(n, F), E=0-30 MeV; 233,234,235,236,238U(n, γ), E=0-20 MeV; 233,235,238U(n, 2n), E=0-20 MeV; 233,234,235,236U(γ, F), E=0-30 MeV; calculated σ using microscopic mean-field calculations, and included in the TALYS reaction analysis code. Comparison with experimental data from EXFOR library; and with evaluated reaction libraries for 233U(n, 2n) and 234U(n, γ) reactions.

doi: 10.1103/PhysRevC.83.034601
Citations: PlumX Metrics


2011GO28      J.Korean Phys.Soc. 59, 979s (2011)

S.Goriely, S.Hilaire, A.J.Koning, R.Capote

Towards Improved Evaluation of Neutron-Induced Fission Cross Section

NUCLEAR REACTIONS 232,233,234,235,236,237,238U, 237Np, 238,239,240,241,242Pu(n, f), E=0.01-30 MeV;233,235,236,238U(n, γ), E=0.001-30 MeV;235,236U(γ, f), E=5-30 MeV; calculated σ using microscopic HFB fission paths and HFB plus combinatorial level density, TALYS code. Comparison with EXFOR data.

doi: 10.3938/jkps.59.979
Citations: PlumX Metrics


2011HI12      J.Korean Phys.Soc. 59, 767s (2011)

S.Hilaire, A.J.Koning, S.Goriely

Towards Nuclear Data Evaluations Based on Many Body Theory

NUCLEAR REACTIONS 181Ta(γ, n), E=7.5-14 MeV; 89Y(n, n'), (n, 2n), E=0-30 MeV; calculated σ, isomeric state σ; deduced E1 γ-strength function. 235,236U, 237Np, 238,240,241Pu(n, f), E=0.01-25 MeV; calculated σ. TALYS code. Comparison with data.

doi: 10.3938/jkps.59.767
Citations: PlumX Metrics


2011HI13      J.Korean Phys.Soc. 59, 803s (2011)

S.Hilaire, M.Girod, S.Goriely

Improving the Description of Collective Effects within the Combinatorial Model of Nuclear Level Densities

NUCLEAR STRUCTURE 42K, 56Fe, 60Co, 94Nb, 107Cd, 127Te, 148Pm, 172Yb, 194Ir, 208Pb, 237U, 239Pu; calculated level density. 54Cr, 100Ru, 130Xe, 180Hf, 208Pb, 238U; calculated temperature, deformation. 238U; calculated level density, temperatures from 0 to 100 MeV. HFB plus combinatorial approach.

NUCLEAR REACTIONS 235,236U, 237Np, 238,240,241Pu(n, f), E=0.01-30 MeV; calculated σ using microscopic fission path and combinatorial level density.

doi: 10.3938/jkps.59.803
Citations: PlumX Metrics


2011HI16      J.Korean Phys.Soc. 59, 1506s (2011)

S.Hilaire, M.Girod, S.Goriely

Nuclear Structure Properties with the Gogny Force

COMPILATION Z=1-110; calculated mass excess, first 2+ state energy using HFB with Gogny NN interaction with D1S, D1N, D1M set of parameters. Also calculated (not presented) radii, deformations, moments of inertia, giant resonances. Comparison with data.

doi: 10.3938/jkps.59.1506
Citations: PlumX Metrics


2011PE01      Phys.Rev. C 83, 014314 (2011)

S.Peru, G.Gosselin, M.Martini, M.Dupuis, S.Hilaire, J.-C.Devaux

Giant resonances in 238U within the quasiparticle random-phase approximation with the Gogny force

NUCLEAR STRUCTURE 238U; calculated Kπ=0-, 0+, 1-, 1+ eigenvalues, B(E0), B(E1), B(E2) and B(E3) strengths for dipole, monopole, quadrupole, and octupole giant resonances and low-energy states. Fully consistent microscopic axially-symmetric deformed quasiparticle random-phase approximation (QRPA) approach using a finite-range Gogny force for Hartree-Fock-Bogolyubov mean field and QRPA matrix. Comparison with experimental data.

doi: 10.1103/PhysRevC.83.014314
Citations: PlumX Metrics


2011UT02      Phys.Rev. C 84, 055805 (2011)

H.Utsunomiya, S.Goriely, M.Kamata, H.Akimune, T.Kondo, O.Itoh, C.Iwamoto, T.Yamagata, H.Toyokawa, Y.-W.Lui, H.Harada, F.Kitatani, S.Goko, S.Hilaire, A.J.Koning

Photoneutron cross sections for 118-124Sn and the γ-ray strength function method

NUCLEAR REACTIONS 118,119,120,122,124Sn(γ, n), E=6.78-13 MeV;measured E(n), I(n), σ(E); analyzed γ-strength functions on the basis of the HFB+QRPA model of E1 strength including pygmy dipole resonance. Laser-Compton scattered γ rays.Comparison with previous experimental data, and with evaluated data libraries ENDF/B-VII, JEFF-3.1 and JENDL-4.0.

doi: 10.1103/PhysRevC.84.055805
Citations: PlumX Metrics

Data from this article have been entered in the EXFOR database. For more information, access X4 datasetK2363.


