NSR Query Results

Output year order : Descending
Format : Normal

NSR database version of April 11, 2024.

Search: Author = H.T.Janka

Found 24 matches.

Back to query form

2023SI23      Astrophys.J. 957, L25 (2023)

A.Sieverding, D.Kresse, H.-T.Janka

Production of 44Ti and Iron-group Nuclei in the Ejecta of 3D Neutrino-driven Supernovae

ATOMIC MASSES 44Ti, 56Ni; calculated nucleosynthesis yields from a self-consistent three-dimensional supernova (SN).

doi: 10.3847/2041-8213/ad045b
Citations: PlumX Metrics

2021LE05      Phys.Rev. C 103, 025806 (2021)

J.-F.Lemaitre, S.Goriely, A.Bauswein, H.-T.Janka

Fission fragment distributions and their impact on the r-process nucleosynthesis in neutron star mergers

NUCLEAR REACTIONS 235U(n, F), E=thermal; calculated energy of fission fragments with or without the phenomenological distance correction. 235U, 239Pu, 251Cf(n, F), E=thermal; calculated isotopic and isobaric fission yields, evaporated neutron distributions as a function of the fragment mass number, total mean number of evaporated neutrons per fission, evaporated neutron distribution of spontaneous fission of 252Cf. Improved scission-point yield (SPY) model, and comparison with GEF model calculations, and with experimental and evaluated data for fission yields.

NUCLEAR STRUCTURE Z=70-124, N=80-290; calculated peak multiplicity for the raw preneutron isobaric yields with corrected distance, mean prompt neutron multiplicity per fission, peak multiplicity for the smooth preneutron isobaric yields with corrected distance, mean available energy release per fission, peak multiplicity for the smooth preneutron isobaric yields without corrected distance, isolines of mean available energy release per fission, and mean prompt neutron multiplicity per fission for 3000 nuclei. Z=84-92, N=118-140; Z=92-104, N=140-160; calculated isobaric fission yields for A=70-160 fragments, abundances of A=50-240 nuclei. Z=93-104, A=272-291; Z=99-110, A=328-347; calculated postneutron fission-fragment distributions (FFDs). Analyzed impact of fission on the r-process nucleosynthesis in binary neutron star mergers. Improved scission-point yield (SPY) model, and comparison with GEF model calculations, and with experimental and evaluated data for fission yields.

doi: 10.1103/PhysRevC.103.025806
Citations: PlumX Metrics

2018WA01      Astrophys.J. 852, 40 (2018)

S.Wanajo, B.Muller, H.-T.Janka, A.Heger

Nucleosynthesis in the Innermost Ejecta of Neutrino-driven Supernova Explosions in Two Dimensions

ATOMIC MASSES Z=1-100; calculated astrophysical abundances, mass fractions.

doi: 10.3847/1538-4357/aa9d97
Citations: PlumX Metrics

2017BA10      Acta Phys.Pol. B48, 651 (2017)

A.Bauswein, R.A.Pulpillo, J.A.Clark, O.Just, S.Goriely, H.-T.Janka, N.Stergioulas

Neutron-star Mergers and Nuclear Physics

doi: 10.5506/APhysPolB.48.651
Citations: PlumX Metrics

2017BO24      Phys.Rev.Lett. 119, 242702 (2017)

R.Bollig, H.-T.Janka, A.Lohs, G.Martinez-Pinedo, C.J.Horowitz, T.Melson

Muon Creation in Supernova Matter Facilitates Neutrino-Driven Explosions

doi: 10.1103/PhysRevLett.119.242702
Citations: PlumX Metrics

2017WO03      Astrophys.J. 842, 13 (2017)

A.Wongwathanarat, H.-T.Janka, E.Muller, E.Pllumbi, S.Wanajo

Production and Distribution of 44Ti and 56Ni in a Three-dimensional Supernova Model Resembling Cassiopeia A

doi: 10.3847/1538-4357/aa72de
Citations: PlumX Metrics

2016BA17      Eur.Phys.J. A 52, 56 (2016)