2010DE02      Phys.Rev. C 81, 014303 (2010)

J.-P.Delaroche, M.Girod, J.Libert, H.Goutte, S.Hilaire, S.Peru, N.Pillet, G.F.Bertsch

Structure of even-even nuclei using a mapped collective Hamiltonian and the D1S Gogny interaction

NUCLEAR STRUCTURE A=2-250; analyzed charge radii, two-particle separation energies, correlation energies, excitation energies, transition matrix elements, deformation parameters, and transition strengths using the Hartree-Fock-Bogoliubov theory by the generator coordinate method and mapped onto a five-dimensional collective quadrupole Hamiltonian. Calculated properties of 1712 even-even nuclei.Evaluated performance of the CHFB+5DCH theory based on the Gogny D1S interaction.

doi: 10.1103/PhysRevC.81.014303
Citations: PlumX Metrics


2010LI51      J.Phys.:Conf.Ser. 205, 012007 (2010)

J.Libert, J.-P.Delaroche, M.Girod, H.Goutte, S.Hilaire, S.Peru, N.Pillet, G.F.Bertsch

Microscopic study of low energy collective states in even-even nuclei: A prospective analysis of dynamical corrections to vibrational mass parameters

NUCLEAR STRUCTURE 110Ru; calculated levels, J, π, inertia moment, deformation. 150,152,154,156,158,160,162,164Gd;calculated low-lying levels, J, π, rotational band. Z=20-110; calculated even-even nuclei 0+, 2+ levels. GCM mapped onto 5-Dimensional Collective Quadrupole Hamiltonian with quadrupole constraints deduced from Cogny D1S force. Compared with data.

doi: 10.1088/1742-6596/205/1/012007
Citations: PlumX Metrics


2010UT01      Phys.Rev. C 81, 035801 (2010)

H.Utsunomiya, S.Goriely, H.Akimune, H.Harada, F.Kitatani, S.Goko, H.Toyokawa, K.Yamada, T.Kondo, O.Itoh, M.Kamata, T.Yamagata, Y.-W.Lui, S.Hilaire, A.J.Koning

Photoneutron cross sections for 96Zr: A systematic experimental study of photoneutron and radiative neutron capture cross sections for zirconium isotopes

NUCLEAR REACTIONS 96Zr(γ, n), E=8.1-14 MeV; measured Eγ, Iγ, En, In, σ. Laser Compton-scattered (LCS) beam. Comparisons with previous data and with QRPA and Lorentzian model calculation. 90,91,92,93,94,95,96Zr(n, γ), E=1 keV to 1 MeV; comparison of previous experimental cross sections with calculated values from Hartree-Fock-Bogoliubov (HFB) and quasiparticle random-phase approximation (QRPA).

doi: 10.1103/PhysRevC.81.035801
Citations: PlumX Metrics

Data from this article have been entered in the EXFOR database. For more information, access X4 datasetK2179.


2010UT02      Phys.Rev. C 82, 064610 (2010)

H.Utsunomiya, S.Goriely, H.Akimune, H.Harada, F.Kitatani, S.Goko, H.Toyokawa, K.Yamada, T.Kondo, O.Itoh, M.Kamata, T.Yamagata, Y.-W.Lui, I.Daoutidis, D.P.Arteaga, S.Hilaire, A.J.Koning

γ-ray strength function method and its application to 107Pd

NUCLEAR REACTIONS 105,106,108Pd(γ, n), E=7.25-15.0 MeV; σ(E) by γ-ray strength function method, Laser-Compton-scattering γ-ray beams. Comparison with evaluated data and several theoretical calculations. 104,105,107Pd(n, γ), E=0-1 MeV; analyzed σ data and comparison with theoretical calculations. Hybrid model and deformed RRPA calculation for γ-strength functions and Hauser-Feshbach (HF) model calculation to provide radiative neutron capture cross for 107Pd(n, γ) reaction.

doi: 10.1103/PhysRevC.82.064610
Citations: PlumX Metrics

Data from this article have been entered in the EXFOR database. For more information, access X4 datasetK2295.


2010WA07      J.Nucl.Sci.Technol.(Tokyo) 47, 470 (2010)

T.Watanabe, T.Kawano, M.B.Chadwick, R.O.Nelson, S.Hilaire, E.Bauge, P.Dossantos-Uzarralde

Calculation of Prompt Fission Product Average Cross Sections for Neutron-Induced Fission of 235U and 239Pu

NUCLEAR REACTIONS 235U, 239Pu(n, γ), (n, 2n), (n, 3n), E=0-20 MeV; calculated σ, fission product yields. EMPIRE, TALYS, GNASH codes.

doi: 10.3327/jnst.47.470
Citations: PlumX Metrics


2009CA27      Nucl.Data Sheets 110, 3107 (2009)

R.Capote, M.Herman, P.Oblozinsky, P.G.Young, S.Goriely, T.Belgya, A.V.Ignatyuk, A.J.Koning, S.Hilaire, V.A.Plujko, M.Avrigeanu, O.Bersillon, M.B.Chadwick, T.Fukahori, Z.Ge, Y.Han, S.Kailas, J.Kopecky, V.M.Maslov, G.Reffo, M.Sin, E.Sh.Soukhovitskii, P.Talou

RIPL - Reference Input Parameter Library for Calculation of Nuclear Reactions and Nuclear Data Evaluations

doi: 10.1016/j.nds.2009.10.004
Citations: PlumX Metrics


2009GA41      Phys.Rev. C 80, 064313 (2009)

L.Gaudefroy, A.Obertelli, S.Peru, N.Pillet, S.Hilaire, J.-P.Delaroche, M.Girod, J.Libert

Collective structure of the N=40 isotones

NUCLEAR STRUCTURE 58Ar, 60Ca, 62Ti, 64Cr, 66Fe, 68Ni, 70Zn, 72Ge, 74Se, 76Kr, 78Sr, 80Zr, 82Mo; calculated single-particle energies, Nilsson diagrams, potential energy curves, neutron and proton pairing energy curves, excitation energies, spectroscopic quadrupole moments, and B(E2) using Hartree-Fock-Bogoliubov (HFB) approach using the Gogny D1S effective interaction Comparison with experimental data.

doi: 10.1103/PhysRevC.80.064313
Citations: PlumX Metrics


2009GO05      Phys.Rev. C 79, 024612 (2009)

S.Goriely, S.Hilaire, A.J.Koning, M.Sin, R.Capote

Towards a prediction of fission cross sections on the basis of microscopic nuclear inputs

NUCLEAR REACTIONS 232Th, 235,236,238U, 238,239,240,241,242Pu, 237Np(n, F), E=0.01-30 MeV; calculated fission σ using global renormalization of barrier heights within the HFB fission path and microscopic nuclear level densities at saddle points. Comparison with experimental data. 234,235,236,237,238,239U, 238,239,240,241,242,243Pu; calculated fission path total energy.

doi: 10.1103/PhysRevC.79.024612
Citations: PlumX Metrics


2009GO15      Phys.Rev.Lett. 102, 242501 (2009)

S.Goriely, S.Hilaire, M.Girod, S.Peru

First Gogny-Hartree-Fock-Bogoliubov Nuclear Mass Model

doi: 10.1103/PhysRevLett.102.242501
Citations: PlumX Metrics


2009UT01      Phys.Rev. C 80, 055806 (2009)

H.Utsunomiya, S.Goriely, M.Kamata, T.Kondo, O.Itoh, H.Akimune, T.Yamagata, H.Toyokawa, Y.-W.Lui, S.Hilaire, A.J.Koning

γ-ray strength function for 116, 117Sn with the pygmy dipole resonance balanced in the photoneutron and neutron capture channels

NUCLEAR REACTIONS 116,117Sn(γ, n), E=6.80-13.5 MeV; measured neutron spectra and σ using incident beam of laser Compton-scattered (LCS) photons. Comparisons of E1 γ-ray strength functions with previous experimental results and calculations using Hartree-Fock-Bogoliubov plus quasiparticle random-phase approximation (HFB+QRPA) models.

doi: 10.1103/PhysRevC.80.055806
Citations: PlumX Metrics

Data from this article have been entered in the EXFOR database. For more information, access X4 datasetK2164.