A.Bauswein, N.Stergioulas, H.-T.Janka

Exploring properties of high-density matter through remnants of neutron-star mergers

doi: 10.1140/epja/i2016-16056-7
Citations: PlumX Metrics

2015AT03      Phys.Rev.Lett. 115, 232501 (2015)

D.Atanasov, P.Ascher, K.Blaum, R.B.Cakirli, T.E.Cocolios, S.George, S.Goriely, F.Herfurth, H.-T.Janka, O.Just, M.Kowalska, S.Kreim, D.Kisler, Y.A.Litvinov, D.Lunney, V.Manea, D.Neidherr, M.Rosenbusch, L.Schweikhard, A.Welker, F.Wienholtz, R.N.Wolf, K.Zuber

Precision Mass Measurements of 129-131Cd and Their Impact on Stellar Nucleosynthesis via the Rapid Neutron Capture Process

ATOMIC MASSES 129,130,131Cd; measured TOF-ICR resonance spectra; deduced masses, corrections to the existing values, neutron separation energies. Penning-trap spectrometer ISOLTRAP at ISOLDE/CERN.

doi: 10.1103/PhysRevLett.115.232501
Citations: PlumX Metrics

2015ME10      Phys.Rev. C 92, 055805 (2015)

J.Mendoza-Temis, M.-R.Wu, K.Langanke, G.Martinez-Pinedo, A.Bauswein, H.-T.Janka

Nuclear robustness of the r process in neutron-star mergers

ATOMIC MASSES A=108-288; calculated r-process abundances of slow ejecta for different mass models at different phases of the evolution in neutron star mergers using three-dimensional relativistic smoothed particle hydrodynamic simulation, and extended nuclear network of 7300 nuclei from free nucleons up to 313Ds, including spontaneous, β- and neutron-induced fission, fission yield distributions from the ABLA code. Comparison with observed r-process abundances.

NUCLEAR REACTIONS 278Am(n, F); calculated fission fragment distributions as functions of charge, neutron number, and mass number for neutron using the ABLA code.

doi: 10.1103/PhysRevC.92.055805
Citations: PlumX Metrics

2013GO17      Phys.Rev.Lett. 111, 242502 (2013)

S.Goriely, J.-L.Sida, J.-F.Lemaitre, S.Panebianco, N.Dubray, S.Hilaire, A.Bauswein, H.-T.Janka

New Fission Fragment Distributions and r-Process Origin of the Rare-Earth Elements

doi: 10.1103/PhysRevLett.111.242502
Citations: PlumX Metrics

2013WA11      Astrophys.J. 767, L26 (2013)

S.Wanajo, H.-T.Janka, B.Muller

Electron-capture Supernovae as Origin of 48Ca

doi: 10.1088/2041-8205/767/2/L26
Citations: PlumX Metrics

2013WA21      Astrophys.J. 774, L6 (2013)

S.Wanajo, H.-T.Janka, B.Muller

Electron-capture supernovae as sources of 60Fe

doi: 10.1088/2041-8205/774/1/L6
Citations: PlumX Metrics

2012GO14      J.Phys.:Conf.Ser. 337, 012039 (2012)

S.Goriely, A.Bauswein, H.-T.Janka

R-process nucleosynthesis during the decompression of neutron star crust material

COMPILATION A=65-250; compiled ejectile mass distribution, abundance mass distribution, mean mass, charge time dependence, relative T1/2 for spontaneous fission, β-delayed fission, neutron-induced fission and neutron capture using NETGEN library supplemented with TALYS calculations based on HFB-21 nuclear mass model.

doi: 10.1088/1742-6596/337/1/012039
Citations: PlumX Metrics

2012KU27      Prog.Theor.Phys.(Kyoto), Suppl. 196, 346 (2012)

S.Kubono, N.B.Dam, S.Hayakawa, H.Hashimoto, D.Kahl, H.Yamaguchi, Y.Wakabayashi, T.Teranishi, N.Iwasa, T.Komatsubara, S.Kato, A.Chen, S.Cherubini, S.H.Choi, I.S.Hahn, J.J.He, H.K.Le, C.S.Lee, Y.K.Kwon, S.Wanajo, H.-T.Janka

Alpha-Cluster Dominance in the αp Process in Explosive Hydrogen Burning

NUCLEAR REACTIONS 4He(11C, p), E(cm)=1-4.5 MeV; 4He(21Na, p), E(cm)=2-7 MeV; measured reaction products; deduced σ, resonances, reaction for αp process. Comparison with available data.

doi: 10.1143/PTPS.196.346
Citations: PlumX Metrics

2012WA04      Astrophys.J. 746, 180 (2012)

S.Wanajo, H.-T.Janka

The r-process in the Neutrino-driven Wind from a Black-hole Torus

doi: 10.1088/0004-637X/746/2/180
Citations: PlumX Metrics

2011WA45      J.Phys.:Conf.Ser. 312, 042008 (2011)

S.Wanajo, H.-T.Janka, B.Muller, S.Kubono

Proton vs. neutron captures in the neutrino winds of core-collapse supernovae

doi: 10.1088/1742-6596/312/4/042008
Citations: PlumX Metrics

2008AR06      Phys.Rev. C 78, 015806 (2008)

A.Arcones, G.Martinez-Pinedo, E.O'Connor, A.Schwenk, H.-Th.Janka, C.J.Horowitz, K.Langanke

Influence of light nuclei on neutrino-driven supernova outflows

NUCLEAR REACTIONS 3H(ν-bar, ν-bar), (ν-bar, e+), E=11-100 MeV; calculated σ.

doi: 10.1103/PhysRevC.78.015806
Citations: PlumX Metrics

2006PR12      Astrophys.J. 644, 1028 (2006)

J.Pruet, R.D.Hoffman, S.E.Woosley, H.-T.Janka, R.Buras

Nucleosynthesis in early supernova winds. II. The role of neutrinos

doi: 10.1086/503891
Citations: PlumX Metrics

2005GO32      Nucl.Phys. A758, 587c (2005)

S.Goriely, P.Demetriou, H.-Th.Janka, J.M.Pearson, M.Samyn

The r-process nucleosynthesis: a continued challenge for nuclear physics and astrophysics

doi: 10.1016/j.nuclphysa.2005.05.107
Citations: PlumX Metrics

2005JA15      Nucl.Phys. A758, 19c (2005)

H.-T.Janka, R.Buras, F.S.Kitaura Joyanes, A.Marek, M.Rampp, L.Scheck

Neutrino-driven supernovae: An accretion instability in a nuclear physics controlled environment

doi: 10.1016/j.nuclphysa.2005.05.008
Citations: PlumX Metrics

2005PR19      Astrophys.J. 623, 325 (2005)

J.Pruet, S.E.Woosley, R.Buras, H.-T.Janka, R.D.Hoffman

Nucleosynthesis in the hot convective bubble in core-collapse supernovae

doi: 10.1086/428281
Citations: PlumX Metrics

2003JA10      Nucl.Phys. A718, 269c (2003)

H.-Th.Janka, R.Buras, M.Rampp

The mechanism of core-collapse supernova and the ejection of heavy elements

doi: 10.1016/S0375-9474(03)00727-9
Citations: PlumX Metrics

2000JA04      Nucl.Phys. A663-664, 119c (2000)


Core-Collapse Supernovae - Successes, Problems, and Perspectives

doi: 10.1016/S0375-9474(99)00580-1
Citations: PlumX Metrics

1997TH02      Nucl.Phys. A621, 485c (1997)

K.Thornton, H.-Th.Janka, J.W.Truran

Supernovae as Thermal and Kinetic Energy Input to Their Environment

doi: 10.1016/S0375-9474(97)00294-7
Citations: PlumX Metrics

Back to query form