2008GO29      Phys.Rev. C 78, 064307 (2008)

S.Goriely, S.Hilaire, A.J.Koning

Improved microscopic nuclear level densities within the Hartree-Fock-Bogoliubov plus combinatorial method

NUCLEAR STRUCTURE A=24-250; calculated nuclear level densities. Hartree-Fock-Bogoliubov model.

doi: 10.1103/PhysRevC.78.064307
Citations: PlumX Metrics


2008KO19      Nucl.Phys. A810, 13 (2008)

A.J.Koning, S.Hilaire, S.Goriely

Global and local level density models

NUCLEAR REACTIONS 92Zr(n, γ), (n, 2n), (n, α), E=0-40 MeV; calculated σ. 93Nb(n, xn), E=14 MeV; 197Au(p, xn), E=11 MeV; calculated σ(E'). Comparison of TALYS results with four level density models.

NUCLEAR STRUCTURE Z=9-100; A=16-256; calculated/analyzed level densities using four models.

doi: 10.1016/j.nuclphysa.2008.06.005
Citations: PlumX Metrics


2008UT02      Phys.Rev.Lett. 100, 162502 (2008)

H.Utsunomiya, S.Goriely, T.Kondo, T.Kaihori, A.Makinaga, S.Goko, H.Akimune, T.Yamagata, H.Toyokawa, T.Matsumoto, H.Harano, S.Hohara, Y.-W.Liu, S.Hilaire, S.Peru, A.J.Koning

M1 γ Strength for Zirconium Nuclei in the Photoneuton Channel

NUCLEAR REACTIONS 91,92,94Zr(γ, n), E not given; measured En, In, cross sections. Compared results to model calculations.

doi: 10.1103/PhysRevLett.100.162502
Citations: PlumX Metrics

Data from this article have been entered in the EXFOR database. For more information, access X4 datasetK2115.


2007BE35      Phys.Rev.Lett. 99, 032502 (2007)

G.F.Bertsch, M.Girod, S.Hilaire, J.-P.Delaroche, H.Goutte, S.Peru

Systematics of the First 2+ Excitation with the Gogny Interaction

NUCLEAR STRUCTURE A=4-244; calculated excitation energies, B(E2) and transition quadrupole moments using a microscopic theory with Gogny interaction.

doi: 10.1103/PhysRevLett.99.032502
Citations: PlumX Metrics


2007CH80      Nucl.Data Sheets 108, 2742 (2007)

M.B.Chadwick, T.Kawano, P.Talou, E.Bauge, S.Hilaire, P.Dossantos-Uzarralde, P.E.Garrett, J.A.Becker, R.O.Nelson

Yttrium ENDF/B-VII Data from Theory and LANSCE/GEANIE Measurements and Covariances Estimated using Bayesian and Monte-Carlo Methods

NUCLEAR REACTIONS 89Y(n, X), E< 30 MeV; evaluated cross sections, estimated uncertainties.

doi: 10.1016/j.nds.2007.11.004
Citations: PlumX Metrics


2007HI11      Eur.Phys.J. A 33, 237 (2007)

S.Hilaire, M.Girod

Large-scale mean-field calculations from proton to neutron drip lines using the D1S Gogny force

NUCLEAR STRUCTURE N=1-160; calculated drip lines, ground state deformations and binding energies for a number of nuclei using large scale HFB calculations with D1S Gogny force.

doi: 10.1140/epja/i2007-10450-2
Citations: PlumX Metrics


2007SE07      Phys.Rev. C 76, 022802 (2007)

M.Segawa, T.Masaki, Y.Nagai, Y.Temma, T.Shima, K.Mishima, M.Igashira, S.Goriely, A.Koning, S.Hilaire

Neutron capture cross sections of 186Os, 187Os, and 189Os for the Re-Os chronology

NUCLEAR REACTIONS 186,187,189Os(n, γ), E=5-90 keV; measured Eγ, Iγ, neutron capture cross sections.

doi: 10.1103/PhysRevC.76.022802
Citations: PlumX Metrics

Data from this article have been entered in the EXFOR database. For more information, access X4 dataset23021.


2006GO17      Phys.Rev.Lett. 96, 192501 (2006)

S.Goko, H.Utsunomiya, S.Goriely, A.Makinaga, T.Kaihori, S.Hohara, H.Akimune, T.Yamagata, Y.-W.Lui, H.Toyokawa, A.J.Koning, S.Hilaire

Partial Photoneutron Cross Sections for the Isomeric State 180Tam

NUCLEAR REACTIONS 181Ta(γ, n), E=9.2-12.3 MeV; measured total photoneutron and ground-state σ; deduced partial σ for isomeric state production. Astrophysical implications discussed.

doi: 10.1103/PhysRevLett.96.192501
Citations: PlumX Metrics

Data from this article have been entered in the EXFOR database. For more information, access X4 datasetM0690.


2006HI10      Nucl.Phys. A779, 63 (2006)

S.Hilaire, S.Goriely

Global microscopic nuclear level densities within the HFB plus combinatorial method for practical applications

NUCLEAR STRUCTURE 42K, 58Fe, 60Co, 94Nb, 107Cd, 127Te, 148Pm, 155Eu, 161,162Dy, 172Yb, 194Ir, 208Pb, 237U, 239Pu; calculated level densities. Microscopic combinatorial model.

doi: 10.1016/j.nuclphysa.2006.08.014
Citations: PlumX Metrics


2003HI21      Ann.Phys.(New York) 306, 209 (2003)

S.Hilaire, Ch.Lagrange, A.J.Koning

Comparisons between various width fluctuation correction factors for compound nucleus reactions

NUCLEAR REACTIONS 88Sr, 93Nb(n, n), (n, γ), E=0.001-6 MeV; calculated elastic and capture σ. 239Pu(n, n), (n, n'X), (n, F), E=0.001-10 MeV; calculated elastic, inelastic, and fission σ. Comparison of width fluctuation correction factors.

doi: 10.1016/S0003-4916(03)00076-9
Citations: PlumX Metrics


2002HI05      Phys.Lett. 531B, 61 (2002)

S.Hilaire, J.-F.Berger, M.Girod, W.Satula, P.Schuck

Mass Number Dependence of Nuclear Pairing

NUCLEAR STRUCTURE Z=10-100; calculated neutron and proton pair gaps; deduced mass dependence. Comparisons with data.

doi: 10.1016/S0370-2693(02)01371-0
Citations: PlumX Metrics


2002KE10      Phys.Rev. C66, 014601 (2002)

M.Kerveno, F.Haddad, Ph.Eudes, T.Kirchner, C.Lebrun, I.Slypen, J.P.Meulders, C.Le Brun, F.R.Lecolley, J.F.Lecolley, M.Louvel, F.Lefebvres, S.Hilaire, A.J.Koning

Hydrogen Isotope Double Differential Production Cross Sections Induced by 62.7 MeV Neutrons on a Lead Target

NUCLEAR REACTIONS Pb(n, pX), (n, dX), (n, tX), E=62.7 MeV; measured σ(E, θ), σ. Comparison with predictions from several models.

doi: 10.1103/PhysRevC.66.014601
Citations: PlumX Metrics

Data from this article have been entered in the EXFOR database. For more information, access X4 dataset22812.


2002KL03      Phys.Rev. C65, 024309 (2002)

M.Kleban, B.Nerlo-Pomorska, J.F.Berger, J.Decharge, M.Girod, S.Hilaire

Global Properties of Spherical Nuclei Obtained from Hartree-Fock-Bogoliubov Calculations with the Gogny Force

NUCLEAR STRUCTURE Z=30-100; A=50-240; calculated single-particle levels, shell corrections, radii. 142Nd, 144Sm, 146Gd, 148Dy, 150Er, 152Yb, 154Hf, 156W, 158Os, 160Pt, 162Hg, 164Pb; calculated neutron and proton shell corrections. Self-consistent HFB calculations, Gogny force.

doi: 10.1103/PhysRevC.65.024309
Citations: PlumX Metrics


2001HI11      Eur.Phys.J. A 12, 169 (2001)

S.Hilaire, J.P.Delaroche, M.Girod

Combinatorial Nuclear Level Densities Based on the Gogny Nucleon-Nucleon Effective Interaction

NUCLEAR STRUCTURE A=26-250; 58Fe, 104Ru, 168Er, 230Th; calculated level densities, related features. Combinatorial method, Gogny interaction.

doi: 10.1007/s100500170025
Citations: PlumX Metrics


1998HI07      Nucl.Phys. A632, 417 (1998)

S.Hilaire, J.P.Delaroche, A.J.Koning

Generalized Particle-Hole State Densities within the Equidistant Spacing Model

NUCLEAR STRUCTURE 96Mo, 208Pb; calculated particle-hole level densities. General independent particle model, equidistant spacing model.

doi: 10.1016/S0375-9474(98)00003-7
Citations: PlumX Metrics


Back to query form